黑麦草重结晶抑制蛋白基因家族的克隆及其RNAi载体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物冷胁迫相关蛋白是指从耐寒物种中分离得到的参与调节植物抗寒生理生化活动的特殊蛋白质,其中一类能抑制冰晶形成的蛋白质被称为植物抗冻蛋白。植物抗冻蛋白能结合于冰晶表面,阻止冰晶生长,非依数性地降低溶液冰点而不降低熔点,导致熔点与冰点之间出现差值,即表现为热滞(Thermal hysteresis, TH)活性,还可抑制冰晶之间发生重结晶,即重结晶抑制(Recrystallization inhibition, RI)活性。与昆虫和鱼类抗冻蛋白相比较,植物抗冻蛋白的热滞活性极低,却具有极高的重结晶抑制活性,因此,植物抗冻蛋白亦被称为重结晶抑制蛋白(Ice Recrystallization inhibition Protein, IRIP)。不同物种来源的植物重结晶抑制蛋白差异较大,基因序列之间的相似性很低,其作用机理至今未完全解析清楚。多年生黑麦草是耐寒性极强的常绿植物,内含活性较高的IRIP,应用前景较大。为探索黑麦草IRIP的遗传特性,对IRIP基因家族进行了克隆与功能分析研究。本论文的主要研究结果如下:
     (1)黑麦草重结晶抑制蛋白基因家族的克隆。根据GenBank公布的黑麦草重结晶抑制蛋白的序列,以黑麦草基因组为模板,分别设计4对特异引物扩增完整基因组DNA序列;将冷诱导黑麦草叶片总RNA逆转录成cDNA第一链,以此为模板,分别设计4对特异引物扩增黑麦草IRIP的cDNA序列。将获得的4条基因组DNA序列和4条cDNA序列分别克隆至T载体,经测序及序列分析,发现IRIP基因家族序列存在着转录后的编辑剪接,令LpIRIPl失去15个碱基的内含子或是5个氨基酸序列,也导致LpIRIP4基因读码框移位,没有终止子。序列比对结果表明,4个成员碱基序列的3’端高度保守,而5’端的保守性很低,序列相似性低。
     (2)黑麦草重结晶抑制蛋白基因家族的原核表达。根据所克隆的黑麦草重结晶抑制蛋白的cDNA序列,分别设计4对原核表达引物,扩增出4条目的序列,分别亚克隆至原核表达载体pET-28a和pET-30a,酶切鉴定后转化表达菌株BL32(入DE3),使用终浓度1mM的IPTG进行诱导表达,结果表明,仅第3号成员的表达质粒pET-30a-IRIP3获得成功表达,蛋白质大小为26kDa。
     (3)黑麦草重结晶抑制蛋白的双元RNA干扰载体构建。以黑麦草重结晶抑制蛋白基因家族4条序列及黑麦草抗冻蛋白基因LpAFP (AJ277399)的保守区序列作为干扰目的序列,分别以LpAFP, LpIRIP2, LpIRIP3为模板设计引物,扩增得到400bp左右的干扰装载片段,分别以正反向装载至沉默载体中间载体pBlueActin,后亚克隆至双元载体pCAMBIA2301,构建完成黑麦草IRI蛋白基因家族双元沉默载体,为后续通过RNA沉默技术分析黑麦草IRIP基因家族各个成员的功能奠定了基础。
Plant cold-stress associate-proteins are classified as special proteins participate in frost-resistant life events, in which ones in regulation of plant physiological and biochemical activities and against cold environmental stress,it is called antifreeze protein. Antifreeze proteins binding to the surface of ice crystals and prevent ice crystal growth, non-reducing point other than the freezing point,so it creates the gap between the melting point and freezing point, and that is charactered as thermal hysteresis activity.It control the growth of ice crystals and inhibit ice recrystallization, compared with insects and fishes antifreeze proteins, plant antifreeze proteins have lower thermal hysteresis activity, but they have a very high recrystallization inhibition activity, so plant antifreeze proteins also be called recrystallization inhibition proteins in the research.
