新型粗煤泥分选机数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着采煤机械化程度的提高,原煤中煤泥含量越来越高,而粗煤泥有效分选是当前选煤技术研究的热点问题,也是影响选煤厂精煤产率提高的技术瓶颈。论文针对干扰床分选机分选粒度范围窄的缺点,在上升水流中引入上升气泡流,应用这一理论,设计了一种新型粗煤泥分选机,在一定程度上拉大了低密度粗颗粒与高密度细颗粒的分选密度,以此强化了低密度粗颗粒的有效分选,从而弱化了颗粒粒度对分选效果的影响,最终实现煤泥的宽粒级分选。
     论文通过对粗煤泥分选机内部流场数值模拟研究发现,给水口和充气口上方湍流强度较大,能够加强气泡与颗粒之间的相互作用,同时由速度场分布可以看出,在入料口上方存在循环流,可进一步提高宽粒级煤泥的分选效果。
     论文基于屯兰矿和西曲矿两种煤样,在不加捕收剂、加捕收剂、结构改装等不同条件下,研究了上升水流速度、充气速度、入料浓度、入料速度、水/气混合入料速度等因素对分选效果的影响。实验结果可以看出,不加捕收剂的情况下,最佳的试验条件为:顶水速度、充气速度、入料速度和水/气混合入料速度分别为8.5×10-3、2×10-3、1.4×10-2和4.5×10-3n/s,入料浓度为300g/L。在其他条件相同时,添加捕收剂的分选效果优于不加捕收剂时分选效果,说明添加捕收剂后可强化煤泥的有效分选。通过对改装试验装置后进行试验结果发现,装置改装后的试验结果相比原设计试验效果较差,从而也验证了原结构设计的合理性
     论文针对最优试验条件,通过对产品浮沉试验进行分选效果评定。结果发现,屯兰煤样各粒级实际分选密度在1.4g/cm3左右,可能偏差E值在0.045左右,不完善度Ⅰ值在0.1左右,从各粒级数量效率可以看出,0.25-1mm分选效果较好;而西曲煤样各粒级实际分选密度在1.45g/cm3左右,可能偏差E值在0.1左右,不完善度Ⅰ值在0.2左右,同样是0.25-1mm分选效果较好。
With the improvement of coal mining mechanization, the content of the slime is increasingly high, how to separate the coarse coal slime is not only a hot issue in the current coal preparation technology research, but also a technical bottleneck which affects the clean coal production rate in the coal preparation plant. The teeter bed separator has the shortcomings of narrow particle size sorting range, the thesis introduces the rising bubble stream in the rising water, and a new coarse slime separator was designed with this theory, which widened the separation density between coarse particles with low density and fine particles with high density to a certain extent, thus strengthened the separation effective in the coarse particles with low-density, meanwhile weaken the influence of particle size sorting effect, and it realized wide grain size sorting ultimately.
     It can be found that the interaction between the bubble and the particle can be enhanced due to larger turbulence intensity in the outlet and above the inflation port; and the circular flow which can be seen in the velocity field above feed inlet will improve the separation effect further on the wide grain size slime by studied on slime separation internal flow field numerical simulation in this thesis.
     The thesis based on the two coal samples coming from Tunlan mine and Xiqu mine, in order to study the rising rate of water flow, inflation rate, feed concentration, feed speed and water/gas hybrid feeding speed of the effect of separation, the different experimental conditions of without and adding collecting agent and modification structure are selected. The results can be seen without collector, the best experimental conditions:rising water speed, inflatable speed, feed speed and water/gas mixture into the feed speed are8.5×10-3,2×10-3,1.4×10-2and4.5×10-3m/s respectively; feed concentration is300g/L. With the same conditions, the separation effect with collector is better than without collector, it also illustrate that adding collector can enhance the coarse coal slime separation. The results can be found that the original design is better than modification on coarse coal particle separation, which verified the reasonable of the original structural design.
     The effects of separation are evaluated by float and sink tests of products with the optimal test conditions in the thesis. The results show that the actual separation density around1.4g/cm3in Tunlan coal samples, and the E value is about0.045,I value is around0.1, as can be seen from the organic efficiency in various size fraction, the better separation effect size fraction is0.25-1mm; the actual separation density of Xiqu coal samples is about1.45g/cm3, and E value is about0.1, while I value around0.2, the better separation effect size fraction is also the0.25-1mm.
