聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于贵金属离子与配位体的量子化学计算及成键特性研究,设计并研制出一种新型的螯合树脂——聚酯基硫脲树脂,系统地研究了聚酯基硫脲树脂的合成及其对Au~(3+)、Ag~+、Pt~(4+)、Pd~(2+)等贵金属离子的吸附分离性能。
     应用密度泛函方法,用Gaussian 03软件在B3LYP/6-31G(d)水平上对常见配位体进行了量子化学计算,并运用Pearson软硬酸碱理论,研究了贵金属离子与配位体的成键特性,结果表明,酯基硫脲具有能量较高的σ型HOMO和能量较低的兀型LUMO,对金等贵金属离子具有优良的配位能力。理论分析与实验结果证实,含有酯基硫脲基团的高分子树脂——聚酯基硫脲树脂对贵金属离子具有优良的吸附能力和吸附选择性。
     采用逆向合成法,设计出了采用双异硫氰酸酯与多元胺加成聚合的聚酯基硫脲树脂合成路线,发明了一种聚酯基硫脲树脂的制备方法。以二元醇与三光气为原料,在N,N-二甲基苯胺(DMA)的催化下制备双氯甲酸酯;再将双氯甲酸酯与KSCN在DMA的催化下进行固-液相转移催化反应,制备出双异硫氰酸酯中间体;然后将双异硫氰酸酯与多元胺进行聚加成反应,制备出聚酯基硫脲树脂。通过双氯甲酸酯、双异硫氰酸酯以及聚酯基硫脲树脂合成工艺条件的系统实验研究,得到了聚酯基硫脲树脂合成的优化工艺条件与制备方法:制备双氯甲酸酯时三光气和DMA与二元醇摩尔比分别为2.2:3和0.035:1,反应温度为5℃,反应时间为10 h;制备双异硫氰酸酯时双氯甲酸酯与KSCN摩尔比为1:2.5,反应温度为5℃,反应时间为3.5 h;聚合反应时氨基与异硫氰酸酯基摩尔比为1.25:1,反应温度为5℃,反应时间为5 h。制备出聚乙基酯基硫脲树脂(PE)、聚丁基酯基硫脲树脂(PB)、聚乙二醚基酯基硫脲树脂(PD)、聚己基酯基硫脲树脂(PH)和聚二乙氧基乙基酯基硫脲树脂(PT)5个系列共20种树脂,其中PB和PD系列树脂基于二元醇的收率较高,均在90%以上。采用元素分析、FTIR、XRD、SEM、TG等对树脂进行了结构和性能表征。
     系统地研究了聚酯基硫脲树脂对Au~(3+)、Ag~+、pt~(4+)、pd~(2+)4种贵金属离子的吸附性能。采用静态吸附法考察了聚酯基硫脲树脂种类和聚合单体比例对树脂吸附Au~(3+)性能的影响,建立了树脂结构与吸附性能的关系,筛选出PB和PD树脂进行进一步的研究。考察了PB和PD树脂对贵金属离子的静态吸附性能,结果表明,树脂对Au~(3+)、Ag~+、Pt~(4+)、Pd~(2+)具有较高的吸附容量,其中PB1对4种金属离子的吸附容量分别为4.55、4.32、1.60和3.00 mmol·g~(-1),PD1的吸附容量分别为4.90、4.50、1.85和3.41 mmol·g~(-1)。PB1和PD1对Au~(3+)、Ag~+、Pt~(4+)、Pd~(2+)的吸附容量随吸附时间和贵金属离子初始浓度的增加而增加;对Au~(3+)、Pt~(4+)的吸附容量随酸度的增加而略有增加,对Pd~(2+)的吸附容量基本不变,对Ag~+的吸附容量随酸度的增加先增加后减小。动态吸附实验表明,树脂对Au~(3+)和Ag~+的吸附率随流速的增加而下降,随树脂用量的增加而增大。测定了树脂对Au~(3+)和Ag~+的穿透曲线,达到穿透状态时,树脂吸附率较高。
     通过对吸附实验数据和树脂吸附前后的FTIR和XPS分析,揭示了树脂吸附贵金属离子的动力学、热力学和配位机理。PB1和PD1树脂对贵金属离子的吸附数据符合Boyd液膜扩散方程,吸附过程属于液膜扩散控制过程。吸附过程符合Langmuir吸附等温式和Freundlich吸附等温式,且更符合前者,吸附过程为单分子层吸附;采用热力学公式计算吸附过程的△H、△G和AS。FTIR和XPS分析表明,PB1和PD1树脂吸附贵金属离子过程中,树脂配位体与贵金属离子发生了配位反应,树脂吸附Au~(3+)和Ag~+时,S、N、O向Au和Ag提供电子;树脂吸附Pt~(4+)和Pd~(2+)时,S、O向Pt和Pd提供电子。
     考察了树脂对贵金属离子的分离性能,建立了树脂吸附贵金属离子后的再生工艺。树脂对贵金属离子具有较高的吸附容量,对Cu~(2+)、Zn~(2+)、Fe~(3+)、Co~(2+)、Ni~(2+)、Pb~(2+)吸附较少,而对Ca~(2+)、Mg~(2+)、Na~+、K~+基本不吸附。在二元金属离子混合溶液中,PB1和PD1树脂对Au~(3+)、Ag~+、Pt~(4+)、Pd~(2+)的分离因子分别大于1300、110、90和80,说明树脂对贵金属离子具有优良的吸附选择性。在动态吸附实验中,PB1和PD1树脂对混合溶液中Au~(3+)和Ag~+仍具有较高的吸附率,说明将树脂应用于贵金属和贱金属的分离具有较高的可行性。采用酸性硫脲溶液洗脱PB1和PD1树脂上吸附的贵金属离子,树脂的洗脱性能和重复利用性能良好。
     制备了一种新型的活性炭纤维布和PET无纺布支撑聚酯基硫脲树脂复合吸附材料,并研究了复合吸附材料对Au~(3+)的吸附性能。采用浸渍法使双异硫氰酸乙二醚基酯与二乙烯三胺在ACFC或PET无纺布上聚合,制备出新型的聚酯基硫脲树脂复合吸附材料ACFC-PD1和PET-PD1,并采用FTIR、SEM、元素分析和TG等对它们进行了表征。采用静态吸附法考察了ACFC-PD1和PET-PD1对Au~(3+)的吸附,吸附数据符合Boyd液膜扩散方程、Langmuir吸附等温式和Fredulich吸附等温式。吸附容量随温度的增加而增大,吸附过程为吸热过程。复合吸附材料改善了树脂的物理性能和吸附性能,具有一定的应用前景。
Based on the quantum chemistry calculation and bonding features of noble metal ions and its ligands, a new chelating resin, polymeric ester thiurea resin, was designed and synthesized and applied to adsorption and separation for Au~(3+), Ag~+, Pt~(4+) and Pd~(2+).
     Quantum chemistry calculation of common ligands was performed in the framework of density functional theory with Gaussian 03 software at B3LYP/6-31G(d) level, and bonding features of noble metal ions and ligands were studied with the help of hard and soft acids and bases theory. The result indicates that the energy ofσ-type HOMO of ester thiourea group is very high, that ofπ-type LUMO is low relatively and is negative, so it has strong strong coordinating ability with noble metal ions. According to theoretical analysis and experimental results, polymeric ester thiurea resins have good adsorption ability and selectivity to noble metal ions.
     Reverse synthesis method was employed to design the synthesis route of polymeric ester thiourea resin and their intermediates, and a novel polymeric ester thiourea resin was invented. Bischloroformates were prepared by the reaction of diols and triphosgene, catalyzed by N,N-dimethyl aniline (DMA); bischloroformates reacted with KSCN by solid-liquid phase transfer catalysis, also catalyzed by DMA, from which diisothiocyanatidates were synthesized; at last, diisothiocyanatidates reacted with polyamine to obtain polymeric ester thiourea resins. Synthesis technologies of bischloroformates, diisothiocyanatidates and polymeric ester thiourea resins were studies systematically by experimental research, and optimal conditions were as follows: molar ratio of triphosgene to doils 2.2:3, molar ratio of DMA to doils 0.035:1, reaction temperature 5℃, and reaction time 10 h for preparation of bischloroformates; molar ratio of bischloroformates to KSCN 1:2.5, reaction temperature 5℃, and reaction time 3.5 h for preparation of diisothiocyanatidates; molar ratio of amino groups and isothiocyanatidate groups 1.25:1, reaction temperature 5℃, and reaction time 5 h for polymerization reactions. Five series and 20 kinds of polymeric ester thiourea resins, polymaric ethyl ester thiurea resins (PE), polymaric butyl ester thiurea resins (PB), polymaric diethyl ether ester thiurea resins (PD), polymaric hexyl ester thiurea resins (PH), polymaric diethoxyethane ester thiurea resins (PT), were prepared. Yields of PB and PD are all above 90%, and higher than others. Element analysis, FTIR, XRD, SEM and TG, etc. were adopted to characterize their structures and properties.
