河川径流演变规律的挖掘与识别技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河川径流作为水循环的重要环节,是水资源开发利用和科学管理重要的依据。然而河川径流的形成越来越多地受到人类活动和全球气候变化的影响,因此充分挖掘和识别河川径流的演变规律具有十分重要的理论价值和现实意义。
     论文结合国家自然科学基金项目,以黄河上游兰州以上流域为研究对象,较为全面地分析了年径流量和各种影响因素之间的关系;提出了对河川径流序列进行挖掘与识别的思路和方法,从相似性、周期性和序列模式三方面对河川径流序列进行了挖掘。从而为河川径流演变规律挖掘提供理论基础。论文的主要研究内容和取得的成果有以下几个方面:
     (1)河川径流演变的影响因素相互作用、相互耦合,其作用机理十分复杂。受到当前科学技术发展程度的限制,单纯对某个或某几个影响因素进行分析往往具有一定的片面性,很难从整体上对其进行把握;单纯从定性的层面上讨论又很难满足实际应用的需要。本文针对以上问题对各种影响因素进行考察,分析各因素之间的影响与联系,探讨多种因素的综合效应,并对某些因素的影响进行了定量分析。
     (2)首次将蚁群算法引入径流规律分析计算领域,并建立了基于蚁群算法的聚类分析模型,对多种径流影响因素进行综合聚类分析,通过相似性搜索对径流序列进行深入挖掘。
     (3)运用极大熵谱分析、Hilben-Huang谱对径流时间序列进行了周期分析,指出了黄河上游径流演变可能存在的几个周期及其成因分析。Hilben-Huang变换是一种
As a main link of water cycle, river runoff is the most important base for comprehensive development and utilization, scientific management and optimal operation. However, river runoff is affected by human activity and global climate change, so it is very important theoretical and practical sense for mining and identifying change law of the river runoff.In this paper, combined with the National Natural Science Foundation of China, the relation are analyzed between annual runoff and its factors, new methods are introduced for mining and identifying change law of river runoff, and similarity, periodicity and sequential patterns of runoff series are studied, which provide theoretical base for mining change law of river runoff. The analysis and calculation are conducted in combination with a real example, the watershed above the Lanzhou in the upper reaches of the Yellow River. The main research content and results are as follows:(1) Factors of river runoff change are interactivity and interdependency, and their mechanism of action is very complex. Limited by the present science-technology level, one or some factor is only analyzed, which is of one-sidedness. Moreover, qualitative discussion difficultly meets practical application need, so this paper analyses influence
    and relation among factors, comprehensive effect of some factor, and quantitatively calculates some of factors.(2) Ant colony optimization (ACO) algorithm is firstly introduced the field of the runoff change analysis. Cluster analysis model is established based on ACO, by which some runoff factors are clustered. Therefore, runoff series is mined by means of similarity search.(3) Periodicity of runoff is calculated by maximum entropy spectrum analysis and Hilbert-Huang spectrum, the result shows some periodicities of runoff change and its cause in the upper reaches of the Yellow River. Hilbert-Huang transform is a new method for analyzing nonlinear and non-stationary data. This method is applied to mine and identify runoff series in this paper, by which runoff series is decomposed as various scale components and trend. These components are usually of clearer physical sense in comparison with classical method, so it provides a kind of effective way for analyzing runoff series.(4) This paper introduces a kind of model for forecasting runoff, life cycle model. Long-term trend of runoff change is forecast by it in the upper reaches of the Yellow River. This model considers that water resource is finite and runoff process is non-linear, and is a search for runoff forecasting.(5) Because runoff is affected by many factors, runoff process shows strong uncertainty and randomness. Forecasting model of river runoff is established based on grey theory. Moreover, three kinds of model is applied to forecast annual runoff in the upper reaches of the Yellow River, in which GM(1,1) is basic forecasting model, its forecasting result is not good, but may better reflect change trend of runoff. Grey topological model can realize waveform forecasting, however, forecasting precision is lower. Grey Markov chain model is based on the advantage of both GM(1,1) and Markov chain model, which may describe random fluctuating of runoff series, and improves the forecasting precision, so this is a kind of new and good search. It provides
    important reference value for real application.
