基于传热模型的中央空调系统综合能效优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国建筑能耗中空调系统的能耗已经占据了巨大的比重,而大部分中央空调系统在实际运行过程中,绝大多数时间处于部分负荷,这时的热效率远远低于额定容量下的运行效率,导致大量的能源被浪费掉。因此对中央空调系统进行优化运行对缓解能源需求有着重要的意义。由于中央空调系统庞大且复杂,要实现中央空调系统的节能高效运行,对部分设备进行优化控制的效果并不理想,必须对整个系统进行统一考虑和全面协调。针对目前中央空调系统整体优化研究较少的现状,本文从全局思想出发,研究基于传热模型的中央空调系统综合能效优化方法,希望能够达到系统总能耗降低、高效运行的目的。本文的主要创新工作及贡献包括:
     1.建立了一种适用于湿工况的风机盘管的简化传热模型。基于干湿转换的方法,将风机盘管的湿工况转换为一种等价干工况,消除析湿系数对总传热系数的影响,省去湿工况下空气物性计算的过程,不涉及焓值求取。然后对传热模型进行简化,将模型简化为几个独立变量所唯一确定的形式,易于计算求解。仿真结果表明在不同工作条件下模型都具有良好的精度。
     2.建立中央空调系统优化运行的数学模型。本文将中央空调系统主要能耗部件的能耗之和作为系统总能耗,设为优化目标。在此基础上建立了各主要能耗部件的能耗模型,并对影响各个部件能耗的因素进行了仿真分析,确定了优化运行参数以及取值范围。
     3.本文根据优化模型的特点,提出了一种基于种间竞争的改进自适应遗传算法对中央空调系统进行优化计算,能在满足制冷负荷的前提下降低中央空调系统的总能耗,并保证系统高效运行。改进的遗传算法在基本遗传算法的基础上,基于种间竞争机制,并融入自适应技术,从而既能保证种群多样性,又能保证解的收敛性,增强了整个算法的局部寻优和全局搜索能力。采用改进遗传算法对中央空调系统能效进行优化,优化结果表明,与常规定温差运行方式以及小流量大温差的节能运行方式相比,本文方法能够明显降低系统总能耗并提高运行效率。
At present in our country, the energy consumption of air conditioning system has occupied a large proportion in the building energy consumption. And most of the air conditioning systems are always at the part load in most of the time. In this condition, the thermal efficiency is much lower than the rated capacity efficiency which leads to a large amount of energy wasted. So optimization on the central air conditioning system has important significance to relieve energy demand. Because of the central air conditioning systems is huge and complex, in order to realize the energy saving of central air conditioning system and efficient operation, optimized control effect on the part is not ideal and the entire system must be considered. In view of the overall optimization on the central air conditioning system is very less and considering the global viewpoint, energy efficiency optimization method based on the heat transfer model of the central air conditioning system was researched. It is hoped to be able to reduce the total energy consumption and efficient operation. The innovation and contributions of this thesis are as follows:
     1. A simplified heat transfer model of fan coil is established for wet condition. Based on a wet-dry transformation method, the wet cooling condition was converted to an equivalent dry cooling condition of the fan coil. Eliminate the effect of overall heat transfer coefficient from dehumidifying coefficient. And this also omitted the calculation process of air properties in wet conditions, did not involve the enthalpy calculation. Then the heat transfer model was simplified that could be determined only by several independent variables. The simulation results showed that the model has good precision under different working conditions.
     2. The optimal operation model of central air conditioning system was established. The overall system energy consumption was set as the optimization target which express as the sum of energy consumption of main components. On the basis of this, energy consumption model of the major energy components was set up and the analysis of the factor of energy consumption was carried out. Then the optimal operation parameters and the range were determined.
     3. According to the feature of optimization model, an improved Genetic Algorithm based on interspecies competition using adaptive crossover technology was presented which is used to the optimization calculation of the central air conditioning system. With satisfying the cooling load, the technology reduced the total energy consumption of central air conditioning system, and ensured the efficient operation. On the basis of Standard Genetic Algorithm, the improved Genetic Algorithm based on interspecies competition and integrates adaptive crossover technology to ensure solution's convergence and distribution, thereby enhance its ability of local and global search. Apply the improved genetic algorithm on the central air conditioning system optimization and the optimization results show that compared to the fixed temperature mode and small flow with large temperature difference mode, this technology can significantly reduce energy consumption of the overall system and improve the running efficiency of the system.
