抑郁模型大鼠再次急性及慢性应激后海马细胞支架的改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:很多研究强烈提示海马神经可塑性包含在应激和抑郁的病理生理学中。神经的结构和功能可以随着新的刺激改变的特性叫做神经可塑性,包括树突分支的改变,突触改变,长时程增强,轴突萌发,轴突延长,突触发生,神经发生。动态的微管是轴突和树突改变和延伸的基础。微管是基本的真核细胞支架细胞器,在形态上呈管状纤维结构,是细胞内起支撑作用的主要支架,并对细胞内物质运输起轨道和指引方向的作用。越来越多的研究表明微管结构在应激导致的神经可塑性损伤中扮演重要角色。
     微管主要由微管蛋白组成,微管蛋白是由α(55KD)和β(55KD)两个多肽链组成的异源二聚体,两种微管蛋白因为不同的翻译后修饰作用具有不同的亚型。目前研究比较多的α微管蛋白翻译后修饰的亚型Tyr-Tub和Acet-Tub被认为是微管动态状态的一个指标。微管系统和微管结合蛋白(microtubule-associated proteins, MAPs)相互作用,来调节微管的聚合,稳定和排列。MAPs脱磷酸化时,MAP和微管结合并促进微管的聚合和稳定。相反,当MAP磷酸化时,会诱发MAP和微管蛋白的解离,增强微管的动态性。
     抗抑郁药物在人们认识抑郁症的病因学以及疾病机制中起着重要的作用,最近的研究显示慢性给予抗抑郁药可以逆转应激导致的海马结构性神经可塑性的损害。氟西汀作为SSRI的典型药物,已经成为评估抑郁模型的指标性药物。研究报道称,氟西汀可以逆转应激导致的一系列改变。有关抗抑郁药物治疗对微管系统影响的研究还处在早期阶段。但是,现有的资料显示,短期和长期给药能对微管蛋白和微管动力产生影响。已有的文献显示短期给予抗抑郁药物降低微管的动态性,而长期给予抗抑郁药物比如氟西汀可以增强微管动态性。
     越来越多的证据显示,抑郁症最好是描述为慢性的复发性的疾病。而且,最近的研究显示,抑郁症的复燃/复发(relapse/recurrent)率十分高,大概50%重性抑郁障碍(major depressive disorder, MDD)会经历复发,并且在持续的药物治疗过程中复发和复燃的几率达到20-37%。因此,在治疗抑郁症时,预防复发和复燃成为最重要和最有挑战性的目标。就我们所知,目前关于抑郁症复发或复燃的研究多集中在临床病人,很少有文献报道研究抑郁症复发或复燃的动物模型。但由于临床研究无法更清楚了解抑郁障碍复发时脑内的神经生化,神经结构等的改变,因此,建立有关的动物模型具有积极的意义。和其他研究不同的是,本研究着力于抑郁动物模型经过药物治疗康复后,再一次接受慢性不可预见性温和应激(chronic unpredictable mild stress, CUMS),以此来模拟抑郁症的复发。
     目的:CUMS抑郁动物模型经氟西汀治疗后,给予再一次的CUMS,模拟抑郁症的复发,检测该模型的行为改变、脑部海马神经元的形态学改变以及细胞支架微管系统的变化。
     方法:(1)利用随机数字表将大鼠随机分为5组:(i)对照组:空白对照+生理盐水;(ii)CUMS组:CUMS+生理盐水;(iii)氟西汀组:CUMS+氟西汀;(iv)急性再应激组:CUMS+氟西汀+药物清洗期+急性应激;(V)CUMS再应激组:CUMS+氟西汀+药物清洗期+CUMS。(2)使用CUMS进行抑郁动物的造模,大鼠每天随机接受一种应激,持续21天。(3)大鼠接受21天CUMS后,对照组及CUMS组给予生理盐水腹腔注射,氟西汀组、急性再应激组及CUMS再应激组给予21天氟西汀治疗(10mg/kg)。(4)氟西汀治疗后,经过药物清洗期,急性再应激组暴露于一次游泳应激,CUMS再应激组大鼠再次暴露于新一轮的CUMS,以此来模拟人类抑郁症的复发。(5)在CUMS,氟西汀治疗,再次急性及慢性应激后,即第22天、第44天、第51天和第72天对大鼠进行一般情况和行为学的评估,包括体重增长、24小时摄食量、糖水偏好,旷场行为(总行程,运动速度,直立次数,粪便数)。(6)实验结束后麻醉大鼠并使用4%多聚甲醛心脏灌注,断头取脑,石蜡包埋切片,尼氏染色观察海马CA1、CA3及齿状回神经元形态学改变。(7)实验结束后麻醉大鼠断头取脑,提取总蛋白,测定总蛋白浓度,使用western blot检测α微管蛋白翻译后修饰的亚型(Tyr-Tub和Acet-Tub)表达,MAP-2以及磷酸化MAP-2表达的改变。
     结果:(1)CUMS后大鼠体重增长,24小时摄食量,糖水偏好,总行程,运动速度,直立次数和对照组比较均显著降低(P<0.01)。21天氟西汀治疗后,大鼠体重增长,24小时摄食量,糖水偏好,总行程,运动速度,直立次数显著增加,和对照组无统计差异,和生理盐水治疗组差异显著(P<0.01)。再次应激后,急性再应激组和氟西汀组、正常对照组比较无显著差异,CUMS再应激组和氟西汀组、对照组比较有显著差异,且CUMS再应激组和CUMS组比较体重增长,24小时摄食量,糖水偏好,总行程,运动速度各指标均有显著差异(P<0.01),两组在直立次数上虽然没有显著差异(p=0.126),但慢性再应激组的直立次数为0.125±0.3,低于CUMS组的3.75±2.05。(2)石蜡切片尼氏染色显示CUMS再应激组海马CA1区每个高倍视野下(×400)的锥体细胞计数显著低于其它各组(P<0.01)。CA3区氟西汀组,急性再应激组与正常对照组比较差异无显著性(P>0.05)。CUMS组大鼠CA3区细胞数量显著低于正常对照组(P<0.01)。CUMS再应激组椎体细胞数不仅比正常对照组减少(P<0.01),且比CUMS组锥体细胞数量也减少(P<0.01)。齿状回区氟西汀组,急性再应激组与正常对照组比较差异无显著性(P>0.05)。而CUMS组大鼠齿状回区细胞数量显著低于正常对照组(P<0.01)。CUMS再应激组椎体细胞数不仅比正常对照组减少(P<0.01),且比CUMS组锥体细胞数量也减少(P<0.01)。(3) Western blot检测显示,CUMS组与对照组相比,Acet-Tub表达升高(171.84±10.3),Tyr-Tub表达降低(62.06±9.2),差异有显著性(P<0.01);经氟西汀治疗后,Acet-Tub的表达降低(96.18±8.9),Tyr-Tub的表达升高(95.06±8.0),与对照组比较均无显著差异。急性再应激组Acet-Tub, Tyr-Tub表达与对照组均无显著差异,慢性再应激组Acet-Tub升高(244.24±8.9),Tyr-Tub表达降低(30.92±11.0),与CUMS组比较差异均有显著性。CUMS组MAP-2的表达与对照组比较无显著差异,phospho-MAP-2的表达减少(68.81±8.9),与对照组有显著差异(P<0.01)。经氟西汀治疗后,phospho-MAP-2的表达(100.60±7.3)与对照组比较无显著差异。急性再应激组Acet-Tub, Tyr-Tub, MAP-2, phospho-MAP-2表达与对照组均无显著差异,慢性再应激组phospho-MAP-2表达降低(24.75±9.7),与正常对照组及CUMS组比较差异均有显著性(P<0.01)。