     Adsorption properities of polymeric ester thiurea resins for Au~(3+), Ag~+, Pt~(4+) and Pd~(2+), etc. were investigated systematically. The relationship of structure of resins and adsorption properities were studied by batch test, and according to effects of the kind of resins and molar ratios of monomers on adsorption capacities for Au~(3+), PB and PD were selected for farther studies. PB and PD have higher adsorption capacities for Au~(3+), Ag~+, Pt~(4+) and Pd~(2+), for example, adsorption capacities of PB1 for Au~(3+), Ag~+, Pt~(4+) and Pd~(2+) are 4.55, 4.32, 1.60 and 3.00 mmol·g~(-1) respectively, and those of PD1 are 4.90, 4.50, 1.85 and 3.41 mmol·g~(-1) respectively. Adsorption capacities of PB1 and PD1 for Au~(3+), Ag~+, Pt~(4+) and Pd~(2+) increase with the increases of adsorption time and initial concentrations of nobel metal ions; With the increases of acidities, adsorption capacities increase for Au~(3+) and Pt~(4+), keep invariant for Pd~(2+), increase firstly and decrease successively for Ag~+. In dynamic adsorption experiments for Au~(3+) and Ag~+, adsorption rates of PB1 and PD1 decrease with the increase of flow rates and increase with the increase of the amounts of resins. Breakthrough curves were also determined, and the adsorption rates are high at penetrative points.
     Adsorption kinetics, thermodynamics and coordination mechanism of resins were revealed by analyzing adsorption data and FTIR and XPS data of resins fore-and-aft adsorption. The adsorption data of PB and PD fit Boyd's diffusion equation of liquid film, indicating the adsorption is controlled by liquid film diffusion. The isothermal adsorption of PB 1 and PD1 obey Langmuir and Freundlich equation, especially the former equation, indicating that the adsorption is a monolayer one;△H,△G and△S were calculated by thermodynamic formulas. According to FTIR and XPS, functional groups of the resins coordinated with noble metal ions in the adsorption. S, N and O atoms donate electrons to Au and Ag atoms in the adsorption of Au~(3+) and Ag~+; S and O atoms donate electrons to Pt and Pd atoms in the adsorption of Pt~(4+) and Pd~(2+).
     Separation properities and regeneration technology of polymeric ester thiurea resins for noble metal ions were studied. PB and PD have higher adsorption capacities for noble metal ions, those for Cu~(2+), Zn~(2+), Fe~(3+), Co~(2+), Ni~(2+) and Pb~(2+) are lower relatively, and those for Ca~(2+), Mg~(2+), Na~+ and K~+ are the lowest. Separation factors of noble-base metals binary metal ion systems are above 1300, 110, 90 and 80 for Au~(3+), Ag~+, Pt(4+) and Pd~(2+) respectively, indicating that adsorption selectivity for noble metal ions is excellent. In dynamic adsorption experiments, adsorption capacities of Au~(3+) and Ag~+ in mixing solutions are still very high, so it can be concluded that the resins could be applied to separation of noble and base metal ions. Acidic thiourea solutions were applied to desorption of noble metals on PB1 and PD1, and the results indicate that elution and regeneration properties are very good.
     Active carbon fiber cloth (ACFC) and polyethylene terephthalate (PET) nonwoven cloth support polymeric ester thiurea resin composite absorbents were prepared, and their adsorption properities were also investigated. Polymeric ester thiurea resin composite absorbents, ACFC-PD1 and PET-PD1, were prepared by impregnation, polymerizing diethyl ether diisothiocyanate and diethylene triamine on ACFC and PET nonwoven cloth. They were characterized by FTIR, SEM, element analysis and TG, etc. Batch testes were adopted to investigate adsorption property of composite absorbents for Au~(3+). The adsorption data fit Boyd's diffusion equation of liquid film, Langmuir and Freundlich isotherm equation. Adsorption capacities decrease with the increases of temperatures, indicating that the adsorption is an exothermic process. The physical and adsorption properities of absorbents are improved by modification, and the composite absorbents are hopeful to be put into practice.
引文
[1] Grosse A C, Dicinoski G W, Shaw M J, et al. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy. 2003, 69(1-3): 1-21.
    