     Recrystallization inhibition activities of plant antifreeze proteins are different among various species, and the homology between different sequences is very low. Although the researchs about ice recrystallization inhibition proteins have done in vitro,and made a number of models to explain its mechanism, but so far still have not been scientifically confirmed. The major works of this paper is about ryegrass because of its special properties and it have heavily attract me,the content are list as follows:
     1. The cloning of ryegrass recrystallization inhibition proteins gene family.First,i get the informations about ice recrystallization inhibition Proteins gene family from the Genbank,designed four pairs primers and cloned the special sequences from the DNA templates and cDNAtemplates.According to the analysis of alignment of sequences,we find the LpIRIP sequences may proceeded splicing post of the transcripting,and there maybe exist intron in the inner of IRIP genes.
     2. The research about expression of IRIP genes in E.coli. First,we succeed in construction of the four IRIP genes prokaryotic expression vector,subclone the genes coding sequences into pET-28a and pET-30a vectors.Next,after the identification of restriction enzyme digestion, transformed the vectors into the expression cell BL32 (λDE3). At the concentration of 1mM IPTG induced,the recombination pET-30a-IRIP3 successfully express the target protein,it is about 26kDa.
     3. The construction of Ryegrass binary silence vector. First, we design special primers according to conserved region by the result of alignment among four IRIP genes sequences and antifreeze protein LpAFP(AJ277399). Next,we clone the slience target sequences, and load the fragments into the RNA interfere intermediate vector pBlueActin, and then transform them into binary vector pCAMBIA2301,made the plant slience binary vectors.And after that works,transfer the binary silencing vector into agrobacterium LBA4404.
引文
[1]Gilliland, T. J., R. Coll, E. Calsyn, et al., Estimating genetic conformity between related ryegrass (Lolium) varieties.1. Morphology and biochemical characterisation[J]. Molecular Breeding,2000.6(6):p. 569-580.
    [2]Appleby, A. P., P. D. Olson and D. R. Colbert, Winter wheat yield reduction from interference by Italian ryegrass[J]. Agronomy Journal, 1976.68(3):p.463.
    [3]Humphreys, M. O., Assessment of perennial ryegrass (Lolium perenne L.) for breeding. Ⅱ. Components of winter hardiness[J]. Euphytica,1989. 41(1):p.99-106.
    [4]蒙正兵,龙忠富,莫本田,et al.,贵草1号多花黑麦草高产栽培技术[J].贵州农业科学,2009.37(002):p.106=107.
    [5]张桂国,杨在宾,董树亭,et al.,冬牧70黑麦草在鲁中山区引种栽培初报[J].草业科学,2008(001):p.47-50.
    [6]薛正莲,刘艳and高理所,黑麦草叶蛋白及其水解物营养价值的评价[J].营养学报,2008.30(006):p.629-630.
    [7]张磊,刘东燕and邵涛,黑麦草的饲用价值及其应用前景[J].草业科学,2008.25(004):p.64-69.
    [8]Bigg, E. K., Proceedings of the Physical Society. Section B[J]. Proceedings of the Physical Society. Section B,1953.66(8):p.688-694
    [9]Pearce, R. S., Plant Freezing and Damage[J]. Annals of Botany,2001. 87(4):p.417-424.
    [10]Liu, X. Y. and N. Du, Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze[J]. J Biol Chem,2004.279(7):p.6124-6131.
    [11]Rchard, D. L., Anatomic site of Application of Ice-Nucleating Active Bacteria Affects Supercooling in the Colorado Potato Beetle(Coleoptera:Chrysomelidae)[J].
    [12]Atici, O. and B. Nalbantoglu, Antifreeze proteins in higher plants[J]. Phytochemistry,2003.64(7):p.1187-1196.
    [13]Wang, R., R. Li, Z. Sun, et al., Anti-freezing proteins and plant responses to low temperature stress[J]. Ying Yong Sheng Tai Xue Bao,2006.17(3): p.551-556.