     结论:氟西汀可逆转CUMS导致的行为,海马细胞数和细胞支架微管系统的改变。CUMS再应激组较之CUMS组有更严重的快感缺失及旷场行为的减少,同时伴随对海马细胞数及细胞支架微管系统的损害,此损害可能和MAP-2的磷酸化水平有关联。
Background:Many findings strongly indicate an involvement of structural neuronal plasticity in the pathophysiology of stress and depression. The property of adult neurones to change their structure and function in response to new stimuli is called neuronal plasticity and includes changes in dendritic ramifications, synaptic remodelling, LTP, axonal sprouting, neurite extension, synaptogenesis and neurogenesis. Dynamic microtubules are fundamental for the remodelling and extension of axons and dendrites. Indeed, dynamic instability provides microtubules the capability of probing the intraneuronal space and rapidly paves the way to the eventual new synaptic partner. Microtubules are essential eukaryotic cytoskeletal organelles and growing evidence indicates that the microtubular system could play a role in stress-induced impairments in structural neuronal plasticity.
     Microtubules are formed by the polymerization of tubulin, a heterodimer of two subunits designated a andβ. Microtubules are functionally modified to several isoforms by post-translational modification.The expression of isoforms of a post-translational modification such as Tyr-Tub and Acet-Tub is currently used as markers of microtubule dynamics. Microtubules interact with microtubule-associated proteins (MAPs), which modulate polymerisation, stability and arrangement of microtubules. Indeed, when dephosphorylated, neuronal MAPs bind microtubules and promote tubulin assembly and microtubule stabilization. In contrast, phosphorylation of MAPs induces detachment and promotes microtubule dynamics.
     Antidepressant drugs have play an important role in knowing the etiology and mechanism of depression. It has been reported that chronic antidepressant treatment reverse the stress-induced decrease of hippocampal structural neuronal plasticity. Fluoxetine, as a typical antidepressant drug, is an index drug to valuate depression model. Findings have demonstrated that fluoxetine can reverse the stress-induced changes. Studies on the effects of antidepressant treatment upon the neuronal microtubular system are still in the early stages. However, current data indicate that both acute and chronic antidepressant treatments could exert an action on neuronal microtubular proteins and microtubule dynamics. Literatures indicate that a single administration of antidepressants can decrease microtubule dynamics, whereas the effect of chronic treatment such as fluoxetine enhance microtubule dynamics.