引文
[1]杨宏伟,周大地.论全面建设小康社会的环境目标及其对能源发展的要求[J].环境保护,2005(4):68-72.
    [2]周大地.建设节约型社会走节能型发展道路[J].广东经济,2005(10):19-21.
    [3]卓明胜,梁荣光,许石嵩.现代大楼中央空调系统节能探讨[J].制冷,2004,23(3):78-81.
    [4]国家发展和改革委员会.节能中长期专项规划[J].节能与环保,2004(11):3-10.
    [5]BILLIARDF制冷与可持续发展[J].制冷学报,2003,24(2):22-26.
    [6]M. H J, Smith T F. A system approach to optimal control for HVAC and building systems[J]. ASHRAE Transtraction,1995,101(2):77-96.
    [7]Wang S, Jin X. Model-based optimal control of VAV air-conditioning system using genetic algorithm[J]. Building and Environment,2000,35(6):471-487.
    [8]Ahn B C, Mitchell J W. Optimal control development for chilled water plants using a quadratic representation[J]. Energy and Buildings,2001,33(4):371-378.
    [9]邱少陵,李哲,谢军龙.中央空调空气处理机组的DDC设计[J].自动化与仪器仪表,2000(4):23-26.
    [10]路永华.暖通空调系统节能探讨[J].应用能源技术,2005(5):26-28.
    [11]刘旭,冯玉琪.实用空调技术精华[M].北京:人民邮电出版社,2001.
    [12]Maor I H, Reddy T A. Development and Implementation of HVAC-KBCD:A Knowledge-Based Expert System for Conceptual Design of HVAC&R Systems--Part 1:General Framework[J]. ASHRAE Transactions,2004,110:232-257.
    [13]Chan K T, Yu F W. How Chillers React to Building Loads[J]. ASHRAE Journal, 2004,46(8):52-58.
    [14]晋欣桥,王盛卫.变风量空调系统中的实时优化节能控制[J].节能,1999(1):17-21.
    [15]Roth K, Westphalen D, Dieckmann J, et al. Modulating compressors for residential cooling[J]. Ashrae Journal,2004,46(10):56.
    [16]Morrison F T. What's up with cooling towers[J]. ASHRAE Journal, 2004,46(7):16.
    [17]Crowther H, Furlong J. Optimizing Chillers&Tower[J].2004,46(7):36-40.
    [18]Bartholomew P. Makeup air heat recovery-Saving energy in labs[J]. Ashrae Journal,2004,46(2):35-40.
    [19]黄建恩,冯伟.一种螺杆式制冷机组能耗计算模型[J].暖通空调,2007,37(4):121-126.
    [20]陈华俊,石文星.变频空调器压缩机图形法建模研究[J].制冷学报,2001(2):17-22.
    [21]程加堂,艾莉,段志梅.变风量空调系统机组部分的建模与仿真[J].自动化技术与应用,2009(4):8-9.
    [22]郝华杰,申晓亮.基于MATLAB的空调用压缩机的建模与仿真[J].低温与超导,2010(5):58-60.
    [23]Wang Y W, Cai W J, Soh Y C, et al. A simplified modeling of cooling coils for control and optimization of HVAC systems[J]. Energy Conversion and Management, 2004,45(18-19):2915-2930.
    [24]谷波,卞荷洁,黎远光.风机盘管变结构性能的模型分析[J].机械工程学报,2004(10):109-114.
    [25]Vardhan A, Dhar P L. A new procedure for performance prediction of air conditioning coils[J]. International Journal of Refrigeration-Revue Internationale Du Froid,1998,21 (1):77-83.
    [26]邹挺,张华俊,袁秀玲,等、冷风型空调器的计算机模拟[J].低温工程,1996(1):60-64.
    [27]Tashtoush B, Molhim M, Al-Rousan M. Dynamic model of an HVAC system for control analysis[J]. Energy,2005,30(10):1729-1745.
    [28]Chi J, Didion D. A simulation model of the transient performance of a heat pump[J]. International Journal of Refrigeration,1982,5(3):176-184.
