Na_3AlF_6-K_3AlF_6-AlF_3体系中金属陶瓷惰性阳极的低温电解腐蚀及新型电解质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用惰性阳极和可润湿性阴极的新型铝电解槽技术,是铝电解工业实现节能、减排与增效的重要途径。惰性阳极经长期研究已取得较大进展,但仍然无法满足现行铝电解质体系与电解工艺条件下的耐腐蚀要求。低温电解可改善惰性阳极服役环境,降低阳极腐蚀速率,促进惰性阳极铝电解技术的工业化实现。
     论文在国家973计划课题(2005CB623703)及863计划课题(2008AA030503)的资助下,以开发NiFe2O4基金属陶瓷惰性阳极低温电解工艺为目标,以5Cu/(NiFe2O4-10NiO)金属陶瓷惰性阳极为代表,针对Na3AlF6-K3AlF6-AlF3低温电解质体系,系统研究了熔体组成与过热度对该种阳极电解腐蚀行为的影响,确定有利于改善惰性阳极服役环境的低温电解质组成与工艺;同时,系统研究了Na3AlF6-K3AlF6-AlF3熔体的导电性能,在此基础上研究了LiF添加剂对Na3AlF6-K3AlF6-AlF3熔体初晶温度、溶解A12O3能力(溶解度与溶解速度)及导电性能的影响规律,为开发具有“低温、高A1203溶解度和高电导”新型电解质提供理论依据。主要研究结果如下:(1)揭示了Na3AlF6-K3AlF6-AlF3低温电解质熔体组成及过热度对5Cu/(NiFe2O4-10NiO)金属陶瓷惰性阳极腐蚀速率的影响规律,确定最有利于降低阳极腐蚀速率的熔体组成为KR值(K3AlF6/(K3AlF6+Na3AlF6)质量百分比)为20%-40%、A1F3含量为23%-28%(初晶温度为830℃-850℃)。在此组成范围的电解质熔体中,过热度为20℃、阳极电流密度为0.95A/cm2(按阳极底部面积计算)条件下,5Cu/(NiFe2O4-10NiO)惰性阳极的腐蚀速率可降低到0.80cm/y,与传统Na3AlF6-AlF3电解质(CR=2.3,初晶温度为951℃,过热15℃)中的5.27cm/y相比,降低85%。(2)揭示了熔体温度、A1F3含量及KR值对Na3AlF6-K3AlF6-AlF3熔体电导率的影响规律,建立了熔体电导率与熔体组成及温度之间的回归关系式,绘制了Na3AlF6-K3AlF6-AlF3熔体在20℃过热度时的等电导率图。熔体电导率与熔体组成及温度之间回归关系式为该回归公式拟合相关系数为0.99,标准偏差为0.027Ω-1·cm-1。从电导率的经验公式及等电导率图可以获取不同成分电解质的电导率值及不同电导率值的电解质组成范围,为获得“低温、高Al2O3浓度、高电导”的电解质提供了应用基础。
     (3)揭示了LiF添加对Na3AlF6-K3AlF6-AlF3熔体初晶温度、溶解Al2O3能力及电导率的影响规律,研究设计了“低温、高Al2O3浓度、高电导率”电解质。LiF的添加降低了熔体初晶温度,降低了熔体的Al2O3溶解度,提高了熔体的电导率。800℃、850℃和900℃电解温度下,具有“低温、高Al2O3浓度、高电导”特征的低温铝电解质的组成分别是:KR值为30%-40%,AlF3含量为25.1%-27.6%,LiF含量为2%,过热度为20℃-40℃;KR值为10%-30%,AlF3含量为24.5%-27.7%,LiF含量为2%,过热度为40℃;KR值为10%-20%,AlF3含量为16.7%-21.3%,LiF含量为2%,过热度为20℃-40℃。
Aluminum reduction cells with inert anodes and wettable cathodes have been proved to be of great significance in saving energy, reducing pollution, and increasing efficiency in the process of aluminum electrolysis. While the research on inert anode has achieved great improvement through efforts of researchers, it still cannot meet the demand of corrosion resistance in recent electrolyte system and technological conditions. Aluminum electrolysis at low temperature can improve the working condition of inert anode, reduce the corrosion rate of inert anode, and then bring about the industrialization of inert anode.