     There is growing evidence that depression may be best characterized as a chronic and recurrent disorder. Specifically, current estimates indicate that the rate of relapse/recurrent is very high. Approximately 50% of patients with major depressive disorder (MDD) experience recurrence, and relapse or recurrence rates are as high as 20-37% during the continuation or maintenance phase of pharmacotherapy. Prevention of recurrence and relapse is therefore one of the most important and challenging goals in the management of major depression. To the best of our knowledge, there have few literature published about the recurrence model of depression. Different from other studies, the rats in the present study were exposed to chronic unpredictable mild stress (CUMS) again after they recovered from the first CUMS induced depression, in order to simulate recurrence of depression.
     Objective:To investigate behavior and hippocampal morphology and cytoskeletal alterations following re-exposure to CUMS and acute swimming stress, and explore the possible mechanism.
     Method:(1) Animals were separated into one of five groups:control+vehicle (Control+V), chronic unpredictable mild stress+vehicle (CUMS+V), chronic unpredictable mild stress+fluoxetine (CUMS+FLX), chronic unpredictable mild stress+fluoxetine+drug washout (1 week)+acute swimming test(CUMS+FLX+AS), chronic unpredictable mild stress+fluoxetine+drug washout (1 week)+chronic unpredictable mild stress (CUMS+FLX+CUMS). (2) We used CUMS which has been shown to produce behavioral changes that are similar to human depression and considered to be a valid and useful experimental model of depression. (3) After received CUMS, rats of CUMS+V and CUMS+FLX were treated with vehicle. Rats of CUMS +FLX, CUMS+FLX+AS and CUMS+FLX+CUMS were treated with fluoxetine(10mg/kg). (4) Following fluoxetine treatment, rats of CUMS+FLX+ CUMS were re-exposed to CUMS to mimic the recurrence of depression to explore the possible alterations of cytoskeleton. Rats of CUMS+FLX+AS were re-exposure to acute swimming stress. (5) Increased weigh,24h ingestion, Sucrose preference test and open field test were assessed after CUMS, fluoxetine treatment and re-exposure to stress. (6) Nissl stain was used to observe the suvrival of the Pyramidal neurons in hippocampal CA1, CA3 and DG fields. (7) The expression of a-tubulin isoforms, MAP-2 and phospho-MAP-2 were analyzed used western blot.
     Results:(1) The 3 weeks of CUMS induced marked decrease in the Decreased weigh,24h ingestion, Sucrose preference test, traveled distance, moved velocity and frequencies of rearing in the stressed rats compared to the non-stressed group(p<0.01). At the end of fluoxetine treatment there were no differences between control and animals treated with fluoxetine for three weeks. In contrast, the behaviors of sucrose preference and open field were different between CUMS+V group and other groups (p<0.01 of all). There were no significantly change of sucrose preference, traveled distance, moved velocity and frequencies of rearing of CUMS+FLX+AS group following acute swimming stress. In contrast, animal treated with CUMS again consumed significantly less sucrose solution, traveled less distance and moved with less velocity in comparison with CUMS+V rats (p<0.01). The frequencies of rearing of CUMS+FLX+CUMS group were not statistically significant decreased compared to that of CUMS+V group (p=0.126). However, frequencies of rearing of CUMS+FLX+CUMS group were deduced to 0.125±0.354, lower than 3.75±2.053 of CUMS+V group. (2) The Pyrmaidal neurons in hippocampal CA1 region in CUMS+FLX+CUMS group were were singificantly decreased compare to other groups (p<0.01). The amount of neurons in hippocampal CA3 and DG region have no difference between CUMS+V, CUMS+FLX and CUMS+FLX+AS. The amount of neurons in hippocampal CA3 and DG region in CUMS+V was significantly less than that of Control+V group(p<0.01) whereas the amount of neurons in CUMS+FLX+CUMS was significantly less than that of CUMS+V group(p<0.01). (3) The densitometric analyses of the Acet-Tub expression of CUMS+V group showed a significant increase (P<0.01) to 172±11% in rats submitted to CUMS and the Acet-Tub expression of CUMS+FLX+CUMS group increased significantly (P<0.01) to 239±10% following re-exposure to CUMS. Furthermore, the post hoc analysis also showed there was significant deference between CUMS+V and CUMS+FLX+CUMS group (P<0.01, Bonferroni test). The densitometric analyses also showed that Tyr-Tub expression of CUMS+V group was significantly decreased to 61±11% following CUMS stress and the post hoc analysis revealed a significant (P<0.01) difference compared with other groups. Tyr-Tub expression of CUMS+FLX+CUMS group significantly decreased to 31 ±7% following re-exposure to CUMS, difference significantly (P<0.01) compared with other groups, including the CUMS+V group. In contrast, the a-tubulin isoforms expression of animals treated with fluoxetine and animals received acute swimming stress did not differ statistically from the Control+V group (p>0.05 for both). The one-way ANOVA performed on levels of the hippocampal MAP-2 indicated that the staining of MAP-2 by MAP-2 antibody did not significantly alter after stress or re-exposure to stress while levels of the hippocampal phospho-MAP-2 altered significantly after stress and re-exposure to stress. The densitometric analyses of the phospho-MAP-2 expression showed a significant decrease (P<0.01) to 64±9% in CUMS+V rats submitted to CUMS and a significant decrease (P<0.01) to 22±11% following re-exposure to CUMS in CUMS+FLX+CUMS group. In particular, the phospho-MAP-2 expression of CUMS+FLX rats and CUMS+FLX+AS rats did not differ statistically from the Control+V group (p>0.05 for both).