    [14]Wisniewski, M. and C. Bassett, An Overview of Cold Hardiness in Woody Plants:Seeing the Forest Through the Trees[J]. HORTSCIENCE, 2003.38(5):p.952-959.
    [15]Feeney, R. E. and Y. Yeh, Antifreeze proteins:Current status and possible food uses[J]. Trends in Food Science & Technology,1998.9(3):p. 102-106.
    [16]Ananthanarayanan, V. S., D. Slaughter and C. L. Hew, Antifreeze proteins from the ocean pout, Macrozoarces americanus:circular dichroism spectral studies on the native and denatured states[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1986.870(1):p.154-159.
    [17]Duman, J. G., V. Bennett, T. Sformo, et al., Antifreeze proteins in Alaskan insects and spiders[J]. J Insect Physiol,2004.50(4):p.259-266.
    [18]Feeney, R. E., Y. Yeh, J. T. E. C.B. Anfinsen, et al., Antifreeze Proteins from Fish Bloods, in Advances in Protein Chemistry.1978, Academic Press. p.191-282.
    [19]DeVries, A. L., Antifreeze glycopeptides and peptides:interactions with ice and water[J]. Methods Enzymol,1986.127:p.293-303.
    [20]Griffith, M., P. Ala, D. S. Yang, et al., Antifreeze Protein Produced Endogenously in Winter Rye Leaves[J]. Plant Physiol,1992.100(2):p. 593-596.
    [21]Devires, A. L., Antifreeze glycopeptides and peptides:interaction with ice and water[J]. Methods Enzymol,1986.127(293-303).
    [22]Hon, W. C., M. Griffith, A. Mlynarz, et al., Antifreeze proteins in winter rye are similar to pathogenesis-related proteins[J]. Plant Physiol,1995. 109(3):p.879-889.
    [23]Sicheri, F. and D. S. Yang, Structure determination of a lone alpha-helical antifreeze protein from winter flounder[J]. Acta Crystallogr D Biol Crystallogr,1996.52(Pt 3):p.486-498.
    [24]Wierzbicki, A., M. S. Taylor, C. A. Knight, et al., Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-10) faces of ice[J]. Biophys J,1996.71(1):p.8-18.
    [25]Jia, Z. and P. L. Davies, Antifreeze proteins:an unusual receptor-ligand interaction[J]. Trends Biochem Sci,2002.27(2):p.101-106.
    [26]Griffith, M., C. Lumb, S. B. Wiseman, et al., Antifreeze proteins modify the freezing process in plant[J]. Plant Physiol,2005.138(1):p.330-340.
    [27]G, D. J., Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade (Solnum dulcamara)[J]. Biochim Biophys Acta,1994.1206(1):p.129-135.
    [28]Hon, W. C., M. Griffith, P. Chong, et al., Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves[J]. Plant Physiol,1994.104(3):p.971-980.
    [29]Yu, X. M. and M. Griffith, Antifreeze proteins in winter rye leaves form oligomeric complexes[J]. Plant Physiol,1999.119(4):p.1361-1370.
    [30]魏令波,江勇and费云标,沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报,1999.41(8):p.837-841.
    [31]Worral, D. and L. Elias, A carrot Leucine - rich - repeat protein that inhibits ice recrystallization[J]. Science,1998.202(115-117).
    [32]Michael, W., W. Robert and B. Ron, Purification, immunolocation cryoprotective, and antifreeze activity of PCA60:A de2 hydrin from peach (Prunus persica)[J]. Physiologia Plantarum,1999.105(600-608).
    [33]Chris Sidebottom, S. B., Paul Pudney, Sarah Twigg, Carl Jarman,Chris Holt, Julia Telford,Andrew McArthur, Dawn Worrall*,Rod Hubbard*, Peter Lillford, Heat-stable antifreeze protein from grass[J]. nature,2000. 406.