     Funded by the State Key Project of Fundamental Research (973 project:2005CB623703) and National High Technology Research and Development Project (863 project:2008AA030503), and with the aim to explore electrolytic process of NiFe2O4 based inert anode at low temperature, represented by 5Cu/(NiFe2O4-10NiO) cermet inert anode, and based on Na3AlF6-K3AlF6-AlF3 system, the effects of composition and superheat of melts on electrolytic corrosion behavior of this anode are studied systematically. The composition and electrolytic parameters which are beneficial to improve the working condition of inert anodes is pointed out. Meanwhile, the electrical conductance of Na3AlF6-K3AlF6-AlF3 melts is studied systematically. In addition, the effects of LiF on liquidus temperature, dissolving ability of Al2O3(solubility and dissolution), and electrical conductance of melts are studied, which provides theoretical foundation for exploring novel electrolyte with "Low liquidus temperature, Favorable Al2O3 solubility and High electrical conductivity". The main results of the thesis can be summarized as follows:
     (1) The influence of melt components of Na3AlF6-K3AlF6-AlF3 low temperature electrolyte and superheat of melts on corrosion rate of 5Cu/(NiFe2O4-10NiO) cermet inert anode is indicated. The melt component which is beneficial to reduce the anode corrosion rate is that KR(the weight percent of K3AlF6 in (Na3AlF6+K3AlF6)) is ranging from 20% to 40%, and AlF3 content is ranging from 23% to 28% (correspondingly, liquidus temperature ranging from 830℃to 850℃). In this composition range, the corrosion rate of inert anode is 0.8cm/y while the superheat is 20℃and anode current density is 0.95 A/cm2(Calculation according to all the bottom area of anode), which is significantly decreased by 85%, compared with 5.27cm/y in Na3AlF6-AlF3 electrolyte(the cryolite ratio is 2.3, the liquidus temperature is 951℃, and the superheat is 15℃).
     (2) The influence of melt temperature, AlF3 content, and KR on electrical conductivity of Na3AlF6-K3AlF6-AlF3 melts is indicated. A regression equation showing the relationship between electrical conductivity of melts and melts composition and temperature is built. The ternary isotherm diagram of Na3AlF6-K3AlF6-AlF3 melts at 20℃superheat is drawn, too. The regression equation is as follow. The correlation coefficient of regression equation is 0.99 and its standard deviation is 0.027Ω-1·cm-1.
     The electrical conductivity with various compositions can be obtained in regression equation and ternary isotherm diagram, and the compositions range with various electrical conductivity can be obtained, which provides application basis for obtaining an electrolyte with low liquidus temperature, favorable Al2O3 solubility, and high electrical conductivity.
     (3) The influence of addition of LiF on the liquidus temperature, dissolve ability of Al2O3, and electrical conductivity of melts is indicated. An electrolyte of low liquidus temperature, favorable Al2O3 solubility, and high electrical conductivity are studied and designed. The addition of LiF reduces the liquidus temperature of melts and the solubility of Al2O3 in melts but increases the electrical conductivity of melts. For this low temperature electrolyte, which has low liquidus temperature, favorable Al2O3 solubility, and high electrical conductivity, its compositions at 800 ℃,850℃and 900℃can be described respectively as follows:KR, ranging from 30%to 40%and AlF3 content,ranging from 25.1%to 27.6%,with 2%of LiF(the superheat is ranging from 20℃to 40℃);KR,ranging from 10%to 30%and AlF3 content,ranging from 24.5%to 27.7%,with 2%of LiF(the superheat is 40℃);KR,ranging from 10%to 20%and AlF3 content,ranging from 16.7%to 21.3%,with 2%of LiF(the superheat is ranging from 20℃to 40℃).
引文
[1]刘业翔,李劫.现代铝电解[M].北京:冶金工业出版社,2008:1.
    [2]世华财讯.世界金属统计局:全球2008年铝市供应过剩125.1万吨[EB/OL] http://content.caixun.com/NE/01/bc/NE01bc45.shtm,2009-5-4/2009-5-10.
    [3]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004.1-12.
    [4]VANVOREN C, HOMSI P, BASQUIN J L, BEHEREGARAY T. AP 50:The Pechiney 500 kA cell[A]. In:ANJIER J L, eds. Light Metals[C], Warrendale, PA:TMS,2001:221~226.
    [5]邱竹贤.21世纪伊始铝电解工业的新进展[J].中国工程科学,2003,5(4):41-46.
    [6]徐军,陈学森.我国铝工业现状及今后发展建议[J].轻金属,2001,(10):3-6.
    [7]曾庆猛.对未来我国铝工业发展的几点看法[J].世界有色金属,2002,(3):14-18.
    [8]吴慧娅.我国铝电解工业的现状与竞争能力的分析[J].世界有色金属,2002,(10):4-6.
    [9]深圳中期.我国电解铝产量已升至世界第一.http://www.chinafutures.com.cn/ Progs/NshowNews.asp?ID=17585,2002-12-24.
    [10]中国矿业网.2002年我国有色金属产品产量汇总表.]http://www.china ming.com.cn/news/listnews.asp?classid=154&siteid=9998,2003-02-10.
    [11]中华人民共和国国家统计局.中华人民共和国2008年国民经济和社会发展统计公报[EB/OL], http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20090226-402540710.htm,2009-2-26/2009-5-13.