     Conclusion:Our results suggest that CUMS and fluoxetine affect microtubule dynamics in the hippocampus. These effects appear to be mediated by the degree of phosphorylation of MAP-2. Furthermore, the stressed rats were more sensitive to the subsequent CUMS and their hippocampal cytoskeleton became more impaired. It suggests a possible role of cytoskeletal proteins in mediating functional and/or morphological changes in rat hippocampus and in the recurrence/relapse of depression.
引文
[1]Duman RS, Kehne JH. Depression. CNS Neurol Disord Drug Targets,2007; 6(2):852-86.
    [2]Sapolsky, R.M. Stress and plasticity in the limbic system. Neurochem. Res. 2003,28:1735-1742.
    [3]Bianchi M, Hagan JJ, Heidbreder CA. Neuronal Plasticity, Stress and Depression: Involvement of the Cytoskeletal Microtubular System? Current Drug Targets-CNS & Neurological Disorders,2005,4:597-611.
    [4]Pittenger C, Duman RS. Stress, depression, and neuroplasticity:a convergence of mechanisms. Neuropsychopharmacology,2008,33:88-109.
    [5]Dent, E.W.; Gertler,F.B. Cytoskeletal Dynamics and Transport in Growth Cone Motility and Axon Guidance. Neuron,2003,40:209-227.
    [6]徐国恒.细胞骨架-微管.生物学通报,2005;40:21-22.
    [7]Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature, 1984,312:237-242.
    [8]Westermann S, Weber K. Post-translational modifications regulate microtubule function. Cell Biol,2003; 4:938-947.
    [9]Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K. Characterization of the tubulin-tyrosine ligase. J Cell Biol,1993; 120:725-732.
    [10]Bianchi M, Fone KF, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA. Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci,2006; 24:2894-902.
    [11]LeDizet M, Piperno G. Detection of acetylated alpha-tubulin by specific antibodies. Meth Enzymol,1991; 196:264-274.
    [12]Bianchi, M, Heidbreder, C, Crespi, F. Cytoskeletal changes in the hippocampus following restraint stress:role of serotonin and microtubules. Synapse,2003, 49:188-94.
    [13]Farina, V.; Zedda, M.; Bianchi, M.; Marongiu, P.; De Riu, P.L. Tubulin isoforms are differently expressed in developing and mature neurons:a study on the cerebral cortex of newborn and adult rats. Eur. J. Histochem.,1999,43:285-91.
    [14]Contin. M.A.; Arce, C.A. Tubulin Carboxypeptidase/Microtubules Association can be Detected in the Distal Region of Neural Processes. Neurochem. Res.,2000,25: 27-36.
    [15]Maccioni RB, Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev,1995; 75:835-64.
    [16]Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol,1994; 6:74-81.
    [17]Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP2). Proc Natl Acad Sci,1980; 77:3206-3210.
    [18]Schulman H. Phosphorylation of microtubule-associated proteins by a Ca2+/ calmodulin-dependent protein kinase. J Cell Biol,1984; 99:11-19.
    [19]Akiyama T, Nishida E, Ishida J, Saji N, Ogawara H, Hoshi M, Miyata Y, Sakai H. Purified protein kinase C phosphorylates microtubule-associated protein 2. J Biol Chem,1986; 261:15648-15651.
    [20]Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci,2000;20:9104-10.
    [21]Donati RJ, Rasenick MM. G protein signaling and the molecular basis of antidepressant action.Life Sci,2003;73:1-17.
    [22]Roy M, David N, Cueva M, Giorgetti M. A study of the involvement of melanin-concentrating hormone receptor 1 (MCHR1) in murine models of depression. Biol Psychiatry,2007; 61:174-80.
    [23]孙奕,张志君.海马神经元再生及可塑性与抑郁症.国际精神病学杂志,2007;34:144-147.
    [24]Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry,1999; 46:1181-91.
    [25]Bianchi M, Shah AJ, Fone KC, Atkins AR, Dawson LA, Heidbreder CA, Hows ME, Hagan JJ, Marsden CA. Fluoxetine administration modulates the cytoskeletal microtubular system in the rat hippocampus. Synapse,2009; 63:359-64.
    [26]Keller, MB. Past, present, and future directions for defining optimal treatment outcome in depression:Remission and beyond. JAMA,2003; 289:3152-60.
    [27]Crown WH, Finkelstein S, Berndt ER, Ling D, Poret AW, Rush AJ. The impact of treatment-resistant depression on health care utilization and costs. J Clin Psychiat, 2002; 63:963-71.
    [28]Gr(?)nli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B, Ursin R, Portas CM. Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav,2006; 85:842-9.
    [29]Grippo AJ, Beltz TG, Weiss RM, Johnson AK. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry,2006; 59:309-16.
    [30]Willner P, To well A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress and its restoration by a tricyclic antidepressant. Psychopharmacology,1987; 93(3):358-64.
    [31]Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry,2008; 64:293-301.
    [32]Harro J, Haidkind R, Harro M, Modiri AR, Gillberg PG, Pahkla R, Matto V, Oreland L. Chronic mild unpredictable stress after noradrenergic denervation: attenuation of behavioural and biochemical effects of DSP-4 treatment. Eur Neuropsychopharmacol,1999; 10:5-16.