    [2] Aylmore M G, Muir D M. Thiosulfate leaching of gold-A review. MineralsEngineering. 2001,14(2): 135-174.
    
    [3]余建民.贵金属萃取化学.北京:化学工业出版社,2005:1~10.
    
    [4]卢宜源,宾万达.贵金属冶金学.长沙:中南大学出版社,2004:116~183, 316~318.
    
    [5] El-hsaeri A. Precious metals adsorption and extraction using functional mesoporous adsorbents. [MS Dissertation] Sudbury: Laurentian University, 2003.
    
    [6] Hunter W. Gold recovery process. United Kingdom Patent, GB2085856. 1982-5-6.
    
    [7]王永禄.提取贵金属的新技术概观.贵金属.1986,7(3):50~64.
    
    [8] Sussman S, Nachod F C, Wood W. Metal recovery by anion exchange. Industrial& Engineering Chemistry. 1945, 37(7): 618-624.
    
    [9] Burstall F H, Forrest P J, Kember N F, et al. Ion-exchange process for therecovery of gold from cyanide solution. Industrial and Engineering ChemistryResearch. 1953,45(8): 1648-1658.
    
    [10] Ciminelli V S T. Ion exchange resins in the gold industry. Journal of theMinerals, Metals and Materials Society. 2002, 54(10): 35-36.
    
    [11] Hubicki Z, Wojcik G. Studies of the selective removal of microquantities ofplatinum(Ⅳ) ions from model chloride solutions onto ion exchangers containingfunctional tertiary amine and polyamine groups. Adsorption Science & Technology.2004, 22(8): 627-637.
    
    [12] Alguacil F J, Adeva P, Alonso M. Processing of residual gold (Ⅲ) solutions viaion exchange. Gold Bulletin. 2005, 38(1): 9-13.
    
    [13] Zhang H G, Dreisinger D B. The recovery of gold from ammoniacal thiosulfatesolutions containing copper using ion exchange resin columns. Hydrometallurgy.2004,72: 225-234.
    
    [14]施林妹,莫建军.D201×4树脂对金(Ⅲ)的吸附.无机化学学报.2007,23(5): 911-914.
    
    [15]莫建军,施林妹,熊春华.D301R树脂吸附金(Ⅲ)的实验.矿物学报.2006,26(3):272-276.
    
    [16] Kautzmann R M, Sampaio C H, Cortina J L, et al. The use of fibrous ionexchangers in gold hydrometallurgy. Journal of the Minerals, Metals and MaterialsSociety. 2002, 54(10): 47-51.
    
    [17] Handley H W, Jones P, Ebdon L, et al. Research and development topics inanalytical chemistry. Analytical Proceedings. 1991, 28(2): 37-46.
    
    [18] Camel V. Solid phase extraction of trace elements. Spectrochimica Acta Part B:Atomic Spectroscopy. 2003, 58(7): 1177-1233.
    
    [19] Villaescusa I, SalvadoV, Pablo J. Solid-liquid extraction of Au(Ⅲ) from aqueouschloride solutions by tri-n-dodecylammonium chloride impregnated in amberliteXAD-2 resin. Reactive and Functional Polymers. 1997, 32(2): 125-130.
    
    [20] Koster G, Schmuchler G. Separation of noble metals from base metals by meansof a new chelating resin. Analytica Chimica Acta. 1967, 38(1): 179-184.
    
    [21]张孙玮.螯合树脂在分析上的应用.分析化学.1974,2(5):406-413.
    
    [22]樊天霖,陈纪海.螯合型两性离子交换树脂的合成及其在废水除锰中的试用.上海师范大学学报(自然科学版).1979(1):66-73.
    
    [23[张孙玮,汤福隆,章乐琴.偶氮类螯合树脂的合成方法.化学试剂.1979(5): 50-51.
    
    [24] Pearson R G. Hard and soft acids and bases. Journal of the American Chemical Society. 1963, 85(22): 3533-3539.
    
    [25]徐羽梧,高峰,董世华.螯合树脂研究XXVI:氮杂冠醚型树脂的合成及其吸附性能.离子交换与吸附.1994,10(6):517-522.
    
    [26] Jain V K, Handa A, Pandya R, et al. Polymer supported calix[4]arene-semicarbazone derivative for separation and preconcentration of La(Ⅲ), Ce(Ⅲ), Th(Ⅳ) and U(Ⅵ). Reactive and Functional Polymers. 2002, 51(2-3): 101-110.
    
    [27] Trivedi U V, Menon S K, Agrawal Y K. Polymer supported calix[6]arene hydroxamic acid, a novel chelating resin. Reactive and Functional Polymers. 2002, 50(3): 205-216.
    