引文
[1] 马全杰,巢孝松.黄河上游水文情报预报的发展与应用[J].水力发电,1997,(9):23~25
    [2] 孙汉贤,方润生.黄河上游水电站效益分析[J].西北水电,2000,(4):1~5
    [3] 冯建英,柯晓新,姚志宗.黄河上游径流量的长期演变特征[J].人民黄河,2000,22(10):40~42
    [4] 刘昌明,郑红星.黄河流域水循环要素变化趋势分析[J].自然资源学报,2003,18(2):129~135
    [5] 戴君虎,晏磊.温室效应及全球变暖研究简介[J].世界环境,2001,(4):18~21
    [6] 陈家琦,王浩.水资源学概论[M].北京:中国水利水电出版社,1996:280~291
    [7] Aizen V, et al. Climatic and hydrological changes in the Tien Shan[J]. Cetral Asia. Journal of Climate. 1997, 10(6): 1393~1404
    [8] BAHC. Climate-hydrology-ecosystems interrelations in mountainous regions[J]. IGBP-BAHC-/UNEP WORKSHOP, St. Moritz, Switzerland, 1993, (2): 1~20
    [9] Beran M and Arnell N. Effect of climatic change on quantitative aspects of United Kingdom water resources[M]. Institute of Hydrology. Wallingford. 1989, 93
    [10] Gleick P H. Climate change, hydrology and water resources[J]. Review of Geophysics. 1989, 27(3): 329~334
    [11] Pearman G. I. Greenhouse: planning for climate change[M]. Australia: CSITO publication. 1988, 752
    [12] Smirnov, NP. Solar activity and river runoff fluctuation in the U. S. S. R[J]. Soviet Hydrology, 1975, (3): 205~210
    [13] Rodriguez-iturbe, Ignacio, et al. the investigation of relationship between hydrologic time series and sunspot numbers[J]. COLO State Univ Hydrology PAP, 1968, (26): 49
    [14] 吴家兵,裴铁璠.长江上游、黄河上中游坡改梯对其径流及生态环境的影响[J].国土与自然资源研究,2002,(1):59~61
    [15] 徐学选,陈霁巍,穆兴民,王文龙.黄河中游水土保持措施对径流的影响[J].人民黄河,2000,22(7):36~37
    [16] 陈志清.历史时期黄河下游的淤积、决口改道及其与人类活动的关系[J].地理科学进展,2001,20(1):44~50
    [17] 王运辉.人为干扰对河流环境的影响[J].东北水利水电,1995,(3):11~17
    [18] 马全杰,马建华,朱云通,许叶新.黄河兰州以上天然径流对厄尔尼诺事件的响应[J].人民黄河,2000,22(5):18~20
    [19] 彭梅香,葛朝霞,王怀柏.黄河上游径流与太平洋海温场关系及其预测应用[J].水科学进展,2000,11(3):272~276
    [20] 王根绪,沈永平,刘时银.黄河源区降水与径流过程对ENSO事件的响应特征[J].冰川冻土,2001,23(1):16~21
    [21] 张国胜,李林,时兴合,徐维新,董立新,汪青春.黄河上游地区气候变化及其对黄河水资源的影响[J].水科学进展, 2000,11(3):278~283
    [22] 李栋梁,张佳丽,全建瑞,章克俭.黄河上游径流量演变特征及成因研究[J].水科学进展,1998,9(1):22~28
    [23] 包为民,胡金虎第.黄河上游径流资源及其可能变化趋势分析[J].水土保持通报,2000,20(2):15~18
    [24] 丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析[J].地理学报,1999,54(5):431~437
    [25] 赖祖铭.试论温室效应对我国西部河川径流的影响[J].冰川冻土,1997,19(1):10~16
    [26] 冯建生.KDD及其应用[J].宝钢技术,1999,(3):27~32
    [27] 张红军.谈谈数据挖掘技术及其应用[J].广西梧州师范高等专科学校学报,2003,19(3):67~72
    [28] 艾萍,倪伟新.我国水文数据挖掘技术研究的回顾与展望[J].计算机工程与应用,2003,(28):13~17
    [29] 杨敏.水文时间序列相似性模型的研究与应用[D].河海大学硕士学位论文,2002
    [30] 王栋,朱元甡.基于MEM1谱分析的水文时间序列隐含周期特性研究[J].水文,2002,22(2):19~23
    [31] 蒋晓辉.自然-人工二元模式下河川径流变化规律和合理描述方法研究[D].西安理工大学博士学位论文,2002
    [32] 蓝永超,康尔泗,杨文华.黄河上游径流预报的灰色拓扑方法[J].冰川冻土, 1997,19(4):308~311
    [33] 袁秀娟,夏军.径流中长期预报的灰色系统方法研究[J].武汉水利电力大学学报,1994,27(4):367~375
    [34] 王根绪.长期径流预报的灰色双向差分模型[J].兰州大学学报(自然科学版),1994,30(2):117~121
    [35] 蓝永超,杨志怀,权建民,刘延平.灰色预测模型在径流长期预报中的应用[J].中国沙漠,1997,17(1):49~52