    [33]Caccia S, Cappi M, Fracasso C, Garattini S. Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology,1990; 100:509-514.
    [34]Anthony JP, Sexton TJ, Neumaier JF. Antidepressant-induced regulation of 5-HT(lb) mRNA in rat dorsal raphe nucleus reverses rapidly after drug discontinuation. J Neurosci Res,2000; 61:82-7.
    [35]刘乃慧,张莉,邵颖,等.在体心脏灌流术在大鼠脑组织切片观察中的应用.实验动物科学与管理,2005;22:52-53.
    [36]江开达,主编.精神病学.第1版.北京:人民卫生出版社,2005.122-129.
    [37]Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H. Influence of life stress on depression:Moderation by a polymorphism in the 5-HTT gene. Science,2003; 301:386-389.
    [38]Carmine M, Pariante, Andrew HM.Glucocorticoid receptor in major depression: Relevance to Pathophysiology and treatment.Bio.Psychiatry,2001; 49:391-404.
    [39]Heuser I. Anna-Monika-Prize paper. The hypothalamic-pituitary-adrenal system in depression. Pharmacopsychiatry,1998; 31:10-13.
    [40]Heuser I, Schweiger U, Gotthardt U. Piutitayr-adrenal-system regulation and psychopathology during amitriptyline treatment in elder depressed patients and normal comparison subjects. Am Psychiatry,1996; 153:93-99.
    [41]Asnis GM. Halbreich U, Ryan ND. The relationship of the dexamethasone suppression test (lmg and 2mg) to basal plasma cortisol levels in endogenous depression. Psychoneuroendocrinology,1987; 12:295-301.
    [42]Mizoguchi K, Ishige A, Aburada M, Tabira T. Chronic stress attenuates glucocorticoid negative feedback:Involvement of the prefrontal cortex and hippocampus. Neuroscience,2003; 119:887-897.
    [43]Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry,2008; 64:293-301.
    [44]李云峰,罗质璞.应激诱发抑郁障碍机制的研究进展.生理科学进展,2002;33:142-144.
    [45]罗质濮.抑郁障碍的发病机制及药物的研究现状.神经药理学研究进展.第一版,北京:人民卫生出版社,2002.30-37.
    [46]Moreau JL, Jenck F, Martin JR, Mortas P, Haefely WE. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation in rats. Eur. Neuropsychopharmacol,1992; 2:43-49.
    [47]Harro J, Haidkind R, Harro M, Modiri AR, Gillberg PG, Pahkla R, Matto V, Oreland L. Chronic mild unpredictable stress after noradrenergic denervation: attenuation of behavioural and biochemical effects of DSP-4 treatment. Eur Neuropsychopharmacol,1999; 10:5-16.
    [48]Mattioli L, Funari C, Perfumi M. Effects of Rhodiola rosea L. extract on behavioural and physiological alterations induced by chronic mild stress in female rats. J Psychopharmacol,2009; 23:130-42.
    [49]Katz RJ. Animal model of depression:pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav,1982; 16:965-8.
    [50]Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC. Central mechanisms of stress integration:Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology,2003;24:151-180.
    [51]Cheryl D. Conrad. What Is the Functional Significance of Chronic Stress-Induced CA3 Dendritic Retraction Within the Hippocampus? Behav Cogn Neurosci Rev. 2006; 5:41-60.
    [52]Zhang YM, Yang Q, Xu CT. Effects of chronic stress on morphology and structure of hippocampal pyramidal neurons in rats. Prog Biochem BioPhys, 2002;29:719-723.
    [53]Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res,1992;588:341-345.
    [54]郑晖,杨权,许崇涛,李慧,罗文鸿.慢性应激致大鼠海马长时程增强和氨基酸神经递质改变及苯妥英钠的效应.中华精神科杂志,2004,37:41-44.
    [55]Sloviter RS. Calcium-binding protein(Calbindin-D28k)and Parvalbumin immunocytochemistry:localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp. Neurol,1989;280:183-196.
    [56]Jayatissa MN, Bisgaard CF, West MJ, Wiborg O. The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology,2008;54:530-41.
    [57]Gould E, MeEwen BS, Tanapat. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psyehosocial stress and NMDA receptor activation. J Neurosci,1997; 17:2492-2498.
    [58]Fuehs E, Flugge G. Stress, glucocorticoids and structural plasticity of the hippocampus. Neurosci Biobehav Rev,1998;23:295-300.
    [59]Goldman, D, Ding, J. Different regulatory elements are necessary for alphal tubulin induction during CNS development and regeneration. Neuroreport,2000; 11:3859-63.
    [60]Schwarz, PM, Liggins, JR, Luduena, RF. Beta-tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry,1998; 37:4687-92.
    [61]Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci.,1994,14: 5373-80.
    [62]Zhu MY, Wang WP, Cai ZW, Regunathan S, Ordway G. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur J Neurosci,2008;27:1320-32.
    [63]Rochlin MW, Wickline KM, Bridgman PC. Microtubule stability decreases axon elongation but not axoplasm production. J Neurosci,1996; 16:3236-3246.