    [12]李朝林.神火集团350kA特大型预焙阳极铝铝电解槽科技项目通过国家鉴定[EB/OL].中国西部煤炭网,2005-7-7/2009-4-3.
    [13]陈颖.350kA大型预焙阳极铝电解槽优化设计论述[J].有色金属设计,2004,31(1):28-33.
    [14]杨晓东,刘雅锋,朱佳明,孙康健.400kA预焙阳极铝电解槽技术研制开发与生产实践[J].2008,28(7):23-30.
    [15]李宁,王洪,肖伟峰,肇玉卿,陈军,陈新群.400kA大型预焙阳极铝电解槽应用研究[J].轻金属,2008,(12):35-38.
    [16]中华商务网.400kA大型预焙阳极铝电解槽技术研制开发获得成功[EB/OL]. http://www. hnys.gov.cn/Read.asp?IC_ID=1879,2008-4-29/2009-4-3.
    [17]铝业技术论坛.中国有色金属工业中长期科技发展规划(下)[EB/OL]. http://www.al-tec.cn/archiver/tid-3404.html,2009-4-24/2009-6-16.
    [18]KVANDE H. Inert electrodes in aluminum electrolysis cells[A]. In:ECKERT C E, eds. Light Metals[C], Warrendale, PA:TMS,1999:369~376.
    [19]赖延清,刘业翔.电解铝炭素阳极消耗研究评述[J].轻金属,2002,8:3-10.
    [20]张创奇,吴连成.上插槽炼铝[M].长沙:中南工业大学出版社,1998.
    [21]张晓顺,邱竹贤.铝电解惰性阳极材料研究现状[J].材料与冶金学报,2005,4(1):13-16.
    [22]GRJOTHEIM K, KVANDE H. Physico-chemical properties of low-melting baths in aluminium electrolysis[J]. Metall,1985,39 (6):510~513.
    [23]SLEPPY W C, COCHRAN C N. Bench scale electrolysis of alumina in sodium fluoride-aluminum fluoride melts below 900 degree C[A]. In:PETERSON W S, eds. Light Metals[C], Warrendale, PA:TMS,1979:385~395.
    [24]卢惠民,邱竹贤.面向21世纪的铝电解清洁生产工艺[J].矿冶,2000,9(4):62-65.
    [25]李相鹏,李劫,赖延清,刘业翔,冉永华,周昊,岑可法.聚铝沟排布对导流型铝电解槽热应力分布的影响[J].中国有色金属学报.2007,17(6):979-983.
    [26]刘业翔,李相鹏,李劫,赖延清.导流槽阴极热应力分布计算和结构优化[J].中南大学学报(自然科学版).2004,35(6):869-874.
    [27]PANAITESCU A, MORARU A, PANAITESCU I. Research on the instabilities in the aluminum electrolysis cell[A] In:CREPEAU P N, eds. Light Metals[C], Warrendale, PA:TMS,2003:359~366.
    [28]BROWN C. Next generation vertical electrode cells[J]. JOM,2001,53(5):39~ 42.
    [29]DE NORA V. Electrode assemblies and mutimonopolar cells for aluminium electrowinning[P]. US Patent53687021994-11-29.
    [30]THONSTAD J. Some recent trends in molten salt electrolysis of titanium, magnesium, and aluminium[J]. High Temperature Materials and Processes,1990, 9(2-4):135~146.
    [31]WU BANQIU, REDDY R G, ROGERS R D. Aluminum reduction via near room temperature electrolysis in ionic liquids[A]. IN:ANJIER J L, eds. Light
    Metals[C], Warrendale, PA:TMS,2001:237~243.
    [32]KAMAVARAM V, REDDY R G. Aluminum extraction in ionic liquids at low temperature[A]. IN:GALLOWAY T J, eds. Light Metals[C], Warrendale, PA:TMS,2006:97~108.
    [33]HUIMIN LU, YONGHENG WANG. Refining aluminum process in ionic liquids[A]. IN:SφRLIE M, eds. Light Metals[C], Warrendale, PA:TMS, 2007:391-396.
    [34]LAYNE G S, HUML J O. MIXED CHLORIDE-Fluoride bath for the electrolysis of aluminum chloride[A]. IN:BOHNER H O, eds. Light Metals[C], Warrendale, PA.TMS,1975:217~231.
    [35]王平艳,杨部正,戴永年,刘永成.碳热还原及低价氯化铝分解法炼铝设备研究[J].矿冶工程.2005,25(2):43-45.
    [36]THONSTAD J, FELLNER P, HAARBERG G. Aluminium Electrolysis,3rd edition. Dusseldorf:Aluminium-Verlag,2001.340~348.
    [37]BERTAUD Y, GURTNER B, COHEN J. Process for the continuous production of aluminum by the carbochlorination of alumina and igneous electrolysis of the chloride obtained[P]. USA Patent4597840,1986-7-1.