    [36] 陈意平,杨建林,赵昌花.年径流序列趋势分析及周期灰色联合预测模型[J].水利科技与经济,1996,2(4):179~183
    [37] 周念来,吴泽宁.水文要素模糊因果聚类预报及其应用[J].郑州工业大学学报,2000,21(1):58~61
    [38] 陈守煜.中长期水文预报综合分析理论模式与方法[J].水利学报,1997,(8):15~21
    [39] ASCE. Artificial neural networks in hydrology[A]. 2: hydrology applications. Journal of Hydrological Engineering, ASCE, 2000, 5(2): 124~137
    [40] Gonindaraju R S, et al. Artificial neural networks in hydrology[DB/OL]. Kluwer Academic Publishers, 2000
    [41] 覃光华,丁晶.带偏差单元的递归神经网络及其运用[J].人民长江,2002,33(1):38~39
    [42] Lorrai M, et al. Neural nets for modeling rainfall-runoff transformations[J]. Water Resources Management, 1995, (9): 299~313
    [43] Mason J C, et al. A neural network model of rainfall-runoff using radial basis functions[J]. Journal of Hydraulic Research, 1996, 34(4): 537~548
    [44] 马炼,王银堂,张闻胜.神经网络技术在水文系列中长期预报中的应用[J].水利水电技术,2002,33(2):5~8
    [45] 刘素一,权先璋,张勇传.小波变换结合BP神经网络进行径流预测[J].人民长江,2003,34(7):38~39
    [46] 陈仁升,康尔泗,张济世.基于小波变换和GRNN神经网络的径流模型在雅砻江流域中的应用[J].干旱区资源与环境,2001,15(3):71~78
    [47] 丁晶,刘权授.随机水文学[M].北京,中国水利水电出版社.1997,49~54
    [48] 蒋传文,侯志俭,李涛,张勇传.基于小波分解的径流非线性预测[J].上海交通大学学报,2002,36(7):1053~1056
    [49] 刘俊萍.河川径流信息密码解读理论与实践[D].西安理工大学博士学位论文,2003
    [50] 金菊良,杨晓华,金保明,丁晶.门限回归模型在年径流预测中的应用[J].冰川冻土,2000,22(3):230~234
    [51] 金菊良,杨晓华,丁晶.年径流预测的遗传门限自回归模型[J].四川水力发电,2001,20(1):22~24
    [52] 陈守煜,王大刚.基于遗传算法的模糊优选BP网络模型及其应用[J].水利学报,2003,(5):116~121
    [53] 阎俊爱,钟登华.基于遗传算法的神经网络优化预测模型及其在年径流预 报中的应用[J].水利水电技术,2003,34(6):1~4
    [54] 殷峻暹,陈守煜,邱菊.基于遗传与BP混合算法神经网络预测模型及应用[J].大连理工大学学报,2002,42(9):594~598
    [55] 李华晔,黄志全,姜彤.河流水系分形初步研究[J],华北水利水电学院学报,1998,19(4):36~38
    [56] MA Hong, SU Wei, Michio U meda Waveform estimation for Hilbert transform of fractal stochastic signals using wavelet transform[J]. Journal of Sichuan University, 2001, 38(5): 647~652
    [57] Sivakumar B. Chaos theory in hydrology: important issues and interpretations[J]. Journal of hydrology, 2000, 277
    [58] 温权,张士军,张周胜.探求径流序列的混沌特性[J],水电能源科学,1999,17(1):21~23
    [59] 温权,张士军,张周胜.基于混沌动力学的日径流时间序列预测[J].华中理工大学学报,1998,26(12):62~64
    [60] 权先璋,温权,张勇传.混沌预测技术在径流预报中的应用[J].华中理工大学学报,1999,27(12):41~43
    [61] Breadford P W, et al. Searching for chaotic dynamics in snow melt runoff[J]. Water Resources Research. 1991, 27(6): 1005~1010
    [62] Lall U, et al. Nonlinear dynamics of the Great Salt Lake[J]. Water Resources Research. 1996, 32(4): 975~985
    [63] Ma J H, et al. Testing value for nonlinear chaotic nature of the data obtained in dynamic analysis[J]. Journal of Tianjin University of Commerce. 1997, (3):19~35
    [64] 陈继光.基于自适应模糊网络系统的径流序列预测[J].山东工业大学学报,2002,32(1):13~15
    [65] Fi-John Chang, et al. Counterpropagation fuzzy-neural network for streamflow reconstruction[J]. Hydrological Processes, 2001, 15(2): 219~232