    [64]Erck C, Peris L, Andrieux A, Meissirel C, Gruber AD, Vernet M, Schweitzer A, Saoudi Y, Pointu H, Bosc C, Salin PA, Job D, Wehland J. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci,2005; 102:7853-7858.
    [65]金海燕,刘少文,杨权.慢性应激对大鼠海马CA3区锥体细胞顶树突细胞骨架的效应及其机制研究.中华精神科杂志,2007;40:117-119.
    [66]Abdel-Rahman A, Abou-Donia S, El-Masry E, Shetty A, Abou-Donia M. Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. J Toxicol Environ Health A.,2004; 67: 163-92.
    [67]Reines A, Cereseto M, Ferrero A, Bonavita C, Wikinski S. Neuronal cytoskeletal alterations in an experimental model of depression. Neuroscience,2004;129: 529-38.
    [68]Kuroda Y, McEwen BS. Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. Mol. Brain. Res,1998;59:35-9.
    [69]Reines A, Cereseto M, Ferrero A, Sifonios L, Podesta MF, Wikinski S. Maintenance Treatment with Fluoxetine is Necessary to Sustain Normal Levels of Synaptic Markers in an Experimental Model of Depression:Correlation with Behavioral Response. Neuropsychopharmacology,2008;33:1896-908.
    [70]Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol,2000; 61:133-68.
    [71]Sanchez C, Ledesma D, Dotti CG, Avila J. Microtubule-associated protein-2 located in growth regions of rat hippocampal neurons is highly phosphorylated at its proline-rich region. Neuroscience,2000; 101:885-93.
    [72]Brandon, E.P.; Idzerda, R.L.; McKnight, G.S. PKA isoforms, neural pathways, and behaviour:making the connection. Curr. Opin.Neurobiol.,1997,7:397-403.
    [73]Walaas SI, Nairn AC. Multisite phosphorylation of microtubule-associated protein 2 (MAP-2) in rat brain:peptide mapping distinguishes between cyclic AMP-, calcium/calmodulin-, and calcium/phospholipid-regulated phosphorylation mechanisms. J. Mol. Neurosci,1989;1:117-27.
    [74]Ainsztein AM, Purich D. Stimulation of tubulin polymerization by MAP-2.Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region. J Biol Chem,1994; 269:28465-71.
    [75]Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol.,2000; 61:133-68.
    [76]Sanchez C, Galve-Roperh I, Rueda D, Guzman M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol.,1998; 54:834-43.
    [78]McEwen BS. Stress and hippocampal plasticity. Annu. Rev. Neurosci.,1999;22: 105-22.
    [79]Dwivedi Y, Pandey G.N. Adrenal glucocorticoids modulate [3 H] cyclic AMP binding to protein kinase A (PKA), cyclic AMP-dependent PKA activity, and protein levels of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J. Pharmacol. Exp. Therap.,2000;294:103-16.
    [80]Dwivedi Y, Mondal AC, Shukla PK, Rizavi HS, Lyons J. Altered protein kinase a in brain of learned helpless rats:effects of acute and repeated stress. Biol. Psychiatry,2004;56:30-40.
    [81]Moghaddam B, Bolinao ML, Stein-Behrens B, Sapolsky R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res., 1994; 655:251-4.
    [82]Olney JW. Excitotoxicity. an overview. Can Dis Wkly Rep.,1990;16:47-57.
    [83]Mattson MP. Calcium as sculptor and destroyer of neural circuitry.Mattson MP. Exp. Gerontol,1992;27:29-49.
    [84]Grippo AJ, Beltz TG, Weiss RM, Johnson AK. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry,2006; 59:309-16.
    [85]Santarelli L, Saxe M, Gross C. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science,2003; 301:805-809.
    [86]彭贵军.脑源性神经营养因子与抑郁症的研究进展.国外医学精神病学分册,2004:31:152-154.
    [87]Molteni R, Calabrese F, Bedogni F. Chronic treatment with fluoxetine upregulates cellular BDNF mRNA expression in rat dopaminergic regions. Neuropsychopharmacology,2005; 22:1211.
    [88]Donati RJ, Rasenick MM. Chronic antidepressant treatment prevents accumulation of gsalpha in cholesterol-rich, cytoskeletal-associated, plasma membrane domains (lipid rafts). Neuropsychopharmacology,2005;30:1238-1245.
    [89]Carboni L, Vighini M, Piubelli C, Castelletti L, Milli A, Domenici E. Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants:CRF1 and NK1 receptor antagonists. Eur Neuropsychopharmacol,2006,16:521-537.
    [90]Miyamoto S, Asakura M, Sasuga Y, Osada K, Bodaiji N, Imafuku J, Aoba A. Effects of long-term treatment with desipramine on microtubule proteins in rat cerebral cortex. Eur J Pharmacol,1997;333:279-287.
    [91]Perez J, Tinelli D, Brunello N, Racagni G. cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol,1989;172:305-16.
    [92]Zanotti S, Mori S, Radaelli R, Perez J, Racagni G, Popoli M. Modifications in brain cAMP-and calcium/calmodulin-dependent protein kinases induced by treatment with S-adenosylmethionine.Neuropharmacology,1998;37:1081-9.