    [28] Hainey P, Sherrington D C. Oligoamine-functionalised poly(glycidyl methacrylate-ethyleneglycol dimethacrylate) resins as moderate base extractants for gold from cyanide solutions. Reactive and Functional Polymers. 2000, 43(1-2):??195-210.
    
    [29] Sun C M, Qu R J, Hua W C, et al. Synthesis of polystyrene-supported glucosamine resin and its adsorption properties for metal ions. Journal of Applied Polymer Science. 2005, 95(4): 890-896.
    
    [30]王耐冬,朱妙琴.共振二胺结构的螯合树脂对铂、钯吸附性的研究.杭州大 学学报.1985,12(3):354-358.
    
    [31] Farag A B, Soliman M H, Abdel-Rasoul O S, et al. Sorption characteristics and chromatographic separation of gold (Ⅰ and Ⅲ) from silver and base metal ions using polyurethane foams. Analytica Chimica Acta. 2007, 601(2): 218-229.
    
    [32] Dorota J B, Kolarz B N. Gold sorption on weak base anion exchangers with aminoguanidyl groups. European Polymer Journal. 2002, 38(11): 2239-2246.
    
    [33] Dorota J B, Kolarz B N, Serwin A. Sorption of precious metals from acid solutions by functionalised vinylbenzyl chloride-acrylonitryle-divinylbenzene copolymers bearing amino and guanidine ligands. Reactive and Functional Polymers. 2005, 65(1-2): 135-142.
    
    [34] Dorota J B, Kolarz B N, Tylus W O. Sorption of aurocyanide and tetrachloroaurate onto resin with guanidine ligand-an XPS approach. Polymer. 2003,44(19): 5797-5802.
    
    [35]李玲颖,闫永平,林雪.新型SGN螯合树脂吸附贵金属性能和机理研究.离子交换与吸附.1992,8(2):128-134.
    
    [36] Alteparmakian V, Mura P, Olby B G, et al. Platinum group metal chelates derived from 2-mercapto-, 2-hydroxy- and 2-amino-pyridines and -pyrimidines. Inorganica Chimica Acta. 1985,104(1): 5-6.
    
    [37] Chen Y Y, Lu B X, Chen X W. Synthesis of functional resins containing heterocyclic rings and their sorption properties for noble-metal ions. Journal of Macromolecular Science, Part A. 1988,25(10-11): 1443-1454.
    
    [38]席琛,杨光明,姚凤仪.4-氨基-三氮唑树脂对贵金属吸附性能的研究.山西师范大学学报(自然科学版).1999,14(2):46-50.
    
    [39] Wasikiewicz J M, Nagasawa N, Tamada M, et al. Adsorption of metal ions by carboxymethylchitin and carboxymethylchitosan hydrogels. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2005, 236(1-4): 617-623.
    
    [40] Ding S M, Zhang X Y, Feng X H, et al. Synthesis of N,N'-diallyl dibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for??metal ions. Reactive and Functional Polymers. 2006, 66(3): 357-363.
    
    [41] Iglesias M, Antico E, Salvado V. Recovery of palladium( Ⅱ) and gold(Ⅲ) fromdiluted liquors using the resin duolite GT-73. Analytica Chimica Acta. 1999, 381(1):61-67.
    
    [42] Chanda M, O' Driscoll K F, Rempel G L. Sorption of precious metals bypolybenzimidazole protonated with mercaptoacetic acid I. Copper, silver and gold.Reactive Polymers, Ion Exchangers, Sorbents. 1987, 5(2): 157-169.
    
    [43]党明岩,张廷安,王娉等.氯化体系中环硫氯丙烷交联壳聚糖树脂对Au(Ⅲ)的吸附特性.化工学报.2007,58(5):1325-1330.
    
    [44] Zolotov Y A, Petrukhin O M, Malofeeva G I, et al. Determination of platinum metals by x-ray fluorescence, atomic emission and atomic absorption spectrometry after preconcentration with a polymeric thioether. Analytica Chimica Acta. 1983, 148: 135-157.
    
    [45]董绮功,张军平,李亚荣.聚硫醚型纤维素的合成及其吸附性能.应用化学.2002,19(1):94-96.
    
    [46]李维实,沈之荃,张一烽.新型螯合树脂研究(Ⅰ)——以聚硫醚为主链伯胺型树脂的合成及吸附性能.高等学校化学学报.1998(2):322-325.
    
    [47]张超灿,李曦,庞金兴等.含硫杂环聚醚树脂的合成及其吸附性能研究.离子交换与吸附.1994,10(6):481-485.
    
    [48] Qu R J, Sun C M, Wang C H, et al. Preparation and metal binding behavior ofpoly(4-vinylbenzyl 2-hydroxyethyl) sulfoxide and sulfone. European PolymerJournal. 2005,41(7): 1525-1530.
    
    [49] Qu R J, Sun C M, Ji C N, et al. The sorption mechanism of Au(Ⅲ) onsulfur-containing chelating resin poly[4-vinylbenzyl (2-hydroxyethyl) sulfide].European Polymer Journal. 2006,42(2): 254-258.
    
    [50]徐强,曲荣君,刘英霞.PVBS螯合树脂分离富集.火焰原子吸收法测定痕量银.离子交换与吸附.2004,20(4):364-368.
    
    [51]孙维林,沈之荃,石建敏等.以硫醚为主链的螯合树脂研究Ⅳ:含硫氰酸根的螯合树脂的合成及吸附性能.功能高分子学报.1996,9(4):516-522.
    
    [52]孙维林,沈之荃,张一烽.以硫醚为主链的螯合树脂研究Ⅰ:4-氨基安替吡啉树脂和乙基原磺酸基树脂的合成及吸附性能.离子交换与吸附.1997,13(1):23-29.
    