    [38]KVANDE H. Inert electrodes in aluminum electrolysis cells[A]. In:ECKERT C E, eds. Light Metals[C], Warrendale, PA:TMS,1999:369~376.
    [39]KVANDE H, HAUPIN W. Inert anodes for Al smelters:Energy balances and environmental impact[J]. JOM,2001,53 (5):29~33.
    [40]WELCH B J. Aluminum production paths in the new millennium[J]. JOM,51(5), 1999:24~28.
    [41]KVANDE H. Energy consumption in alumina reduction cells[A] In:CUTSHALL E R, eds. Light Metals[C], Warrendale, PA:TMS,1991,1990:421~426.
    [42]刘业翔.铝电解惰性阳性与可湿润性阴极的研究与开发进展[J].轻金属,2001, (5):26-29.
    [43]PAWLEK R P. Inert anodes:An update[A]. In:SCHNEIDER W, eds. Light Metals[C], Warrendale, PA:TMS,2002:449~456.
    [44]BENEDYK J C. Status report on inert anode technology for primary aluminium[J]. Light Metal Age,2001,59 (1-2):36~37.
    [45]BECK T R. Production of aluminum with low temperature fluoride melts[A]. In: MANNWEILER U, eds. Light Metals[C], Warrendale, PA:TMS,1994:417~423.
    [46]BECK T R. Non-consumable metal anode for production of aluminum with low-temperature fluoride melts[A]. IN:EVANS J W, eds. Light Metals[C], Warrendale, PA:TMS,1995:355~360.
    [47]HRYN J N, SADOWAY D R. Cell testing of metal anodes for aluminum electrolysis[A]. IN:DAS S K, eds. Light Metals[C], Warrendale, PA:TMS, 1993:475~483.
    [48]ALCOM T R, TABEREAUX A T, RICHARDS N E. Operational results of pilot cell test with cermet inert anodes[A]. In:SUBODH K D, eds. Light Metals[C], Warrendale, PA:TMS,1993:433~443.
    [49]YANG J H, JOHN N H, GREG K K. Aluminum electrolysis tests with inert anodes in KF-AlF3-based electrolytes [A]. In:GALLOWAY T, eds. Light Metals[C], Warrendale, PA:TMS,2006.421~424.
    [50]RUDOLF P. Pawlek. Inert anodes:an update[A]. In:TABEREAUX A T, eds. Light Metals[C], Warrendale, PA:TMS,2004.283~287..
    [51]GRJOTHEIM K, KVANDE H, ZHUXIAN Q, JILAI X. Aluminium electrolysis in a 100 A laboratory cell with inert electrodes. Metall,1988,42(6):587~589.
    [52]蔡祺凤,刘业翔.snO2基惰性阳极在Na3AIF6-Al2O3熔融电解质中腐蚀行为的研究[J].轻金属,1986,9:28-31.
    [53]PAWLEK R P. Inert anodes for the primary aluminium industry:an update. In: WAYNE H, eds. Light Metals[C], Warrendale, PA:TMS,1996,243~248.
    [54]VECCHIO-SADUS A M, CONSTABLE D C, DORIN R, FRAZER E J, FERNANDEZ I, NEAL G S, LATHABAI S, TRIGG M B. Tin dioxide-based ceramics as inert anodes for aluminium smelting:a laboratory study[A]. In: HALE W, eds. Light Metals[C], Warrendale, PA:TMS,1996:259~265.
    [55]RAY S P, RAPP R A. Composition suitable as inert electrode having good electrical conductivity and mechanical properties. US Patent,4454015, June 12, 1984.
    [56]WEYAND J D, DEYOUNG D H, RAY S P, TARCY G P, BAKER F W. Inert anodes for aluminum smelting[R]. PA 15069, Washington D C:Aluminum Company of America, February,1986.
    [57]GREGG J S, FREDERICK M S, KING H L, VACCARO A J. Testing of cerium oxide coated cermet anodes in a laboratory cell[A]. In:DAS S K, eds. Light Metals[C], Warrendale, PA:TMS,1993:455~464.
    [58]LAI YANQING, DUAN HUANAN, LI JIE, SUN XIAOGANG, LIU YEXIANG. On the corrosion behaviour of Ni-NiO-NiFe2O4 cermets as inert anodes in
    aluminum electrolysis[A]. In:KVANDE H, eds. Light Metals[C], Warrendale, PA:TMS,2005:529~534.
    [59]NGUYEN T, DE NORA V. de Nora oxygen evolving inert metallic anode[A]. In: GALLOWAY T J, eds. Light Metals[C], Warrendale, PA:TMS,2006:385~390.
    [60]DE NORA V, NGUYEN T, VON KAENEL R, ANTILLE J, KLINGER L. Semi-vertical de nora inert metallic anode[A]. In:SφRLIE M, eds. Light Metals[C], Warrendale, PA:TMS,2007:501~505.