    [34]Feeney, R., Antifreeze proteins and their mode of action at the ice surface[J]. Cryobiology,1987.24(6):p.547-547.
    [35]Nelly, M. T., L. P. Brian and V. K. Viswanathan, Dynamics of antifreeze glycoptoteins in the presence of ice[J]. Biophys,2002.82(1):p.464-473.
    [36]Cheng, C. H., Evolution of the diverse antifreeze proteins[J]. Curr Opin Genet Dev,1998.8(6):p.715-720.
    [37]Kumble, K. D., J. Demmer, S. Fish, et al., Characterization of a family of ice-active proteins from the Ryegrass, Lolium perenne[J]. Cryobiology, 2008.57(3):p.263-268.
    [38]Sandve, S. R., H. Rudi, T. Asp, et al., Tracking the evolution of a cold stress associated gene family in cold tolerant grasses[J]. BMC Evolutionary Biology,2008.8(245).
    [39]Tomczak, M. M., D. K. Hincha, S. D. Estrada, et al., Antifreeze proteins differentially affect model membranes during freezing[J]. Biochim Biophys Acta,2001.1511(2):p.255-263.
    [40]Deluca, C. I., R. Comley and P. L. Davies, Antifreeze proteins bind independently to ice[J]. Biophys J,1998.74(3):p.1502-1508.
    [41]Deluca, C. I., P. L. Davies, Q. Ye, et al., The effects of steric mutations on the structure of type Ⅲ antifreeze protein and its interaction with ice[J]. J Mol Biol,1998.275(3):p.515-525.
    [42]Du, N., L. X. Y and C. L. Hew, Ice nucleation inhibition:Mechanism of antifreeze by antifreeze protein[J]. The Journal of biological chemistry, 2003.278:p.5.
    [43]Wierzbicki, A., P. Dalal, T. E. Cheatham,3rd, et al., Antifreeze proteins at the ice/water interface:three calculated discriminating properties for orientation of type Ⅰ proteins[J]. Biophys J,2007.93(5):p.1442-1451.
    [44]Davies, P. L. and B. D. Sykes, Antifreeze proteins[J]. Current Opinion in Structural Biology,1997.7(6):p.828-834.
    [45]Devries, A. L., Antifreeze peptides and glycopeptides in cold-water fishes[J]. Annu Rev Physiol,1983.45:p.245-260.
    [46]鲍丽丽,华泽钊,任禾盛,抗冻蛋白及其对冰晶生长的影响[J].上海理工大学学报,1995(02).
    [47]王金发,张., “表面互补”模型——抗冻蛋白通用的分子机理[J].中山大学学报(自然科学版),2004.43(6):p.17-22.
    [48]张党权,谭晓风,乌云塔娜,et al.,植物抗冻蛋白及其高级结构研究进展[J].中南林学院学报,2005.25(4).
    [49]Kuiper, M. J.; P. L. Davies and V. K. Walker, A theoretical model of a plant antifreeze protein from Lolium perenne[J]. Biophys,2001.81(6):p. 3560-3565.
    [50]Mathias, S. F., F. Franks and K. Trafford, Nucleation and growth of ice in deeply undercooled erythrocytes[J]. Cryobiology,1984.21(2):p. 123-132.
    [51]Vali, G., ICE NUCLEATION - A REVIEW, Pergamon, Editor.1996, Pergamon.
    [52]Abe, K., S. Watabe, Y. Emori, et al., An ice nucleation active gene of Erwinia ananas:Sequence similarity to those of Pseudomonas species and regions required for ice nucleation activity[J]. FEBS Letters,1989. 258(2):p.297-300.
    [53]Zachariassen, K. E. and E. Kristiansen, Ice nucleation and antinucleation in nature[J]. Cryobiology,2000.41(4):p.257-279.
    [54]Hirano, S. S. and C. D. Upper, Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae a Pathogen, Ice Nucleus, and Epiphyte[J]. Microbiology and Molecular Biology Reviews,2000.64(3): p.624-653.
