应用可视化技术研究近海建筑物前海冰堆积过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对海冰的断裂、重叠和堆积问题研究是海冰数值模拟和预测、近海结构海冰设计参数可靠性分析的重要内容。由于渤海海冰以动力特征为主,在一定条件下,大面积的浮冰在风和流等诸海洋动力因素的作用下会在建筑物前发生断裂、重叠和堆积。本文根据渤海海冰的特点,研究了近岸海冰冰层在海洋动力因素作用下在斜坡式和半圆型防波堤前的断裂、重叠和堆积问题,并对海冰的堆积过程进行了可视化仿真。
     本文假定海冰为粘弹性体,基于海冰满足牛顿定律的动力学方程,在Hopkins的多边块体运动数值模拟基础上,依据海冰堆积经历了冰排运动、变形及断裂,断裂后形成一散体系统的特点,对冰排进行随机离散,利用离散元方法来模拟海冰的堆积过程,并确定合理的初始条件和边界条件,建立了海冰在斜坡式和半圆型结构物前堆积的数值模型。
     考虑到海冰爬升堆积过程需要很多几何参数和材质参数,并且数值模拟的输出结果包括海冰破碎后离散块体的位置坐标,整理这些数据既繁琐也不直观。为了优化程序,本文采用了可视化技术。即利用VC++的面向对象性质和OpenGL在图形处理方面的优势,实现数据文件的可视化生成,并且可以利用数值模拟地输出结果实现海冰堆积过程的可视化仿真。
     利用海冰运动模拟系统,对冰排与结构物作用分三个方面进行了分析:(1)不同坡度下斜坡式防波堤以及不同潮位下半圆型防波堤前冰排断裂模式、堆积特征及作用于防波堤的冰力;(2)冰排以不同的初始速度分别在不同坡度斜坡式防波堤前以及不同潮位半圆型防波堤前冰排断裂模式、堆积特征、及作用于防波堤的冰力;(3)以不同的搜索频率分别在不同坡度斜坡式防波堤前以及不同潮位半圆型防波堤前冰排断裂模式、堆积特征及作用于防波堤的冰力。
     通过分析上述三种情况下冰排在斜坡式防波堤和半圆型防波堤前的冰排断裂模式、堆积特征及冰力特征,得到对海冰堆积过程的规律及其机理性的认识,为以后合理确定我国冰区海上工程建设中的海冰设计荷载提供了科学依据。
Developing the study concerned with sea ice breakup, overlapping and pile up is important in analyzing the reliability of sea ice design parameters on offshore structure, sea ice numerical simulation and prediction. Due to the dynamic characteristic of sea ice in Bohai, the floating ice fracture, overlapping and pile up is happened in front of structures under the action of wind and current. According to the characteristic of sea ice in Bohai, the mechanism of ice breakup, overlapping and pile up on inclined breakwater and semi-circle breakwater is analyzed, and the process of sea ice pile up is simulated visually.
    Assuming the sea ice to be viscous-elastic material and satisfied the Newtonian dynamic theory, the process of sea ice pile up on inclined structure and semi-circle structure is simulated using the discrete element method, which is based on Hopkins multitudinous polygonal blocks numerical simulation. The ice sheet is separated into many blocks with random length and the reasonable initial condition and boundary condition are given.
    Because the process of sea ice climbing and pile up needs a great many geometry and material parameters, and the output results of numerical simulation program contain ice block position , it is fussy and not intuitionistic to clean up the result. To optimize the program , the visualization technology is applied in this thesis. With the object-oriented property of VC++ and advantage of OpenGL in graphics, the data file is created visually and the interaction of ice sheet with inclined breakwater and semi-circle breakwater is manifested dynamically and visually using the output result of numerical simulation program.
    With the ice move simulation system, the interaction of ice sheet with structure is analyzed in three aspects: (1) ice sheet rupture mode ,pile up characteristic and the ice force before different gradient inclined breakwater and different water level semi-circle breakwater;
    (2) ice sheet rupture mode with different initial speed, pile up characteristic and the ice force before different gradient inclined breakwater and different water level semi-circle breakwater;
    (3) ice sheet rupture mode, pile up characteristic and the ice force before different gradient inclined breakwater and different water level semi-circle breakwater with different search frequency.
    By analyzing ice sheet rupture mode, pile up characteristic and the ice force, we obtain the disciplinarian of the ice pile up and understand its mechanism. It can be adopted as a reference of sea ice design parameters on offshore structure.
