渤海海冰数值模拟及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在渤海油气开发中,海冰是影响冰区结构设计、钻采施工、生产作业
    的重要海洋环境条件。对渤海海冰进行数值模拟和预测,并与油气开发工
    程紧密结合是合理确定海冰设计参数,减少冰害损失的有效途径。
     本文结合国家自然科学基金委和中海石油渤海公司联合资助的“九
    五”重点基金项目中的“渤海海冰数值模拟及其工程应用”子课题,根据
    辽东湾海冰现场观测资料,对渤海海冰数学模型中的计算参数进行了确
    定,分析了渤海海冰的热力和动力要素特点,并在海冰数值模拟和预测的
    基础上对辽东湾JZ20-2海域MUQ锥体平台的冰激结构振动进行了分析。
     渤海海冰数值模拟和预测主要是借鉴极区及其冰缘区的大、中尺度数
    学模型。为此,本文通过对极区海冰数值模拟及其相关研究的系统总结,
    并考虑渤海海冰的特点,详细分析了两种不同的海冰数值计算方法,即欧
    拉坐标下的差分法和拉格朗日坐标下的光滑质点法。
     为使渤海海冰的数学模型能够适应渤海冰情特点,并对其中的重要计算
    参数进行确定,作者在辽东湾JZ20-2海域进行了连续7个冬季的海冰现场观
    测,完成了多次破冰船海冰和沿岸冰的调查工作,获得了大量的海冰观测资
    料。在此基础上,本文分析了冰面太阳辐射的计算方法及其在整个冰期内的
    变化特征,讨论了太阳辐射对冰面其它热力因素和海冰生消的影响;利用剩
    余法计算了海洋热通量在整个冰期内的变化趋势,讨论了气象和水文条件、
    海冰厚度等因素对海洋热通量的影响;归纳了计算海冰拖曳系数的涡动法、
    剖面法和动量法,并利用动量法对低密集度平整海冰的拖曳系数进行了初步
    计算。
     在海冰生消的热力要素分析中,本文对冰面太阳辐射、长波辐射、感热、
    潜热、冰内传导热和冰下海洋热通量等热力要素的变化规律进行了研究。针
    对渤海海冰热力要素变化特点,并根据海冰生消机理和海冰数值模拟结果,
    提出了渤海海冰特征厚度的概念,并计算了不同气温、风速、相对湿度和海
    洋热通量等条件下的特征冰厚。在海冰漂移的动力要素分析中,本文对海冰
    的风和流拖曳力、海冰内力、科氏力和海面倾斜力等动力要素进行了讨论和
    对比。针对渤海海冰动力特点,并参考实测冰脊资料,分析了压力冰脊的几
    
    
     AbstraCt
    何特征,建立了冰脊帆高的力学模型,并给出了渤海不同冰区在不同重现期
    的冰脊设计参数。
     对于辽东湾全场海冰分布,采用欧拉坐标系下的有限差分法进行了数值
    模拟,而对于区域性漂移海冰的数值模拟采用的则是拉格朗日坐标系下的光
    滑质点法:在对辽东湾区域性漂移海冰和全场海冰数值模拟中,充分考虑了
    渤海潮汐的影响,并对模拟的冰厚、密集度、冰速和冰内应力状态等海冰参
    量进行了动态数字图象处理。
     冰激结构振动给渤海冰期油气结构和生产作业系统的安全运行带来很
    大威胁。为此,本文将海冰数值预测、海冰物理力学参数推算和冰激结构振
    动分析相结合,开发了渤海海冰数值模拟及其工程应用程序系统。它可为渤
    海冰期油气开发中的安全生产作业提供冰激结构振动信息,是海冰管理的重
    要组成部分。
In the oibas exploitation of Bohai Sea, sea ice is an important marine
     environmental condition, which affects the offshore structure design, field
     construction and production safety. Considering the engineering requirements in
     oillgas development, the sea ice numerical simulation and forecasting should be
     applied to design anti-ice structures and to reduce ice-induced economic losses.