    [55]Schmid, D., D. Pridmore, G. Capitani, et al., Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae[J]. FEBS Lett,1997.414(3):p.590-594.
    [56]K Watanabe and M. Sato, Detection of Variation of the R-Domain Structure of Ice Nucleation Genes in Erwinia herbicola - Group Bacteria by PCR - RFLP Analysis[J]. Current Microbiology,1998.37:p.201-209.
    [57]Kawahara, H., The structures and functions of ice crystal-controlling proteins from bacteria[J]. J Biosci Bioeng,2002.94(6):p.492-496.
    [58]陈庆森,张晓铃,阎亚丽,Erwinia herbicola冰核活性蛋白的分离,电泳分析鉴定[J].生物技术,2002.12(1):p.8-10.
    [59]van Zee, K., D. A. Baertlein, S. E. Lindow, et al., Cold requirement for maximal activity of the bacterial ice nucleation protein INAZ in transgenic plants[J]. Plant Mol Biol,1996.30(1):p.207-211.
    [60]陈庆森,王昌禄,阎亚丽,魏国祥,冰核蛋白的结构及生冰核机理的研究进展[J].食品科学,2007.28(4):p.363-367.
    [61]Anastassopoulos, E., Agar plate freezing assay for the in situ selection of transformed ice nucleating bacteria[J]. Cryobiology,2006.53(2):p. 276-278.
    [62]Kim, E. J. and S.K. Yoo, Cell surface display of hepatitis B virus surface antigen by using Pseudomonas syringae ice nucleation protein[J]. Lett Appl Microbiol,1999.29(5).
    [63]Samuelson, P., E. Gunneriusson, P.-A. Nygren, et al., Display of proteins on bacteria[J]. Journal of Biotechnology,2002.96(2):p.129-154.
    [64]Amornwittawat, N., S. Wang, J. G. Duman, et al., Polycarboxylates enhance beetle antifreeze protein activity[J]. Biochim Biophys Acta, 2008.1784(12):p.1942-1948.
    [65]Amornwittawat, N., S. Wang, J. Banatlao, et al., Effects of polyhydroxy compounds on beetle antifreeze protein activity[J]. Biochim Biophys Acta,2009.1794(2):p.341-346.
    [66]Ala, P., P. Chong, V. S. Ananthanarayanan, et al., Synthesis and characterization of a fragment of an ice nucleation protein[J]. Biochem Cell Biol,1993.71(5-6):p.236-240.
    [67]Knight, C. A., C. C. Cheng and A. L. DeVries, Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes[J]. Biophys J,1991.59(2):p.409-418.
    [68]匡廷云,卢.王.简.,植物抗冻蛋白研究进展[J].生物化学与生物物理进展,1998.25(3):p.210-216.
    [69]Duman and J. Duman, The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate[J]. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology,2002.172(2):p.163-168.
    [70]Kobashigawa, Y., Y. Nishimiya, K. Miura, et al., A part of ice nucleation protein exhibits the ice-binding ability[J]. FEBS Lett,2005.579(6):p. 1493-1497.
    [71]Amir, G., L. Horowitz, B. Rubinsky, et al., Subzero nonfreezing cryopresevation of rat hearts using antifreeze protein I and antifreeze protein Ⅲ[J]. Cryobiology,2004.48(3):p.273-282.
    [72]Amir, G., B. Rubinsky, L. Horowitz, et al., Prolonged 24-hour subzero preservation of heterotopically transplanted rat hearts using antifreeze proteins derived from arctic fish[J]. Ann Thorac Surg,2004.77(5):p. 1648-1655.
    [73]Amir, G., B. Rubinsky, S. Y. Basheer, et al., Improved viability and reduced apoptosis in sub-zero 21-hour preservation of transplanted rat hearts using anti-freeze proteins[J]. J Heart Lung Transplant,2005. 24(11):p.1915-1929.
    [74]Pentelute, B. L., Z. P. Gates, V. Tereshko, et al., X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers[J]. J Am Chem Soc,2008.130(30):p.9695-9701.