    [53] Sanchez J M, Hidalgo M, Salvado V. The selective adsorption of gold (Ⅲ) and palladium (Ⅱ) on new phosphine sulphide-type chelating polymers bearing different??spacer arms: Equilibrium and kinetic characterization. Reactive and Functional Polymers. 2001,46(3): 283-291.
    
    [54] Zhang C C, Li X, Pang J X, et al. Synthesis of silicas-supported ployethyleneimine and its adsorption porperities. Journal of Wuhan University of Technology(Materials Science Edition). 1994, 9(4): 26-29.
    
    [55]张超灿,庞金兴,李曦等.核-壳型巯基胺螯合树脂的制备及其吸附性能.武 汉大学学报(理学版).2001,47(2):189-191.
    
    [56] Liu P, Su Z X, Wu X Z, et al. Application of isodiphenylthiourea immobilized silica gel to flow injection on-line microcolumn preconcentration and separation coupled with flame atomic absorption spectrometry for interferencefree determination of trace silver, gold, palladium and platinum in geological and metallurgical samples. Journal of Analytical Atomic Spectrometry. 2002, 17(7): 125-130.
    
    [57]吴雄志.树状分子/聚合物改性硅胶在贵金属在线分析中的应用.[博士学位论文]兰州:兰州大学,2004.
    
    [58]曲荣君,孙言志,王春华等.硅胶负载壳聚糖树脂的制备及其对金属离子的 吸附性能.离子交换与吸附.1999,15(4):317-324.
    
    [59] Plueddemann E P. Silicon-containing chelating composition and method therefor.United States Patent, US4071546. 1978-1-31.
    
    [60] Hancock R D, Howell I V. Process for the removal of heavy metals andtransition metals other than platinum from solution. United States Patent,US4203952.1980-5-20.
    
    [61] Bradshaw J S, Bochenska M, Karakowiak K E, et al. Process of removing andconcentrating desired ions from solutions. United States Patent, US4952321.1990-8-28.
    
    [62]伍喜庆,黄志华.改性活性炭吸附金的性能.中国有色金属学报.2005(1): 129-132.
    
    [63] Acharya H K, Krishnaswamy N. Styrene divinylbenzene-based strong acidferromagnetic cation exchanger. Journal of Applied Polymer Science. 1979, 23(10):2939-2943.
    
    [64] Bolto B A, Dixon D R, Swinton E A, et al. Continuous ion exchange usingmagnetic shell resins. I. Dealkalisation - laboratory scale. Journal of ChemicalTechnology and Biotechnology. 1979, 29(6): 325-331.
    
    [65] Bolto B A. Novel water treatment processes which utilize polymers. Journal of??Macromolecular Science, Part A Pure and Applied Chemistry. 1980, 14(1): 107-120.
    
    [66]杨超雄,林理科,吴锦远.环氧磁性离子交换树脂的合成与表征.离子交换 与吸附.1990,6(1):29-36.
    
    [67]刘春萍,关若飞,王妮.磁性功能化酚醛树脂的合成及对金属离子的吸附性能.应用化学.2006,23(9):1037-1041.
    
    [68] Tang S Q, Zhang C C, Wen D J. Study on magetic chelating resin Ⅰ . Preparation of PEI2 and its adsorption properities to metal ions. Journal of Wuhan University of Technology(Materials Science Edition). 1994(1): 48-53.
    
    [69] Wen D J, Tang S Q, Zhao Q N, et al. Study on magetic chelating resin Ⅱ. Preparation of PSE2 and its adsorption properities to metal ions. Journal of Wuhan University of Technology(Materials Science Edition). 1994(1): 54-58.
    
    [70] Chang Y C, Chen D H. Recovery of gold(Ⅲ) ions by a chitosancoated magnetic nano-adsorbent. Gold Bulletin. 2006, 39(3): 98-102.
    
    [71] La B S, Linge H G, Walker G S. Review of gold extraction from ores. Minerals Engineering. 1994,7(10): 1213-1241.
    
    [72]吉玮,景苏,刘建兰.硫脲的制备方法及应用.化工时刊.2004,18(5): 10-15.
    
    [73] Yavuz O, Ziyadanogullari R. Recovery of gold and silver from copper anodeslime. Separation Science and Technology. 2000, 35(1): 133-141.
    
    [74] Deschenes G, Bernard D, Prud P J, et al. A preliminary techno-economicevaluation of the extraction of gold from a chalcopyrite concentrate using thourea.Minerals Engineering. 1994, 7(4): 435-448.
    
    [75] Ardiwilaga S. Effects of cysteine and oxygen on recovery of cemented gold fromleach liquors in athiourea system. Minerals Engineering. 1999,12(6): 645-653.
    
    [76] Gaspar V, Mejerovich A S, Meretukov M A, et al. Practical application ofpotential-pH diagrams for Au-CS(NH_2)_2-H_2O and Ag-CS(NH_2)_2-H_2O systems forleaching gold and silver with acidic thiourea solution. Hydrometallurgy. 1994,34(3): 369-381.
    
    [77]郑粟,王云燕,柴立元.基于配位理论的碱性硫脲选择性溶金机理.中国有色金属学报.2005,15(10):1629-135.
    
    [78] Chen C K, Lung T N, Wan C C.A study of the leaching of gold and silver byacidothioureation. Hydrometallurgy. 1980, 5(2-3): 207-212.
    
    [79] Ubaldini S, Fornari P, Massidda R, et al. An innovative thiourea gold leaching??process.Hydrometallurgy.1998,48(1):113-124.
    
    [80]汪怀仁,陈新峰.硫脲法浸金研究.河南教育学院学报(自然科学版).1997,6(3):45-46.
    
    [81]董岁明,姚坡,李绍卿.某难浸金精矿硫脲法浸金试验研究.黄金.2006,27(03):35-37.
    
    [82] Li J S, Miller J D. Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant. Hydrometallurgy. 2007, 89(3-4): 279-288.
    
    [83]程瑞学.硫脲浸出金和银的微观机理.黄金.1987(2):41-46.
    