     As a project co-financed by the National Science Foundation of China and
     the China National Offshore Oil Bohai Corporation, the study on 揝ea Ice
     Numerical Simulation and Its Engineering Application in the Bohai Sea?was
     conducted. According to the field observations of ice conditions and ice-induced
     structure vibrations in the past winters at the JZ2O-2 area of Liaodong Bay, some
     computational parameters in the sea ice numerical model were determined, and the
     ice-induced structure vibrations of the MUQ platform were analyzed on the base
     of sea ice numerical simulation and the research of ice-structure interactions.
     Based on the analysis of the numerical simulation of Polar and its correlative
     research, two different computational methods were introduced in details while
     considering the ice features of the Bohai Sea,, which were Eularian Finite
     Different Method and Lagrangian Smoothed Particle Hydrodynamics respectively.
     In order to determine the computational parameters in the sea ice numerical
     model considering the ice characteristics of Bohai Sea, the author devoted to the
     field ice survey in the past 7 winters, and a great lot valuable data was obtained.
     Based on the measured data, the solar radiation at the ice surface in the whole ice
     period was analyzed, and its influences on the other thermodynamic factors of ice
     cover were discussed. The oceanic heat flux in the different ice season of the
     JZ2O-2 area was calculated with the residual method, and the effects of
     meteorological and hydrological conditions, ice thickness and sea ice type were
     discussed. Three calculative methods to determine sea ice drag coefficients, i.e.
     eddy correlation method, profile method and momentum method, were discussed,
     and their application conditions were analyzed respectively. The drag coefficients
     of level ice under low compactness were obtained with momentum method.
     According to the environmental conditions of shallow water, low salinity and
     intensive tide in the Bohai Sea, the sea ice thermodynamic and dynamic factors
     are different with other sea areas. The calculative methods for solar radiation, long
    
    
     wave radiation, sensible heat flux, latent heat flux at ice surface, conductive heat
     flux in ice cover and the oceanic heat flux under ice cover were discussed. Based
     on the mechanism of ice growth and the numerical test, the concept of diagnostic
     thickness was established, and the existing conditions of diagnostic thickness were
     analyzed. Under different air temperature, wind velocity, relative humidity and
     oceanic heat flux, the diagnostic thickness was calculated. In the analysis of sea
     ice dynamics, the drag forces, internal ice force, Coriolis?force and ocean tilt
     effect were calculated and contrasted. Based on the field observations, the physical
     and geometrical characteristics of ice ridges were discussed. Considering the
     flexural failure and buckling failure in ice ridging process, a mechanical model
     was established to calculate the height of ridge sail. Ice ridge design parameters
     were determined in different area of Bohai Sea.
     In the sea ice numerical simulation of Liaodong Bay, the Eularian Finite
     Difference Method was adopted. According
引文
1.国家海洋局.中国海洋21世纪议程.北京:海洋出版社.1996.
    2.丁德文.工程海冰学概论.海洋出版社.1999.
    3.包澄澜.海洋灾害及预报.北京:海洋出版社.1991.
    4.刘钦政.用于气候研究的海冰模式.青岛海洋大学博士论文.1998.
    5.赵其庚.海洋环流及海气耦合系统的数值模拟.北京:气象出版社.1999.35-38.
    6. Christensean F T, Lu QianMing. Numerical sea ice modeling for industrial application. In: Sea Ice Observation and Modeling—Proceeding of 93's International Symposium on Sea ice. Beijing. China Ocean Press. 1994, 165-182.
    7.曾恒一.影响我国海洋油气开发的海洋灾害.海洋预报,1988,15(3),21-25.
    8.吴辉碇,白珊.冰情、灾害、监测、预报、减灾.海洋预报,1998,15(3),100-103.
    9.李桐魁.海冰管理方法在辽东湾冬季生产中的应用.中国海上油气(工程),1989,1(3),39-45.
    10.李桐魁.辽东湾油气田海冰管理方法探讨.中国海上油气(工程),1991,3(4),36-42.
    11. Xu Jizu. Views on Bohai Sea ice engineering. Proceedings of Beijing 93's International Symposium of Sea Ice, Beijing. China Ocean Press. 1994, 201-206
    12. Xu Jizu and Li Tongkui. A critical sea ice state warning system for winter offshore oil production in North Bohai Sea. In: Ice in Surface Water. 1998, 273-276.