    [75]Pentelute, B. L., Z. P. Gates, J. L. Dashnau, et al., Mirror image forms of snow flea antifreeze protein prepared by total chemical synthesis have identical antifreeze activities[J]. J Am Chem Soc,2008.130(30):p. 9702-9707.
    [76]Mignon, E. H. and C.gaspar, the use of low temperatures and ice-nucleating bacteria against stored-product insect pests[J].1995.
    [77]Amir, G., B. Rubinsky, A. K. Smolinsky, et al., Successful use of ocean pout thermal hysteresis protein (antifreeze protein Ⅲ) in cryopreservation of transplanted mammalian heart at subzero temperature[J]. The Journal of Heart and Lung Transplantation,2002. 21(1):p.137-137.
    [78]Martinez Paramo, S., S. Perez Cerezales, V. Robles, et al., Incorporation of antifreeze proteins into zebrafish embryos by a non-invasive method[J]. Cryobiology,2008.56(3):p.216-222.
    [79]Martinez Paramo, S., V. Barbosa, S. Perez-Cerezales, et al., Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos[J]. Cryobiology,2009.58(2):p.128-133.
    [80]Iconomidou, V. A. and S. J. Hamodrakas, Natural protective amyloids[J]. Curr Protein Pept Sci,2008.9(3):p.291-309.
    [81]R.E.lee, J. a., using ice-nucleating bacteria to reduce winter survival of colorado potato beetles:development of a novel strategy for biological control [J].
    [82]Clark, M. S. and M. R. Worland, How insects survive the cold:molecular mechanisms-a review[J].J Comp Physiol [B],2008.178(8):p.917-933.
    [83]李毅平and龚和,昆虫低温生物学:Ⅱ.冰核物质(冰核蛋白)和昆虫的耐冻性[J].昆虫知识,2000.37(4):p.250-254.
    [84]Pihakaski Maunsbach, K., L. Tamminen and M. Pietiainen, Antifreeze proteins are secreted by winter rye cells in suspension culture[J]. Physiol Plant,2003.118:p.393-398.
    [85]Yeh, Y. and R. E. Feeney, Antifreeze Proteins:Structures and Mechanisms of Function[J]. Chem Rev,1996.96(2):p.601-618.
    [86]Afendra, A. S., E. E. Yiannaki, M. A. Palaiomylitou, et al., Co-production of ice nuclei and xanthan gum by transformed Xanthomonas campestris grown in sugar beet molasses[J]. Biotechnology Letters,2002.24(7):p. 579-583.
    [87]吴元明and陈苏尼,RNA干涉的最新研究进展[J].中国生物化学与分子生物学报,2003.19(4):p.411-417.
    [88]张翊,裴德宁,RNA干扰研究进展[J].中国肿瘤生物治疗杂志,2003.10(1):p.68-70.
    [89]Fulci, V. and G. Macino, Quelling:post-transcriptional gene silencing guided by small RNAs in Neurospora crassa[J]. Current opinion in microbiology,2007.10(2):p.199-203.
    [90]Guo, S. and K. J. Kemphues, Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo[J]. Current Opinion in Genetics & Development,1996.6(4):p.408-415.
    [91]Tabara, H., M. Sarkissian, W. G. Kelly, et al., The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans[J]. Cell.1999. 99(2):p.123-132.
    [92]Suggate, E. L., Z. Ahmed, M. L. Read, et al., Optimisation of siRNA-mediated RhoA silencing in neuronal cultures[J]. Molecular and Cellular Neuroscience,2009.40(4):p.451-462.
    [93]Geley, S. and C. Muller, RNAi:ancient mechanism with a promising future[J]. Experimental Gerontology,2004.39(7):p.985-998.
    [94]Wesley, S. V., C. A. Helliwell, N. A. Smith, et al., Construct design for efficient, effective and high-throughput gene silencing in plants[J]. The Plant Journal,2001.27(6):p.581-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700