    [66] 黄伟军,赵永龙,丁晶.径流的最优组合预测及其贝叶斯分析[J].成都科技大学学报,1996,(6):97~102
    [67] Elena M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5):535~556
    [68] John Marshall, et al. North Atlantic climate variability: phenomena, impacts and mechanisms[J]. International Journal of Climatology, 2001, 21 (15): 1863~1898
    [69] Lareef Zubair. El Nino-southern oscillation influences on the Mahaweli streamflow in Sri Lanka[J]. International Journal of Climatology, 2003, 23(1):91~102
    [70] Zhang Wanchang, et al. A monthly stream flow model for estimating the Processes[J], 2000, 14(10): 1851~1868
    [71] Z. X. Xu, et al. Correlation between El Nino-Southern Oscillation (ENSO) and precipitation in South-east Asia and the Pacific region[J]. Hydrological Processes, 2003, 18(1): 107~123
    [72] Maurer. E. P, Lettenmatier. D. P, Mantua. N. J. Variability and potential sources of predictability of North American runoff[J]. Water Resource Research, Vol. 40, No. 9, 1~13
    [73] 叶守泽.水文水利计算[M].北京:水利电力出版社,1995:75~76
    [74] 李东,蒋秀华,王玉明,李红良.黄河流域天然径流量计算解析[J].人民黄河,2001,23(2):35~38
    [75] 刘晓燕,常晓辉.黄河源区径流变化研究综述[J].人民黄河,2005,27(2):6~8
    [76] 翟盘茂,任富民.中国近十四年最高最低温度变化[J].气象学报,1997,55(4):418~429
    [77] 裴步详.蒸发与蒸散发之测定与计算[M].北京:气象出版社,1999
    [78] 21世纪初黄河水资源变化趋势初步分析报告[R].黄河水利委员会水文局,中国科学院大气物理研究所.2001:33~5,2~4
    [79] 冯博,柯熙政,丁华灵.太阳黑子数的子波分析[J].天体物理学报,1997,17(2):182~190
    [80] 王涌泉.日地水文学与灾害预测[J].地球物理学报,1997,40(增):420~428
    [81] HUANG Qiang and ZHAO Xuehua. Factors affecting runoff change in the upper reaches of the Yellow River[J]. Progress in Natural Science, 2004, 14(9):811~816
    [82] 人民日报[N].2004年8月16日,第五版(新华社拉萨8月15日电)
    [83] 康尔泗,程国栋,董增川.中国西北干旱区冰雪水资源与出山径流[M].北京:科学出版社,2002
    [84] 吴钦孝,赵鸿雁,刘向东,韩冰.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(2):24~28
    [85] Marco Dorigo, Vittorio Maniezzo, Alberto Colomi. Ant System Optimization by a Colony of Cooperating[J]. Agents. IEEE TRANSACTIONS ON SYSTEM. MAN AND CYBERNETICS-PARTB CYBERNETICS, 1996, 26(1):29~41
    [86] 张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1~3
    [87] Thomas Stutzle, Holger H. Hoos. MAX-MIN Ant System[J], Future Generation Computer Systems, 2000, 16 (8): 889~914
    [88] 贺晋忠,王明赞,赵雪花.蚁群算法在武器—目标分配问题中的应用[J].华北工学院学报,2004,25(S1):244~247
    [89] 詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择[J].科技通报,2003,19(5):381~386
    [90] 黄忠恕.波谱分析方法及其在水文气象学中的应用[M].北京:气象出版社, 1983. 65~75
    [91] J. P. Burg, Maximum entropy spectral analysis[A], presented at the 37~(th) Ann. Int. Meet. Soc. Explor. Geophys., Oklahoma city, OK, Oct. 31, 1967
    [92] 杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业大学出版社,1987.225~246
    [93] Calmet. D, Charmasson. S and Blanc. F. Maximum entropy spectral analysis applied to short series description in marine ecology[J]. Oceanologica acta, 1984, 7(1): 77-86