    [29]刘平,李树江,王向东.空调冷却塔的建模与优化控制[J].暖通空调,2011(3):152-155.
    [30]Qureshi B A, Zubair S M. A complete model of wet cooling towers with fouling in fills[J]. Applied Thermal Engineering,2006,26(16):1982-1989.
    [31]Jin G Y, Cai W J, Lu L, et al. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems[J]. Energy Conversion and Management,2007,48(2):355-365.
    [32]孟华,龙惟定,王盛卫.中央空调水系统优化控制研究的发展及现状[J].建筑热能通风空调,2002(6):29-32.
    [33]Zimmer H. Chiller control using on-line allocation for energy conservation:ISA Annual Conference, Houston,1976[C].
    [34]Cho C H, Norden N. Computer optimization of refrigeration systems in a textile plant:a case history[J]. Automatica,1982,18(6):675-683.
    [35]Enterline L L, Sommer A C, Kaya A. Chiller optimization by distributed control to save energy[J]. ISA Transactions,1984,23(2):27-37.
    [36]Lau A S, Beckman W A, Mitchell J W. Development of computerized control strategies for a large chilled water plant[J]. ASHRAE Transaction, 1985,91 (2):766-780.
    [37]Braun J E, Klein S A, Beckman W A. Methodologies for optimal control of chilled water systems without storage[J]. ASHRAE Transactions, 1989,95(1):652-662.
    [38]Olson R T, Liebmana J S. Optimization of a chilled water plant using sequential quadratic programming[J]. Engineering Optimization,2007,15(3):171-191.
    [39]Curtiss P S. Artificial neural networks for use in building systems control and energy management[D]. University of Colorado at Boulder Boulder,1992.
    [40]Flake B A, Mitchell J W, Backman W A. Parameter estimation for multi-response nonlinear chilled water plant models[J]. ASHRAE Transactions,1997:470-485.
    [41]J J, S H, Urabe W. A study on the optimal control of air-conditioning system with floor thermal storage,1997[C]. Arehitecture Institute of Japan.
    [42]Lu L, Cai W J, Soh Y C, et al. HVAC system optimization-condenser water loop[J]. Energy Conversion and Management,2004,45(4):613-630.
    [43]Braun J E. A general control algorithm for cooling towers in cooling Plants with electric and/or gas-driven chillers[J]. HVAC&R Research,2007,13(4):581-598.
    [44]Chu C, Jong T, Huang Y. A study of thermal comfort control using least enthalpy estimator on HVAC system:American Control Conference,2005[C].
    [45]Xi X, Poo A, Chou S. Support vector regression model predictive control on a HVAC plant[J]. Control Engineering Practice,2007,15(8):897-908.
    [46]Zaheer-Uddin M, Patel R V. The design and simulation of a sub-optimal controller for space heating[J]. ASHRAE Transaction,1993,98(1):1024-1031.
    [47]MaeArthur J W, Woessner M A. Receding horizon control:A model-based policy for HVAC applications[J].1993,99(1):139-148.
    [48]Austin S B. Chilled water system optimization[J]. ASHRAE Journal, 1993,35(7):50-56.
    [49]Kirsner W. Designing for 42F chilled water supply temperature-does it save energy?[J]. ASHRAE Journal,1998,40(1):37-42.
    [50]Nassif N, Kajl S, Sabourin R. Optimization of HVAC control system strategy using two-objective genetic algorithm[J]. HVAC&R Research,2005,11(3):459-486.
    [51]Lu L, Cai W, Xie L, et al. HVAC system optimization-In-building section[J]. Energy and Buildings,2005,37(1):11-22.
    [52]Wang S, Jin X. Model-based optimal control of VAV air-conditioning system using genetic algorithm[J]. Building and Environment,2000,35(6):471-487.
    [53]Wang S W, Burnett J. Online adaptive control for optimizing variable-speed pumps of indirect water-cooled chilling systems[J]. Applied Thermal Engineering, 2001,21(11):1083-1103.
    [54]徐新华,王盛卫.多区域变风量空调系统优化控制研究[J].建筑热能通风空调,2006,25(6):1-4.
    [55]孟华,王盛卫,龙惟定.空调水系统实时在线优化控制预测模型的研究[J].同济大学学报(自然科学版),2006(5):670-674.