引文
[1]朱匕,徐红岩,范方宇.粗煤泥回收工艺及其设备应用[J].应用能源技术,2011(6),6.
    [2]彭吕盛,王趁义.浮选柱分选细粒煤过程中的参数选择[J].江苏煤炭,1997(3):14.
    [3]王凡,路迈西,张中平.新型浮选柱的研究[J].选煤技术,1997(2),32.
    [4]冯翠花.粗煤泥回收工艺及设备对比[J].选煤技术,2005,(3)
    [5]刘长春,谢广元,吴玲FCMC型旋流微泡浮选柱在中小型选煤厂的应用优势[J].煤炭工程,2006(3):54-56.
    [6]王泽南,谢广元,张悦秋FCMC系列浮选柱实践应用分析[J].煤炭科学技术,2005(8):69-72.
    [7]高丰,粗煤泥分选方法探讨[J].选煤技术,2006(3):33.
    [8]曹育洵,郭德,衡玉华,等.我国粗煤泥分选设备现状[J].选煤技术,2010(1),64-66.
    [9]张宏波,边炳鑫,王铁军.螺旋分选机处理煤泥的效果分析[J],煤矿机械,2004(5):57-58.
    [10]张悦秋,谢广元,俞和胜.煤泥重介旋流器选煤技术现状及发展[J],煤炭工程,2005(12):14-16.
    [11]金明,鲁杰.浅析选煤厂粗煤泥回收系统[J].洁净煤技术,2006(12):23.
    [12]李振涛,谢广元,彭耀丽[J].浮选柱串联工艺改善粗颗粒煤泥浮选效果的探索[J].煤炭工程,2011(1):85.
    [13]吕文能等.螺旋分选机在选煤厂中的应用[J].选煤技术,2006(8):22.
    [14]王泽南,谢广元,张悦秋FCMC系列浮选柱实践应用分析[J].煤炭科学技术,2005(8):69-72.
    [15]刘常春,旋流微泡浮选柱回收粗颗粒粉煤的试验研究[D].徐州,中国矿业大学,2009.
    [16]谢广元,选矿学,M,徐州,中国矿业大学出版社,2001.
    [17]杨颋,霍晓丽,俞和胜,影响旋流微泡浮选柱工作的因素分析[J].洁净煤技术,2008(1): 12-13.
    [18]J. Zhou, K.Walton, D. Laskovski, et al. Enhanced separation of mineral sands using the Reflux Classifier [J]. Minerals Engineering,2006,19(15):1573-1579.
    [19]郭占科,RC1800粗煤泥分选机的应用分析[A].山西煤炭,2011(4):75-76.
    [20]Doroodchi, J. Zhou, D.F. Fletcher, et al. Particle size classification in a fluidized bed containing parallel inclined plates [J]. Minerals Engineering,2006,19(2):162-171.
    [21]J. Mankosa, J. N. Kohmuench. In-plant testing of the hydrofloat separator for coarse phosphate recovery final report [J]. florida institute of phosphate research.2002:8-38.
    [22]M·曼科萨.水力浮选分选机的半工业试验研旧[J].国外金属矿选矿,2001,39(5):40-44.
    [25]李延锋.液固流化床粗煤媒泥分选机理与应用研究[D].徐州:中国矿业大学化工学院,2008.
    [26]焦红光,惠兵,冯金涛等,型粗煤泥干扰床分选技术的研究[J].煤炭工程,2009,56(2):85-87.
    [27]张洪建,赵跃明,张华,等.变径液固两相流分选床回收废弃线路板中金属的研究[J].中国矿业大学学报,2007,36(1):65-68.
    [28]刘昆仑,赵跃民,张洪建,等.变径水介质分选床处理-0.5125mm粒级废弃电路板的实验研究[J].矿冶,2007,16(4):85-88.
    [29]陈文刊,李延锋,徐世辉,李明勇,种亚岗,化床分选粗煤泥技术发展与应用[A].矿山机械,2011(9):75-76.
    [30]陈志彤,刘文礼,赵宏霞等.干扰床分选机分选粗煤泥的试验研究,煤炭工程.2006(4: 55.
    [31]J.N.muench, M. J. Mankosa. Process Engineering Evaluation Of the CrossFlow Separator [J]. Minerals & Metallurgical Process-ing.2002,19(2):43-49.