    [84]胡岳华,郭观发,邱冠周等.硫脲浸金机理的电化学研究.黄金科学技术. 1995,3(2):43-48.
    
    [85] Mahajan A, Yeh S, Nell M, et al. Synthesis of new 7-chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents. Bioorganic & Medicinal Chemistry Letters. 2007, 17(20): 5683-5685.
    
    [86]孙晓红,刘源发,王慧芳.硫脲衍生物的合成和生物活性研究.化学工程.2006,34(7):54-57.
    
    [87] Dominguez M, Antico E, Beyer L, et al. Liquid-liquid extraction of palladium(Ⅱ) and gold(Ⅲ) with N-benzoyl-N',N'-diethyithiourea and the synthesis of a palladium benzoylthiourea complex. Polyhedron. 2002,21(14-15): 1429-1437.
    
    [88]蒋玉仁.黄金浮选剂设计与合成及结构性能关系研究.[博士学位论文]长沙:中南工业大学,1994.
    
    [89]朱巧军,戴荣斌,李勤喜等.1,5-二(2-羟基苯亚甲基)-二氨基硫脲与银配合物 的合成、表征及抗癌活性研究.无机化学学报.2001,17(6):911-916.
    
    [90] Koch K R, Bourne S A, Anita C, et al. Self-assembly of 2:2 and 3:3 metallamacrocyclic complexes of platinum(Ⅱ) with symmetrical, bipodal N',N',N'",N'"-tetraalkyl-N,N"-phenylenedicarbonylbis(thiourea). Journal of the Chemical Society, Dalton Transactions. 1999(18): 3157-3161.
    
    [91] Koch K R, Du Toit J, Caira M R, et al. Synthesis and crystal structure of trans-bis(N,N'-dibutyl-N-naphthoylthioureato) platinum(Ⅱ). First example of trans chelation of N,N-dialkyl-N'-acylthiourea ligands. Journal of the Chemical Society, Dalton Transactions. 1994(5): 785-786.
    
    [92] Sacht C, Datt M S. Synthesis and characterisation of mixed-ligand platinum(Ⅱ)-sulfoxide complexes, [PtCl(DMSO)(L)], for potential use as chemotherapeutic agents (HL=N,N-dialkyl-N'-(3-R-benzoyl)thiourea). Polyhedron. 2000,19(11): 1347-1354.
    
    [93]宋宝安,张华,金林红.新型硫脲化合物的合成与生物活性研究.化学通报.2003(3):200-202.
    
    [94] Katiyar M, Rani S, Gupta S P. Synthesis and fungitoxicity of someallyl-substituted phenylthioureas. Acta Ciencia Indica: Chemistry. 1980, 6(4):209-211.
    
    [95] Raiford L C, McNulty G M. Thiocarbanilide formation under differentconditions. Journal American Chemical Society. 1934, 56(3): 680-681.
    
    [96] Robbins J D, Neal J R. A simple synthesis of certain unsymmetrically substitutedN,N'-dialkylthioureas. Synthetic Communications. 1986, 16(8): 891-897.
    
    [97] Maddani M, Prabhu K R.A convenient method for the synthesis of substitutedthioureas. Tetrahedron Letters. 2007,48(40): 7151-7154.
    
    [98] Costero A M, Gavina P, Rodriguez-Muniz G M, et al. N-Biphenyl thioureas ascarboxylate receptors. Effect of the ligand substituents on the geometry of thecomplexes. Tetrahedron. 2006,62(36): 8571-8577.
    
    [99]陈国广,张大永,赵欣等.对称和非对称取代硫脲的合成.精细化工.2006, 23(6):605-608.
    
    [100] Kamal A, Chouhan G. A task-specific ionic liquid [bmim]SCN for theconversion of alkyl halides to alkyl thiocyanates at room temperature. TetrahedronLetters. 2005,46(9): 1489-1491.
    
    [101] Xiao M L, Chen F H, Chen Z J, et al. Facile synthesis of thiourea derivatives inionic liquid. Chinese Chemical Letters. 2007, 18(3): 258-260.
    
    [102] Overberger C G, Friedman H A. Thioureas and isothiuronium salts. Polymericderivatives. Journal of Polymer Science Part A: General Papers. 1965, 3(10):3625-3634.
    
    [103] Green T E, Law S L, Campbell W J. Use of selective ion exchange paper inX-ray spectrography and neutron activation. Application to the determination ofgold. Analytical Chemistry. 1970,42(14): 1749-1753.
    
    [104] Siddhanta S, Das H R. Separation and concentration of some platinum metal ionwith a new chelating resin containing thiosemicarbazide as functional group.Tanlanta. 1985, 32(6): 457-460.
    
    [105]庄莉,杨智宽.含硫壳聚糖研究——氨基硫脲接枝壳聚糖的合成.化学试剂.2002,24(5):282-283,310.
    
    [106]徐元,何琦.聚丙烯腈-硫脲螯合树脂的合成及吸银性能研究.离子交换与吸附.1993,9(5):409-413.
    
    [107]陈志勇,周涛,郑新生.硫脲树脂的合成及其对贵金属离子的吸附性能. 信阳师范学院学报(自然科学版).1994,7:47-49.
    
    [108] Zuo G J, Muhammed M. Thiourea-based coordinating polymers: synthesis and binding to noble metals. Reactive Polymers. 1995,24(3): 165-181.
    
    [109]曹德榕,苏致兴.球形大孔聚氯乙烯树脂的化学转化Ⅲ:硫脲树脂的合成 及其性能研究.兰州大学学报(自然科学版).1997,33(2):63-67.
    
    [110]林建荣,王清萍.硫脲螯合树脂的合成及其吸附性能研究.福建师范大学 学报(自然科学版).1997,13(4):68-71.
    
    [111]刘春萍,孙琳,吕菊波等.负载苯基硫脲酚醛型螯合树脂对Ag~+的吸附与实 验室应用.离子交换与吸附.2005,21(4):335-342.
    