    [61]杨建红,王化章,刘业翔,谢新军.铝电解用NiO-NiFe2O4基金属陶瓷的制备和性能研究[J].中南矿冶学院学报,1993,24(3):326-331.
    [62]SLEEPY W C, KENSINGTON N, COCHRAN C N. Bench scale electrolysis of alumina in sodium fluoride-aluminum fluoride melts below 900℃[A]. In: PETERSON W S, eds. Light Metals[C], Warrendale, PA:TMS,1979:385~395.
    [63]CRAIG B. Next generation venical electrode cells[J]. JOM,2001,53 (5):39~ 42.
    [64]邱竹贤,王兆文,高炳亮,于旭光.低温铝电解的物理化学过程[J].矿业研究与开发,2003,(8):9-12.
    [65]Phase Diagram web. http://www.crct.polymtl.ca/FACT/documentation /FThall/LiF-AlF3_Bath.jpg,2009-4-3/.2009-5-1.
    [66]STERTEN A. Current efficiency in aluminium reduction cells[J]. Journal of Applied Electrochemistry,1988,18, (3):473~483.
    [67]周传华,马淑兰,李国勋,沈剑韵.新型低温电解质体系的研究—氧化铝的溶解度与溶解速度[J].有色金属,1998,50(2):81-84.
    [68]卢惠民,邱竹贤.低温铝电解的研究进展(2)[J].轻金属,1997,(5):27-29.
    [69]JIANHONG Y, GRACZYK D G, WUNSCH C, HRYN J N. Alumina solubility in KF-AlF3-based low-temperature electrolyte system[A]. In:SφRLIE M, eds. Light Metals[C], Warrendale, PA:TMS,2007:537~541.
    [70]BECK T B, BROOLS R. Electrolytic reduction of aluminum[P]. US Patent, 5006209,1974.
    [71]HRYN J N, PELLIN MJ.A dynamic metal anode [A]. In:ECKERT C E, eds. Light Metals[C], Warrendale, PA:TMS,1999:377~81.
    [72]ZAIKOV Y, KHRAMOV A, KOVROV V, KRYUKOVSKY V, APISAROV A, TKACHEVA O, CHEMESOV O, SHUROV N Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite[A]. In:DEYOUANG D H, eds. Light Metals[C], Warrendale, PA:TMS,2008:505~508.
    [73]JIANHONG YANG, HRYN J N, DAVIS B R, ROY A, KRUMDICK G K, POMYKALA J A. New opportunities for aluminum electrolysis with metal anodes in a low temperature electrolyte system Source[A]:In:TABEREAUX A T, eds. Light Metals[C], Warrendale, PA:TMS,2004:321-326.
    [74]TIAN Z, LAI Y, LI J, LIU Y. Effect of Ni content on corrosion behavior of Ni/ (lONiO-90NiFe2O4) cermet inert anode[J]. Transactions of the Nonferrous Metals Society of China,2008,18 (2):361~365.
    [75]OLSEN E, THONSTAD J. Nickel ferrite as inert anodes in aluminium electrolysis:Part Ⅱ. Material performance and long-term testing[J]. Journal of Applied Electrochemistry,1999,29 (3):301~311.
    [76]PIETRZYK S, OBLAKOWSKIR. Investigation of the concentration of the inert anodes in the bath and metal during aluminum electrolysis[A]. In:ECKERT C E, eds. Light Metals[C]. Warrendale, PA:TMS,1999:407~411.
    [77]OLSEN E, THONSTAD J. Nickel ferrite as inert anodes in aluminium electrolysis:Part Ⅰ. Material fabrication and preliminary testing[J]. Journal of Applied Electrochemistry,1999,29 (3):293~299.
    [78]RAY S P. Inert electrode compositions[P].US patent 4374050.1984-10-23.
    [79]RAY S P. Inert electrode formulations[P].US patent 4374761.1983-2-22.
    [80]RAY S P. Composition for inert electrodes[P].US patent4399008.1983-8-16.
    [81]RAY S P. Rapp R A. Composition suitable for inert electrode[P].US patent 4455211.1984-6-19.
    [82]RAY S P. Effect of cell operating parameters on performance of inert anodes in Hall-Heroult cells[A]:In:ZABREZNIK R D, eds. Light Metals[C], Warrendale, PA:TMS,1987:367~380.
    [83]ALCORN T R, TABEREAUX A T, RICHARDS N E, WINDISCH C F, STRACHAN D M, GREGG J S, FREDERICH M S. Operational results of pilot cell test with cermet "inert" anodes[A]. In:DAS S K, eds. Light Metals[C], Warrendale, PA:TMS,1993:433~443.
    [84]DEYOUNG D H. Solubilities of oxides for inert anodes in cryolite-based melts[A]. In:MILLER R E, eds. Light Metals[C], Warrendale, PA:TMS, 1986:299~307.