    [56]晋欣桥,王盛卫,等.楼宇空调能量管理与控制系统的实时优化[J].上海交通大学学报,2001,35(5):741-745.
    [57]罗启军,戴汝平.空调系统控制的一种动态优化技术[J].建筑热能通风空调,2003(3):39-42.
    [58]Chan K T, Yu F W. Optimum setpoint of condensing temperature for air-cooled chillers[J]. HVAC&R Research,2004,10(2):113-127.
    [59]王军,王雁,王瑞祥,等.一种优化控制变风量空调系统的新方法[J].上海交通大学学报,2006(2):248-252.
    [60]张韵辉,吕震中,张小松.冷水机组的优化运行[J].暖通空调,2004,34(3):13-16.
    [61]曹双华,曹家枞,李涛,等.基于小波变换的神经网络空调负荷预测研究[J].暖通空调,2005(4):13-17.
    [62]林星春,曹家枞,马素贞.神经网络法及其在暖通空调负荷预测中的应用[J]. 制冷与空调(四川),2007(2):109-113.
    [63]施志钢,胡松涛,王刚,等.应用神经元自适应PSD控制变频空调系统的仿真研究[J].暖通空调,2006(11):18-21.
    [64]邱少陵,李哲,等.中央空调空气处理机组的DDC设计[J].自动化博览,2000,17(6):38-40.
    [65]刘旭,冯玉琪.实用空调技术精华[M].北京:人民邮电出版社.
    [66]张伟,彭飞,冯翠花,等.水流速对表冷器传热系数影响的分析[J].制冷空调与电力机械,2009(6):50-52.
    [67]Wang C C, Chi K Y, Chang Y J, et al. An experimental study heat transfer and friction characteristic of typical louver fin-and-tube heat exchanges[J]. International Journal of Heat and Mass Transfer,1998,41:817-822.
    [68]中国电子工业部.JB/T4283—91风机盘管机组[S].北京:中国标准出版社,1991.
    [69]MJ B. A toolkit for secondary HVAC system energy calculations[M]. ASHRAE, 1993.
    [70]王晋生.水冷式表冷器传热研究(1):用于湿转换法计算湿工况[J].暖通空调,2000,30(4):78-80.
    [71]清华大学.空气调节(第2版)[M].北京:中国建筑工业出版社,1985.
    [72]Jakob M. Heat transfer, Vol.II[M]. New York:John Wiley & Sons, Inc,1957.
    [73]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [74]Holland J H. Adaption in Natural and Artificial Systems[M]. Cambridge, MA, USA:University of Michigan Press,1975.
    [75]郭旭红,芮延年,李军涛,等.基于遗传算法模糊智能控制系统的研究[J].苏州大学学报:工科版,2004,24(5):38-41.
    [76]Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. Addison-Wesley,1989.
    [77]Koza J R. Genetic Programming 1[M]. Cambridge, MA,USA:The MIT Press, 1992.
    [78]Koza J R. Genetic Programming 2[M]. Cambridge, MA,USA:The MIT Press, 1994.
    [79]朱筱蓉,张兴华.基于小生境遗传算法的多峰函数全局优化研究[J].南京工业大学学报:自然科学版,2006,28(3):39-43.
    [80]黄聪明,陈湘秀.小生境遗传算法的改进[J].北京理工大学学报,2004,24(8):675-678.
    [81]Tuhus-Dubrow D, Krarti M. Genetic-algorithm based approach to optimize building envelope design for residential buildings[J]. Building and Environment, 2010,45(7):1574-1581.
    [82]Huang W, Lam H N. Using genetic algorithms to optimize controller parameters for HVAC systems[J]. Energy and Buildings,1997,26(3):277-282.
    [83]Wright J A, Loosemore H A, Farmani R. Optimization of building thermal design and control by multi-criterion genetic algorithm B-2885-2008[J]. Energy and Buildings,2002,34(9):959-972.
    [84]赵廷法,王瑞华,王普.遗传算法在VAV中央空调节能优化控制中的应用研究[J].控制工程,2009(S2).
    [85]李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [86]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及其应用[M].西安:西安电子科技大学出版社,2005.
    [87]Srinivas M, L M P. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms [J]. IEEE Trans on System, Man, and Cybernetics,1994,24(4):656-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700