    [112] Warshawsky A, Fieberg M M, Mihalik P, et al. The separation of Platinumgroup metals (PGM) in chloride media by isothiouronium resins. Separation andPurification Reviews. 1980,9(2): 209-265.
    
    [113] Tang S Q, Lu Y, Zeng H M. Study on the redox adsorptive properties of fibercontaining iso-thiourea group toward Au(Ⅲ). Journal of Applied Polymer Science.2001, 81(8): 1985-1990.
    
    [114] Ni C H, Yi C H, Feng Z Y. Studies of synthesis and adsorption properties ofchelating resin from thiourea and formaldehyde. Journal of Applied PolymerScience. 2001, 82(13): 3127-3132.
    
    [115] Atiav A A. Adsorption of silver and gold on resins derived from bisthiourea andapplication to retrieval of silver ions from processed photo films. Hydrometallurgy.2005, 80(1-2): 98-106.
    
    [116]徐羽梧,杨亚核,李汉平.螯合树脂研究XXX:硫脲型树脂的合成及其吸附性能.武汉大学学报(自然科学版).1999,45(2):129-134.
    
    [117]何琦.珠状硫脲缩聚螯合树脂的合成及吸银性能研究.离子交换与吸附.1991,7(1):42-46.
    
    [118] Safarik D J, Eldridge R B. Olefin/Paraffin separations by reactive absorption: Areview. Industrial and Engineering Chemistry Research. 1998, 37(7): 2571-2581.
    
    [119] Klopman G. Chemical reactivity and the concept of charge- andfrontier-controlled reactions. Journal American Chemical Society. 1968, 90(2):223-234.
    
    [120] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03. B.02. Pittsburgh:Gaussian Inc, 2003.
    
    [121]钟宏,刘广义,王晖等.一种N-烃氧基羰基异硫氰酸酯及其衍生物的制??备方法.中国专利,ZL03118386.7.2004-11-24.
    
    [122] Mahajan A, Yeh S, Nell M, et al. Synthesis of new 7-chloroquinolinyl thioureasand their biological investigation as potential antimalarial and anticancer agents.Bioorganic & Medicinal Chemistry Letters. 2007, 17(20): 5683-5685.
    
    [123] Yang H, Zhou Z G, Li F Y, et al. New Hg~(2+) and Ag~+ selective colorimetricsensor based on thiourea subunits. Inorganic Chemistry Communications. 2007,10(10): 1136-1139.
    
    [124] Goddard S J. Novel 2-aryl-2,3,5,6,7,8-hexahydro-3-thioxoimidazo-[1,5-A-]pyridin-1(BAH)-ones as herbicides. United States Patent, US4138242. 1979-2-6.
    
    [125]边高峰,来国桥,邱化玉等.一种异硫氰酸酯的合成方法.中国专利, ZL200610048928.2.2006-12-20.
    
    [126] Zhong B Y, Al-Awar R S, Shih C, et al. Novel route to the synthesis of 4-quinolyl isothiocyanates. Tetrahedron Letters. 2006,47(13): 2161-2164.
    
    [127] Kulkarni S V, Desai V C. Process for manufacture of N-alkoxy(or aryloxy) carbonyl isothiocyanate derivatives in the presence of N,N-dialkylarylamine catalyst and aqueous solvent. United States Patent, US6184412 B1. 2001-2-6.
    
    [128]冯翠花,钟宏.相转移催化法合成异硫氰酸乙氧羰酯.武汉化工学院学报. 2003,25(1):9-10.
    
    [129] Wang S S, Magliocco L G. Process of alkoxy and aryloxy isothiocyanatepreparation. United States Patent, US5194673. 1993-3-16.
    
    [130] Miyake H, Nakao Y, Sasaki M. Facile and chemo-selective synthesis of tertiaryalkyl isothiocyanates from alcohols. Tetrahedron. 2007, 63(42): 10433-10436.
    
    [131] Iranpoor N, Firouzabadi H, Nowrouzi N. Preparation of thiocyanates andisothiocyanates from alcohols, thiols, trimethylsilyl-, and tetrahydropyranyl ethersusing triphenylphosphine/2,3-dichloro-5,6-dicyanobenzo-quinone (DDQ)/n-BU4NSCN system. Tetrahedron. 2006, 62(23): 5498-5501.
    
    [132]岩仓义男著.缩聚与聚加成反应.李福锦译.上海:上海科学技术出版社, 1965:357-358.
    
    [133] Strain F. Dichloroformate preparation. United States Patent, US2397630.1946-4-2.
    
    [134] Spiegler L. Process for preparing bis(chloroformates) of 1,2-diols. United StatesPatent, US2873291. 1959-2-10.
    
    [135] Shannon T G, Brunelle D J. Method for preparing bischloroformatecompositions. United States Patent, US4601858. 1986-1-22.
    
    [136] Brunelle D J, Shannon T G. Bischloroformate preparation method with phosgene removal and monochloroformate conversion. European Patent, EP0274743 A2. 1988-7-20.
    
    [137]刘珍.化验员读本上册:化学分析.第2版.北京:化学工业出版社,1994: 316-318.
    
    [138]姜子涛,陈庆森,李荣.直接滴定法滴定芥末籽中辛辣成分.陕西食油科 技.1994,19(2):51-52.
    
    [139] Strain F. Dichloroformate preparation. United States Patent, US2397630.1946-4-2.
    
    [140] Gumaste V K, Deshmukh A R. One-pot preparation of dialkylcarbamoyl azidesfrom tertiary amines using triphosgene and sodium azide. Tetrahedron Letters. 2004,45(35): 6571-6573.
    
    [141]吕峰.DIAR成色剂的合成和照相性能研究.[博士学位论文]上海:华东理 工大学,2004.
    
    [142]何炳林,黄文强.离子交换与吸附树脂.上海:上海科教出版社,1994: 93-133.
    