    [93]Popoli M, Brunello N, Perez J, Racagni G. Second messenger-regulated protein kinases in the brain:their functional role and the action of antidepressant drugs. J Neurochem,2000;74:21-33.
    [94]Hale WW, Jansen JH, Bouhuys AL, van den Hoofdakker RH. Depression relapse and ethological measures. Psychiatry Res,1997; 70:57-64.
    [95]张传芝.单次发作抑郁症复发率探讨.临床精神医学杂志,2003;13:275-276.
    [96]Wittchen HU, Nelson CB, Lachner G. Prevalence of mental disorders and psychosocial impairments in adolescents and young adults.Psychological Medicine, 1998; 28:109-126.
    [97]李一云,贾春红,徐静,冯雪梅,樊洁.对抗抑郁剂维持性治疗过程中抑郁症病人复发或复燃的分析.四川精神卫生,2006;19:133-135.
    [98]Appelhof BC, Huyser J, Verweij M, Brouwer JP, van Dyck R, Fliers E, Hoogendijk WJ, Tijssen JG, Wiersinga WM, Schene AH. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol Psychiatry,2006;59:696-701.
    [99]Ribeiro SC, Tandon R, Grunhaus L, Greden JF. The DST as a predictor of outcome in depression A meta-analysis, Am J Psychiatry,1993;150:1618-1629.
    [100]Harvey BH, Brand L, Jeeva Z, Stein DJ. Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol Behav,2006; 87:881-90.
    [101]Petty F, Chae Y, Kramer G, Jordan S, Wilson L. Learned helplessness sensitizes hippocampal norepinephrine to mild restress. Biol Psychiatry,1994; 35:903-8.
    [1]Sapolsky, R.M. Stress and plasticity in the limbic system. Neurochem. Res.2003,28: 1735-1742.
    [2]M. Bianchi, J.J. Hagan, C.A. Heidbreder Neuronal Plasticity, Stress and Depression:Involvement of the Cytoskeletal Microtubular System? Current Drug Targets-CNS & Neurological Disorders,2005,4:597-611.
    [3]Pittenger C, Duman RS. Stress, depression, and neuroplasticity:a convergence of mechanisms. Neuropsychopharmacology,2008,33:88-109.
    [4]Azmitia, E. Modern views on an ancient chemical:serotonin effects on cell proliferation, maturation, and apoptosis. Brain. Res. Bull.,2001,56:413-24.
    [5]徐国恒细胞骨架——微管生物学通报,2005,40:21-22
    [6]Westermann S, Weber K. Post-translational modifications regulate microtubule function Nat Rev Mol Cell Biol.,2003,4:938-47.
    [7]Nogales, E. Structural insights into microtubule function. Annu. Rev. Biophys. Biomol. Struct.,2001,30:397.
    [8]Brown, A.; Li, Y.; Slaughter, T.; Black, M.M. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci.,1993,104:339-52.
    [9]Maccioni, R.B.; Cambiazo, V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev.,1995,75:835~864.
    [10]Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature, 1984,312:237-242.
    [11]Dent, E.W.; Gertler, F.B. Cytoskeletal Dynamics and Transport in Growth Cone Motility and Axon Guidance. Neuron,2003,40:209-227.
    [12]Goldman, D.; Ding, J. Different regulatory elements are necessary for alphal tubulin induction during CNS development and regeneration. Neuroreport,2000, 11(17):3859-63.
    [13]Schwarz, P.M.; Liggins, J.R.; Luduena, R.F. Beta-tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry,1998,37:4687-92.
    [14]Bianchi, M.; Heidbreder, C.; Crespi, F. Cytoskeletal changes in the hippocampus following restraint stress:role of serotonin and microtubules. Synapse,2003, 49:188-94.
    [15]Farina, V.; Zedda, M.; Bianchi, M.; Marongiu, P.; De Riu, P.L. Tubulin isoforms are differently expressed in developing and mature neurons:a study on the cerebral cortex of newborn and adult rats. Eur. J. Histochem.,1999,43:285-91.
    [16]Contin. M.A.; Arce, C.A. Tubulin Carboxypeptidase/Microtubules Association can be Detected in the Distal Region of Neural Processes. Neurochem. Res.,2000,25: 27-36.
    [17]Hirokawa, N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol.,1994,6:74-81.
    [18]Brandon, E.P.; Idzerda, R.L.; McKnight, G.S. PKA isoforms, neural pathways, and behaviour:making the connection. Curr. Opin.Neurobiol.,1997,7:397-403.
    [19]Obar, R.A.; Dingus, J.; Bayley, H.; Vallee, R.B. The RII subunit of cAMP-dependent protein kinase binds to a common amino-terminal domain in microtubule-associated proteins 2A,2B, and 2C. Neuron.,1989,3:639-45.
    [20]Walaas, S.I.; Nairn, A.C. Multisite phosphorylation of microtubule-associated protein 2 (MAP-2) in rat brain:peptide mapping distinguishes between cyclic AMP-, calcium/calmodulin-, and calcium/phospholipid-regulated phosphorylation mechanisms. J. Mol. Neurosci.,1989,1:117-27.