    [94] Letie, Solange Mendonca and Peixoto, Jose Pinto. Maximum entropy spectral analysis of the Duero Basin[J]. International Journal of Climatology, 1995, 15(4):463~472
    [95] Kuenzel. F. Maximum entropy spectral estimation: some new statistical and numerical details[J]. Contributions to Atmospheric Physics, 1989, 62(3):227~235
    [96] 赵雪花,黄强,王义民.基于极大熵的径流变化规律分析研究[J].应用科学学报,2005,23(1):86~89
    [97] Singh V P. The use of entropy in hydrology and water resource[J]. Hydrological Processes, 1997, (11): 587~626
    [98] N. E. Huang, Z. Shen, S. R. Long et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J], Proc. R. Soc. Lond. A. 1998, 454:903~995
    [99] Deng Yongjun, Wang Wei, Qian Chengchun et al. Boundary processing technique in EMD method and Hilbert Transform[J]. Chinese Science Bulletin, 2001, 46(11): 954~960
    [100] 吴湘淇.信号、系统与信号处理[M].北京:电子工业出版社,1996
    [101] 罗弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003
    [102] 彭玉华.小波变换与工程应用[M].北京:科学出版社,2000
    [103] 钟佑明.希尔伯特—黄变换局瞬信号分析理论的研究[D].重庆大学博士学位论文,2002
    [104] 连海宁.傅里叶、小波及希尔波特—黄变换在地震工程领域的应用研究[D].中国地震工程力学研究所硕士学位论文,2004
    [105] 熊学军,郭炳火,胡筱敏,刘建军.EMD方法和Hilbert谱分析法的应用与探讨[J].黄渤海海洋,2002,20(2):12~21
    [106] 谭善文.多分辨希尔伯特—黄变换方法的研究[D].重庆大学博士学位论文,2001
    [107] P. J. Oonincx, J. -P. Hermand. Empirical Mode Decomposition of Ocean Acoustic Data with Constraint on the Frequency Range[A]. Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA 2004, Delft, The Netherlands 2004:
    [108] 黄长蓉.Hilbert变换及其应用[J].成都气象学院学报,1999,14(3):273~276
    [109] 沈珍瑶,杨志峰.黄河流域水资源可再生性评价指标体系与评价方法[J].自然资源学报,2002,17(2):188~195
    [110] 翁文波.预测论基础[M].北京:石油工业出版社.1984,67~86
    [111] 陈元千,胡建国.对翁氏模型建立的回顾及新的推导[J].中国海上油气(地质),1996,10(5):317~325
    [112] Yevjevich V. Stochastic Process in Hydrology[M]. Colorado: Water Resources Publication, 1972
    [113] SL250-2000水文情报预报规范[S].北京:水利电力出版社,2000
    [114] 赵雪花,黄强,席秋义.黄河上游径流动态变化趋势预测[J].水力发电学报,2004,23(4):1~4
    [115] ZHAO Xuehua, HUANG Qiang, XI Qiuyi & WU Xin. New Safety Forecasting Method of Regional Water Resource[A]. PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, Shanghai, China, Vol: Ⅳ, October 2004:2803~2806
    [116] Xia Jun. A grey relating analysis and pattern identification applied to mid-long-term runoff forecasting[J]. IAHS Publication, 1994, No 221:221~228
    [117] 袁秀娟,夏军.径流中长期预报的灰色系统方法研究[J].武汉水利电力大学学报,1994,(4):367~375
    [118] 邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986
    [119] 叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93~104
    [120] 夏军.灰色系统水文学[M].武汉:华中理工大学出版社,2000
    [121] 张曙红,曹建会,陈绵云.灰色马尔可夫SCGM(1,1)预测模型[J].佛山科学技术学院学报(自然科学版),2004,22(1):16~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700