引文
[1] 张方俭.海冰作用力在渤海海洋工程设计中的意义.海洋工程.1987,5(2):58-65
    [2] 张方俭.我国的海冰.海洋出版社,1986:165-168
    [3] 丁德文.工程海冰概论.海洋出版社,1995
    [4] 严似松.海洋工程导论.上海交大出版社,1987:165
    [5] Cammaert, A.B. and. Muggeridge, D.B.. Ice interaction with offshore structures. Van Nostrand Reinhold, 1988: 432
    [6] Sanderson, T.J.O.. Ice mechanics, Risks to offshore structures. Graham and Trotman, 1988:253
    [7] Allen, J.L.. Effective forces of floating ice on structures. Technical Memorandum No.98, National Research Council of Canada, Otta, 1970
    [8] Kovacs, A, Mellor, M.. Sea ice Morphology and ice as a geologic agent in the Southern Beaufort Sea, in the coastal and shelf of the Beaufort Sea. The Arctic institute of North America, 1974
    [9] Kovacs, A., Sodhi, D.S.. Shore ice pile-up and fide-up field observation, models, theoretical analyses. J. Cold Reg. Sci. Tech.., 1980, Vol.2:209-288
    [10] Abdelnour A, Sayed W. Ice ride up on a man-made island. Offshore Technology Conference, 1982, Vol. 3:141-152
    [11] 魏津生,李桐魁,李峰,岳前进.秦皇岛32-6人工岛冰爬与堆积问题分析.第二届全国冰工程学术会议论文集,1997:106-113
    [12] Croasdale K R., Metge M, Verity P H. Factors goveming ice fide-up on sloping beaches. Proceedings of IAHR Ice Symposium'78, 1978:5-420
    [13] Bercha, F.G.. The development and application of multimodal ice failure theory, Physics and Mechanics of Ice, 1980:17-27
    [14] Croasdale K R.. Sea ice mechanics: a general overview. Marine Technology Society Journal, 1984, 18(1)
    [15] Timco, G.W., Frederking, R.M.W.. An investigation of the failure envelope of granular/discontinuous columnar sea ice. Cold Regions Science and Technology, 1984:917-927
    [16] Joensuu, A., Riska, K.. Ice and structure interaction. Helsinki University of Technology, 1980, Report M-88
    [17] Selvadurai, A.P.S., Sepehr, K.. On the indentation of a blunt ice wedge. ISOPE-95, 1995, Vol.2: 317-322
    [18] Ingraffea, A.R., Saouma, V.. Numerical modeling of discrete crack propagation in reinforced and plain concrete. Applications of Fracture Mechanics to Concrete Structures, 1984, Chap.4
    
    
    [19] Seivadurai, A.P.S., ten Busschen, A.. Mechanics of the segmentation of an embedded fibre-Part Ⅱ: computational modeling and comparison. J.Apple.Mech.ASME 62, 1995:98-107
    [20] Selvadurai, A.ES., ten Busschen, A., Ernst, L.J.. Computational models for fragmentation tests. 2nd Natioual Mechanics Congress in Netherland, 1993:97-110
    [21] Hopkins, Mark A.. Numerical simulation of systems of multitudinous polygonal blocks. U.S Army Corps of Engineers, 1992, CRREL Report 92-22
    [22] Croasdale K R., Cammaert, A.B. and Metge, M.. A method for the calculation of ice sheet loads on sloping structures. IAHR Ice Symposium, 1994:875-885
    [23] Frederking, R.M.W.. Dynamic ice forces on an inclined structure. Physics and Mechanics of ice, 1979:104-106
    [24] Selvadurai, A.P.S., Sepehr, K.. Two-demnsional discrete element simulations of ice-structure interaction. International Journal of Solids and Structures, 1999, Vol.36:4919-4940
    [25] 杨挺青.粘弹性力学.华中理工大学出版社,1992
    [26] 诸葛良,刘健,王明武.有限元后处理的一种动态可视化方法.机械设计与研究,2001,17(1):29-31
    [27] David J.Kruglinski,Scot Wingo,George Shepherd.Programing Visual C++ 6.0技术内幕.第五版.北京希望电子出版社,2001
    [28] 白建军,朱亚平,梁辉,姚东.OpenGL三维图形设计与制作.人民邮电出版社,1999
    [29] 和平工作室,OpenGL高级编程与可视化系统开发.中国水利水电出版社,2003
    [30] Richard S.Wright,Jr.,Michael Sweet.OpenGL超级宝典.第二版.人民邮电出版社,2001
    [31] Hetenyi, M.. Beam on elastic foundations, University of Michigan Studies. Scientific Series, 1946, Vol. 16
    [32] Croasdale K R.. Ice forces on fixed, rigid structures. CRREL Special Report 8026. U.S.Army Cold Region Research and Engineering Laboratory, 1980:36-106
    [33] 隋吉学.作用于斜坡结构物上海冰荷载的三维计算.海洋环境科学,1997,16(2):15-19
    [34] Hocking G, Mustoe GGW, Williams J R. Influence of artificial island side slopes on ice ride up. CRREL Special Report 8026. U.S.Army Cold Region Research and Engineering Laboratory, 1980:36-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700