    [21]Jefferson, A.B.; Schulman, H. Phosphorylation of microtubule-associated protein-2 in GH3 cells. Regulation by cAMP and by calcium. J. Biol. Chem.,1991,266: 346-354.
    [22]Burns, R.G.; Islam, K., Chapman, R. The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2:tubulin interaction. 1984,141:609-15.
    [23]Schneider, A.; Biernat, J.; von Bergen, M.; Mandelkow, E.;Mandelkow, E.M. Phosphorylation that Detaches Tau Protein from Microtubules (Ser262, Ser214) Also Protects It against Aggregation into Alzheimer Paired Helical Filaments. Biochemistry,1999,38:3549-3558.
    [24]Akiyama T, Nishida E, Ishida J, Saji N, Ogawara H, Hoshi M, Miyata Y, Sakai H. Purified protein kinase C phosphorylates microtubule-associated protein 2. J Biol Chem,1986,261:15648-51.
    [25]Pascale A, Govoni S, Battaini F. Age-related alteration of PKC, a key enzyme in memory processes:physiological and pathological examples. Mol Neurobiol., 1998,16:49-62.
    [26]Ainsztein, A.M.; Purich, D.L. Stimulation of tubulin polymerization by MAP-2. Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region. J Biol Chem.,1994,269:28465-71.
    [27]Sanchez, C.; Diaz-Nido, J.; Avila, J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol,2000,61:133-68.
    [28]Orban PC, Chapman PF, Brambilla R. Is the Ras-MAPK signalling pathway necessary for long-term memory formation? Trends Neurosci.,1999,22:38-44.
    [29]Sanchez, C.; Galve-Roperh, I.; Rueda, D.; Guzman, M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol,1998,54:834-43.
    [30]Cho, J.H.; Johnson, G.V.W. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem.,2004,88:349-58.
    [31]Arendt, T.; Stieler, J.; Strijkstra, A.M.; Hut, R.A.; Rudiger, J.; Vander Zee, E.A.; Harkany, T.; Holzer, M.; Hartig, W. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J. Neurosci.,2003,23:6972-81.
    [32]Stein-Behrens, B.; Mattson, M.P.; Chang, I.; Yeh, M.; Sapolsky, R. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci,1994,14:5373-80.
    [33]Okawa, Y.; Ishiguro, K.; Fujita, S.C. Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett.,2003,535:183-9.
    [34]Yoshida S, Maeda M, Kaku S, Ikeya H, Yamada K, Nakaike S. Lithium inhibits stress-induced changes in tau phosphorylation in the mouse hippocampus. J Neural Transm.,2006,113:1803-14.
    [35]Zhu MY, Wang WP, Cai ZW, Regunathan S, Ordway G. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur J Neurosci.,2008,27:1320-32.
    [36]金海燕,刘少文,杨权.慢性应激对大鼠海马CA3区锥体细胞顶树突细胞骨架的效应及其机制研究.中华精神科杂志,2007,40:117-119.
    [37]Abdel-Rahman A, Abou-Donia S, El-Masry E, Shetty A, Abou-Donia M. Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. J Toxicol Environ Health A.,2004,67:163-92.
    [38]Reines, A.; Cereseto, M.; Ferrero, A.; Bonavita, C.; Wikinski, S. Neuronal cytoskeletal alterations in an experimental model of depression. Neuroscience., 2004,129:529-38.
    [39]Kuroda, Y.; McEwen, B.S. Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. Mol. Brain. Res.,1998,59:35-9.
    [40]Xu, H.; He, J.; Richardson, S.; LI, X.M. The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem.,2004,91:1380-8.
    [41]McEwen, B.S. Stress and hippocampal plasticity. Annu. Rev. Neurosci.,1999,22: 105-22.
    [42]Kandel, E.R. The Molecular Biology of Memory Storage:A Dialogue Between Genes and Synapses. Science,2001,294:1030-1038.
    [43]Dwivedi, Y.; Pandey, G.N. Adrenal glucocorticoids modulate [3H]cyclic AMP binding to protein kinase A (PKA), cyclic AMP-dependent PKA activity, and protein levels of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J. Pharmacol. Exp. Therap.,2000,294:103-16.
    [44]Dwivedi, Y.; Mondal., A.C.; Shukla, P.K.; Rizavi, H.S., Lyons, J. Altered protein kinase a in brain of learned helpless rats:effects of acute and repeated stress. Biol. Psychiatry,2004,56:30-40.
    [45]Moghaddam, B.; Bolinao, M.L.; Stein-Behrens, B.; Sapolsky, R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res., 1994,655:251-4.
    [46]Olney, J.W. Excitotoxicity:an overview. Can Dis Wkly Rep.,1990,16:47-57.
    [47]Whatley, V.J.; Harris, R.A. The cytoskeleton and neurotransmitter receptors. Int. Rev. Neurobiol,1996,39:113-43.
    [48]Mattson, M.P. Calcium as sculptor and destroyer of neural circuitry.Mattson MP. Exp. Gerontol.,1992,27:29-49.
    [49]Minger, S.L.; Geddes, J.W.; Holtz, M.L.; Craddock, S.D.;Whiteheart, S.W.; Siman, R.G.; Pettigrew, L.C. Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia. Brain Res.,1998,810:181-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700