    [85]TARCY G P. Corrosion and passivation of cermet inert anodes in cryolite-type electrolytes[A]. In:MILLER R E, eds. Light Metals[C], Warrendale, PA:TMS,
    1986:309~320.
    [86]WINDISCH C F, MARSCHMAN S C. Electrochemical polarization studies on Cu and Cu-containing cermet anodes for the aluminum industry[A]. In: ZABREZNIK R D, eds. Light Metals[C], Warrendale, PA:TMS,1987:351~355.
    [87]LAI Yan-qing, TIAN Zhong-liang, LI Ji,YE Shao-long, LI Xian-zheng, LIU Ye-xiang. Results from 100 h electrolysis testing of NiFe2O4 based cermet as inert anode in aluminum reduction[J]. Transactions of Nonferrous Metals Society of China,2006, (4):970~974.
    [88]TIAN Zhong-liang, LAI Yan-qing, LI Jie, LIU Ye-xiang. Effect of Ni content on corrosion behavior of Ni/(10NiO-90NiFe2O4) cermet inert anode[J]. Transactions of Nonferrous Metals Society of China,2008,18 (2):361~365.
    [89]WANG Jia-wei, LAI Yan-qing, TIAN Zhong-liang, LIU Ye-xiang. Effect of electrolysis superheat on anticorrosion performance of 5Cu/(10NiO-NiFe2O4) cermet inert anode[J]. Journal of Central South University of Technology,2007, 14 (6):768~772.
    [90]席锦会,姚广春,刘宜汉,张晓明.镍铁尖晶石基金属陶瓷惰性阳极的电解腐蚀行为[J].过程工程学报,2006,6(5):758-762.
    [91]EDWARDS J D, TAYLOR C S, RUSSELL A S, MARANVILLE L F. Electrical Conductivity of Molten Cryolite and Potassium, Sodium, and Lithium Chlorides[J]. Journal of the Electrochemical Society,1952,99 (12):527~535.
    [92]GRJOTHEIM K, KROHN C, MALINOVSKY M, MATIASOVSKY K, THONSTAD J. Aluminium Electrolysis,2nd edn[M]. Aluminium-Verlag, Dusseldorf,1982:131.
    [93]BAJCSY J, MALINOVSKY M, MATIASOVSKY K. Determination of the electrical conductivity of molten fluorides[J]. Electrochimica Acta,1962,7: 543~550.
    [94]MATIASOVSKY, MALINOVSKY, ORDZOVENSKY. Electrical Conductivtiy of the Melts in the System Na3AlF6-Al2O3-NaCl[J]. Journal of the Electrochemical Society,1964,111 (8):973~976.
    [95]WANG X, PETERSON R D, TABEREAUX A T. Multiple regression equation for the electrical conductivity of cryolitic melts[A]. In:DAS S K, eds. Light Metals[C], Warrendale, PA:TMS,1993:247~255.
    [96]HIVES J, THONSTAD J, STERTEN A, FELLNER P. Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride[A]. In:MANNWEILER U, eds. Light Metals[C], Warrendale, PA:TMS,1994:187~194.
    [97]FELLNER P, KOBBELTVEDT O, STERTEN A, THONSTAD J. Electrical conductivity of molten cryolite-based binary mixtures obtained with a tube-type cell made of pyrolytic boron nitride[J]. Electrochimica Acta,1993,38 (4):589~ 592.
    [98]王兆文,胡宪伟,高炳亮.CVCC法测定冰晶石系熔盐电导率的应用研究[J].东北大学学报(自然科学版),2006,27(7):786-789.
    [99]CHOUDHARY G. Electrical Conductivity for Aluminum Cell Electrolyte between 950℃-1025℃ by Regression Equation[J]. Journal of The Electrochemical Society,1973,120 (3):381~383.
    [100]邱竹贤.氟化镁对于冰晶石—氧化铝融盐电解过程的影响[J].有色矿冶,2001,17(5):18-24.
    [101]邱竹贤.工业铝电解质分子比的演变与现状[J].中国有色金属学报,1996,6(4):13-18.
    [102]HIVES J, THONSTAD J, STERTEN A, FELLNER P. Electrical conductivity of the molten cryolite-based ternary mixtures Na3AlF6-Al2O3-CaF2 and Na3AlF6-Al2O3-MgF2 [J]. Electrochimica Acta,1993,38 (15):2165~2169.
    [103]HIVES J, THONSTAD J. Electrical conductivity of low-melting electrolytes for aluminium smelting[J]. Electrochimica Acta,2004,49 (28):5111~5114.
    [104]KRYUKOVSKY V A, FROLOV A V, TKATCHEVA O Y, REDKIN A A, ZAIKOV Y P, KHOKHLOV V A, APISAROV A P. Electrical conductivity of low melting cryolite melts[A]. In:GALLOWAY T J, eds. Light Metals[C], Warrendale, PA:TMS,2006:409~413.