    [32]N. Kohmuench, M. J. Mankosa, R. Q. Honaker, et al. Applications of the CrossFlow teeter-bed separator in the U.S. coal industry [J]. Minerals & Metallurgical Processing.2006,23(4):187-195.
    [33]H. Luttrell, T C Westerfield, J N Kohmuench, et al. Development of high-efficiency hydraulic separators[J]. Minerals & Metallurgical Processing.2006,23(1):33-39.
    [34]王怀法.近年来选煤技术的发展与思考[A].第十届全国煤炭分选及加工学术研讨会论文集[C].徐州:中国矿业大学出版社,2004.
    [35]A. J. R. Bennett, W. R. chapman, C. C Dell, Studies in forth flotation of coal, proc. thrid int. coal prep, conger, brus-sels-liege, june 1958, E2.
    [36]R.H.Yoon. Flotationg of coal using mico-bubbles and inorganic salts [J]. Mining congress,1982 (12):76.
    [37]G.Atesok, F. Boylu, M.S.Celik, D. Eratak. Carrier flotation for production of low-ash and low-sulphur coal[A]. Proceedings of XIV International Coal Preparation Congress[C]. Sandton Convention Centre, Johannesburg, South Africa:SACOS & SAIMM,2002:63-67.
    [38]R.H.Yoon, G.H.Luttrell, R.Asmatulu. Extending the up-per particle size Limit for coal flotation[A]. Proceedings of XIV International Coal Preparation Congress[C]. Sandton Convention Centre, Johannesburg, South Africa:SACPS & SAIMM,2002:445-449.
    [39]王全强,改善难浮煤泥浮选效果的途径探讨[B]选煤技术,2005(1):38-40.
    [40]A. Uribe-Salas,P. de Lira-Go'mez,R.Pe'rez-Garibaya,F. Nava-Alonsoa, L. Magallanes-Herna'ndez, C. Lara-Valenzuela, Overloading of gas bubbles in column flotation ofcoarse particles and effect upon recovery, Int. J. Miner. Process.71 (2003) 167-178.
    [41]牛勇,王怀法.难浮煤浮选工艺研究[J].净煤技术,2011(3):10.
    [42]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社.2005.9.
    [43]江帆,黄鹏.FLUENT高级应用与实例分析[M].清华大学出版社.
    [44]郝瑞霞,周力行,陈惠泉.冷却水工程中湍浮力射流的三维数值模拟[J].水动力学研究与进展,1999,14(4):484-491.
    [45]王福军.计算流体动力学分析一CFD软件原理与应用.北京:清华大学出版社,2004.
    [46]章本照,印建安,张宏基.流体力学数值方法.北京:机械工业出版社,2003.6.
    [47]RubinstinJ.and BadenieorV,New aspeets in the theory and Praetice of flotation, Proceeding of the XLX Intemation Mineral Processing congress, Vol.13, ChaPter.18,113-116.
    [48]JamesonG.J,Anew concept in flotation column design, column flotation 1988, Chapter.30,281-285.
    [49]韩占忠,王敬,兰小平FLUENT:流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.6.
    [50]Hanjalic.K, Advanced turbulence closure models:a view of current status and future prospects, International Journal of Heat and Fluid Flow.1994,15 (3):178-203.
    [51]Shih.T.H, Liou. W. W, Shabbir.A, et al, A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation, Computers Fluids,1995:24(3): 227-238.
    [52]Jongen T, Simulation and Modeling of Turbulent Incompressible Flows. PhD thesis, EPF Lausanne, Lausanne, Switzerland,1992.
    [53]Pai. S. I. Two-phase flows.Vieweg,1977.
    [54]马根娣等.气液两相流概述.北京:力学进展.1986,16(1)
    [55]章本照,印建安,张宏基.流体力学数值方法.北京:机械工业出版社,2003.06.
    [56]Fluent Inc., Fluent User's Guide.Fluent Inc.2003.
    [57]H.Schlichting.Boundry layer theory,8th ed.McGrawhill, New Yokr,1977.
    [58]H.K.Versteeg, W. Malalasekera.An Introduetion to Computational Fluld Dynamies:The Finite Volume Method, Wiley, New York,1995.
    [59]P.Bradshaw, T.Cebeei, J.H.White.Engineering Calculation Methods for Turbulent Flow. Academic Press, London,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700