    [143]张学文,蔡鹏,黄巧云等.抗重金属细菌对土壤胶体和矿物比表面积的影 响.华中农业大学学报(自然科学版).2006,25(4):393-396.
    
    [144]蔡树型,黄超.贵金属分析.北京:冶金工业出版社,1984:180-302.
    
    [145] Michaels A S. Simplified Method of Interpreting Kinetic Data in Fixed-Bed Ion Exchange. Industrial and Engineering Chemistry. 1952,44(8): 1922-1930.
    
    [146]陈敬军.Fe(Ⅲ)负载型螯合树脂吸附砷(Ⅴ)的研究.[硕士学位论文]南昌:南昌大学,2005.
    
    [147] Li W, Coughlin M, Albright R L, et al. Polymer pendant ligand chemistry, 4.Recovery of precious metal ions from strongly acidic solution with apolymer-supported o-phenylenediamine hydrochloride ligand. Reactive andFunctional Polymers. 1995, 28(1): 89-96.
    
    [148] Montembault V, Soutif J C, Brosse J C, et al. Synthesis and complexingproperties of resins containing aminocarboxylic acid as functional groups fromdiethylenetriaminepentaacetic acid bisanhydride and polyvinyl alcohols. Reactiveand Functional Polymers. 1999, 39(3): 253-261.
    
    [149] Donia A M, Atia A A, Elwakeel K Z. Gold(Ⅲ) recovery using syntheticchelating resins with amine, thio and amine/mercaptan functionalities. Separationand Purification Technology. 2005, 42(2): 111-116.
    
    [150] Boyd G E, Adamson A W, Myers L S. The exchange adsorption of ions from aqueous solution by organic zeolites II. Kinetics. Journal of the American Chemistry Society. 1947, 69(3): 2836-2848.
    
    [151] Qu R J, Wang C H, Sun C M, et al. Syntheses and adsorption properties for Hg~(2+) of chelating resin of crosslinked polystyrene-supported 2,5-dimercapto-1,3,4-thiodiazole. Journal of Applied Polymer Science. 2004, 92(3): 1646-1652.
    
    [152]曾宪标.壳聚糖负载稀土催化剂和壳聚糖螯合树脂研究.[博士学位论文]杭州:浙江大学,1997.
    
    [153] Langmuir I. The adsorption of gases on plane surfaces of glass, mica andplatinum. Journal of the American Chemistry Society. 1918,40(9): 1361-1403.
    
    [154] Freundlich H M F. Over the adsorption in solution. Zeitschrift fur PhysikalischeChemie. 1906,57:385-471.
    
    [155] Dabrowski A. Adsorption-from theory to practice. Advances in Colloid andInterface Science. 2001, 93(1-3): 135-224.
    
    [156] Redlich O, Peterson D L. A useful adsorption isotherm. Journal of PhysicalChemistry. 1959,63(6): 1024-1026.
    
    [157] Butler J A V, Ockrent C. Studies in electrocapillarity. Part Ⅲ: The surfacetensions of solutions containing two surface-active solutes. Journal of PhysicalChemistry. 1930, 34(12): 2841-2859.
    
    [158] Bhattacharyya K G, Gupta S S. Pb(Ⅱ) uptake by kaolinite and montmorillonitein aqueous medium: Influence of acid activation of the clays. Colloids and SurfacesA: Physicochemical and Engineering Aspects. 2006,277(1-3): 191-200.
    
    [159] Mensah B R, Reid K J, Hepworth M T. The loading capacity of selected cationexchange resins and activated carbons for gold-thiourea complex. MineralsEngineering. 1995, 8(1-2): 125-146.
    
    [160] Wong Y C, Szeto Y S, Cheung W H, et al. Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Process Biochemistry. 2004, 39(6): 695-704.
    
    [161] Allen S J, Mckay G, Porter J F. Adsorption isotherm models for basic dyeadsorption by peat in single and binary component systems. Journal of Colloid andInterface Science. 2004, 280(2): 322-333.
    
    [162] Skidmore G L, Hortsmann B J, Chase H A. Modelling single-componentprotein adsorption to the cation exchanger S Sepharose FF. Journal ofChromatography A. 1990,498: 113-128.
    
    [163] Geng X D, Regnier F E, Wang Y. Recent developments of the stoichiometric??displacement model for separation processes. Chinese Science Bulletin. 2001,46(21): 1763-1772.
    
    [164] Geng X D, Zebolsky D M. The stoichiometric displacement model andLangmuir and Freundlich adsorption. Journal of Chemical Education. 2002, 79(3):385-388.
    
    [165] Cao Z Y, Wei Q F, Zhang Q X. Template synthesis and adsorption properties ofchitosan salicylal Schiff bases. Journal of Central South University of Technology.2004, 11(2): 169-172.
    
    [166] Shen L, Xia J L, He H, et al. Biosorption mechanism of Cr(IV) onto cells ofSynechococcus sp. Journal of Central South University of Technology. 2007, 14(2):157-162.
    
    [167]北川浩,铃木谦一郎著.吸附的基础与设计.鹿政理译.北京:化学工业出版社,1983:32-33.
    
    [168] Harju L, Krook T. Determination of equilibrium constants of alkaline earthmetal ion chelates with Dowex A-1 chelating resin. Talanta. 1995,42(3): 431-436.
    
    [169] Manju G N, Anoop K K, Vinod V P, et al. An investigation into the sorption ofheavy metals from wastewaters by polyacrylamide-grafted iron(Ⅲ) oxide. Journalof Hazardous Materials. 2002, 91(1-3): 221-238.
    
    [170] Geng X D, Shi Y L. A stoichiometric displacement model of solute adsorptionin liquid-solid system. Science in China, Ser.B. 1989, 32(1): 11-22.
    
    [171]赵振国.吸附作用应用原理.北京:化学工业出版社,2005:303-304.
    
    [172]Soldatov V.纤维状离子交换剂——湿法冶金的新材料.当代离子交换技术,王芳编译.北京:化学工业出版社,1993:469-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700