    [105]FELLNER P, GRJOTHEIM K, KVANDE H. Model calculations of the electrical conductivity of cryolite melts[A]. In:MCGEER J P, eds. Light Metals[C], Warrendale, PA:TMS,1984:805~825.
    [106]GRJOTHEIM K, WELCH B. Aluminum Smelter Technology:A pure and applied approach[M]. Dusseldorf:Aluminum-Verlag GmbH,1980:38.
    [107]PETERSON R D, TABEREAUX A T. Liquidus curves for the cryolite AlF3-CaF2-Al2O3 system in aluminum cell electrolytes [A]. In:ZABREZNIK R D, eds. Light Metals[C], Warrendale, PA:TMS,1987:383~388.
    [108]STEVEN L, SHAUR L K, PAUL X, JESSE B. Determination of melting temperatures and Al2O3 solubilities for Hall cell electrolyte compositions [A], In: MCGEER J P, eds. Light Metals[C], Warrendale, PA:TMS,1984:841~855.
    [109]ROSTUM A, SOLHEIM A, STERTEN A. Phase diagram data in the system Na3AlF6-Li3AIF6-AlF3-Al2O3. Part Ⅰ:Liquidus temperatures for primary cryolite crystallization[A]. In:BICKERT C M, eds. Light Metals[C], Warrendale, PA:TMS,1990:311~316.
    [110]KAN HONGMIN, WANG ZHAOWEN, SHI ZHONGNING, BAN YUNGANG, CAO XIAOZHOU, YANG SHAOHUA, QIU ZHUXIAN. Liquidus temperature, density and electrical conductivity of low temperature electrolyte for aluminum electrolysis[A]. In; SφRLIE M, eds. Light Metals[C], Warrendale, PA:TMS, 2007:531~535.
    [111]FERNANDEZ R, GRJOTHEIM K, OSTVOLD T. TABEREAUX, E Physicochemical properties of cryolite and cryolite alumina melts with KF additions:1.temperature of primary crystallization[A]. In:BOHNER H O, eds. Light Metals[C], Warrendale, PA:TMS,1985:501~506.
    [112]王家伟.Na3AlF6-K3AlF6-AlF3体系的初晶温度、Al2O3溶解能力及NiFe2O4基惰性阳极低温电解腐蚀研究[D].长沙:中南大学,2008.
    [113]JANZ G J, TOMKINS R P. Molten salts:volume 5. I. Additional single and multi-component salt systems. Electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data,1980, 9 (4):831~1021.
    [114]THONSTAD J, HAGEN A. Determination of alumina in cryolite-alumina mixtures, accuracy of analysis[J]. Aluminium,1971,47 (11):678~681.
    [115]BAGGIO S, FORESIO C. X-ray method for measuring the alumina content in reduction cells for aluminum production.[J]. Aluminium,1980,56 (4):276~ 278.
    [116]LIU XIAOLING, PURDIE J, TAYLOR M, WELCH B. Measurement and modelling of alumina mixing and dissolution for varying electrolyte heat and mass transfer conditions [A]. In:Bickert C M, eds. Light Metals[C], Warrendale, PA:TMS,1990:289~298.
    [117]SKYBAKMOEN E; SOLHEIM A; STERTEN A. Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data[J]. Metallurgical and Materials Transactions B,1997,28 (1):81~86.
    [118]KRYUKOVSKY V A, FROLOV A V, TKACHEVA O Y. Physical-chemical properties of potassic cryolite as a basic component of bath for aluminum production[C]. International Conference-Exhibition, ALUMINIUM of SIBERIA, 2006, Krasnoyarsk, Russia (CD)
    [119]REDKIN A, TKATCHEVA O, ZAIKOV Y, APISAROV A. Modeling of cryolite-alumina melts properties and experimental investigation of low melting electrolytes[A]. In:SφRLIE M, eds. Light Metals[C], Warrendale, PA:TMS, 2007:513-517.
    [120]ROBBINS G D. Measurement of Electrical Conductivity in Molten Flulrides. A Survey[J]. Journal of the Electrochemical Society,1969,116 (6):813~817.
    [121]EDWARDS J D, TAYLOR C S, COSGROVE L A, RUSSELL A S. Electrical Conductivity and Density of Molten Cryolite with Additives[J]. Journal of the Electrochemical Society,1953,100 (11):508~512.
    [122]YIM E W, FEINLEIB M. Electrical Conductivity of Molten Fluorides I. Apparatus and Method[J]. Journal of the Electrochemical Society,1957,104 (10):622~626.
    [123]YIM E W, FEINLEIB M. Electrical Conductivity of Molten Fluorides II. Conductance of Alkali Fluorides, Cryolites, and Cryolite-Base Melts[J]. Journal of the Electrochemical Society,1957,104 (10):626~630.
    [124]XIANGWEN WANG, PETERSON R D, TABEREAUX A T. Electrical Conductivity of Cryolitic Melts[A]. In:CUTSHALL E R, eds. Light Metals[C], Warrendale, PA:TMS,1992,1991:481~488.
    [125]KIM K B, SADOWAY D R. Electrcal Conductivity Measurements of Molten Alkaline-Earth Fluorides[J]. Journal of the Electrochemical Society,1992,139 (4):1027~1033.
    [126]CUTHBERTSON J W, WADDINGTON J. A Study of The Cryotite-Alumina Cell With Particular Reference to Decomposition Votage[J]. Transactions of the Faraday Society,1936,32:745~760.
    [127]SHIGETA H, HIDEHIRO H, KAZUMI O. Electrical Conductivity of Molten Slags for Electro-Slag[J]. Transactions of the Iron and Steel Institute of Japan, 1983,23:1053~1058.
    [128]梁连科,郭仲文,王运志,骆启斌,姜兴渭,梁景凯.交流四探针法测定炉渣电导率的研究[J].东北工学院学报,1985,44(3):71-77.
    [129]马秀芳,张世荣,李德祥,李国华.Na3AlF6-AlF3-LiF-CaF2系熔体变温电导率的研究[J].有色金属,1998,50(4):77-81.
    [130]SILNY A, HAUGSDAL B. Electrical Conductivity Measurement of Corrosive Liquids an High Temperatures[J]. Review of Scientific Instruments,1993,64 (2):532~537.
    [131]JONES G, CHRISTIAN S M. The Measurement of the Conductance of Electrolytes. Ⅵ. Galvanic Polarization by Alternating Current[J]. Journal of the American Chemical Society,1935, (57):272~280.
    [132]SCHIEFELBEIN S L. High-Accuracy Electrical Conductivity Measurements of Corrosive Melts Using the Coaxial Cylinders Technique[J]. HighTemperature Materials and Processes,2001,20 (3-4):247~254.
    [133]曹楚南,张鉴清.电化学阻抗谱导论[M],北京:科学出版社,2004:20.
    [134]舒余德,陈白珍.冶金电化学研究方法[M],长沙:中南工业大学出版社,1990:96.
    [135]孙小刚.Ni-NiFe2O4-NiO金属陶瓷惰性阳极的致密化及力学性能研究[D].长沙:中南大学,2005.
    [136]王常珍.冶金物理化学研究方法[M].北京:冶金工业出版社,2002:344.
    [137]APISAROV A, DEDYUKHIN A, REDKIN A, TKACHEVA O, NIKOLAEVA E, ZAIKOV Y, TINGHAEV P. Physical-chemical properties of the KF-NaF-AlF3 molten system with low cryolite ratio[A]. In:BEARNE G, eds. Light Metals[C]. Warrendale, PA:TMS,2009:401~403.
    [138]HIVES J, THONSTAD J, STERTEN A, FELLNER P. Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride[J]. Metallurgical and Materials Transactions B,1994,27B:255~ 261.
    [139]WANG J, LAI Y, TIAN Z. LI J, LIU Y. Temperature of primary crystallization in party of system Na3AlF6-K3AlF6-AlF3[A]. In:DEYOUNG D H, eds. Light Metals[C]. Warrendale, PA:TMS,2008:513~518.
    [140]SCHMID-FETZER R, OHNO M, MIRKOVIC D. Liquidus and solidus temperatures of Mg-rich Mg-Al-Mn-Zn alloys[J]. Acta Materialia,2006,54(15): 3883-3891.
    [141]邱竹贤,张明杰,何鸣鸿.低温铝电解的研究[J].轻金属,1984,(6):33-36.
    [142]SOLHEIM A, ROLSETH S, SKYBAKMOEN E. Liquidus temperature and alumina solubility in the system Na3AlF6-AlF3-LiF-CaF2-MgF2[A]. In:EVANS J, eds. Light Metals[C], Warrendale, PA:TMS,1995:451~460.
    [143]QIAN XU, YIMING MA, ZHUXIAN QIU. Calculation of thermodynamic properties of LiF-AlF3, NaF-AlF3 and KF-AlF3[J]. Calphad,2001,25 (1):31~ 42.
    [144]CHRENKOVA M, DANEK V, SILNY A, UTIGARD T A. Density,electrical conductivity and viscosity of low melting baths for aluminium electrolysis[A]. In:HALE W, eds. Light Metals[C], Warrendale, PA:TMS,1996:227~232.
    [145]MATIASOVSKY K, DANEK V, MALINOVSKY M. Effect of LiF and Li3AlF6 on the electrical conductivity of cryolite-alumina melts[J]. Journal of the Electrochemical Society,1969,116(10):1381~1383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700