    13.杨国金.中国近海工程环境参数区划.海洋预报,1998,15(3),132-139.
    14.杨国金等,渤海海冰烈度区划.海洋石油,1988,(1):54-61.
    15.岳前进,季顺迎.渤海局地海冰数值模式及其工程应用.第四届全国冰工程会议,1999,威海.
    16.张方俭.海冰作用力在渤海海洋工程设计中的意义.海洋工程.1987,5(2).58-65.
    17. Liu Liming. Sea ice engineering in the Bohai Sea. Proceedings of the 13th IAHR International Symposium on Ice. 1996, 3: 907-913
    18.段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论,石油矿场机械,1994,23(3),1-4.
    19.国家海洋局.黄渤海冰情资料汇编.内部资料.1979.
    20.杨国金.渤海抗冰结构设计中的若干问题.中国海上油气(工程),1994,6(3):5-10.
    21.大连理工大学.JZ20-2平台冰激振动测量与分析、海冰监测与预报.2000.
    22.杨国金.海洋工程灾害与环境荷载.中国海洋平台,1995,10(5):202-203.
    23.李玉成,李林普,陈兵.中国海洋平台,1996,11(1):36-38.
    24.刘德辅,李桐魁等.渤海辽东湾海冰条件的概率分析.海洋石油,1987,(2):66-73.
    25.刘德辅,施建刚,王铮.海洋环境条件联合设计标准.海洋学报,1994,16(2):116-123.
    
    
    26.刘德辅,杨永春等.海冰荷载设计标准的不确定性及联合概率分析海洋学报,1996,18(5):110-116.
    27.李桐魁,徐继祖.渤海海冰设计标准中概率模型和力学模型的选择.中国海上油气(工程),1989,1(2):17-23.
    28.王永刚,康苏海.辽东湾平整冰抗压强度的概率分布及其蒙特卡罗模拟.中国海上油气(工程),1995,7(3):40-45.
    29.石油大学.罗丽芬等.海冰载荷计算中的概率分析.1998.
    30.中国海洋石油总公司.渤海海冰设计作业条件规定.1998.
    31.段忠东.海洋环境随机荷载及其组合.国家自然科学基金重大项目专题年度研究报告.1999.
    32.李桐魁.渤海油田海冰管理系统的应用.中国海上油气(工程),1996,8(4):36-45.
    33.李桐魁.对渤海油气田危险冰情的监测与预警研究.海洋预报,1998,15(3):104-109.
    34.岳前进,季顺迎等.渤海海冰数值模式中计算参数的确定.海洋预报,1999,16(3):97-103
    35. Maykut G A, Untreateiner N. Some results from a time-dependent thermodynamic model of se ice. Journal of Physical Research, 1971, 76: 1550-1575.
    36. Maykut G A. Energy exchange over young sea ice in the central Arctic. Journal of Physical Research, 1978, 83: 3646-3658.
    37. Hibler, W. D. A dynamic and thermodynamic sea ice model. Journal of Physical Oceanography, 1979, 9: 815-846.
    38. Hibler W D and Bryan K. A diagnostic ice-ocean model. Journal of Physical Oceanography, 1987, 17: 987-1015.
    39. Hibler W D. Ice dynamics. USACRREL, Monograph, 1984, 84-3.
    40. Hibler W D. Numerical modeling of sea Ice dynamics and ice thickness characteristics. 1985.
    41. Lu QianMing, Christensen F T. Summer sea ice simulation in the East Greenland area. IAHR Ice Symposium, Espoo. 1990.
    42. Lu QianMing, Larsen J and Tryde P. On the role of ice interaction due to floe collisions in Marginal Ice Zone Dynamics. Journal of Geophysical Research, 1989, 94(C10): 14525-14537.
    43. Lu QianMing. On mesoscale modeling of the dynamics and thermodynamics of sea ice, Technical University of Denmark, 1987.
    44. Parkinson C L and Washington W M. A large-scale numerical model of sea ice. Joumal of Geophysical Research, 1979, 84: 311-337.
    45. Zhang Jinlun and Hibler W D. On an efficient numerical method for modeling sea ice dynamics. Journal of Geophysical Research, 1997, 102(c4): 8691-8702.
    46. Zhang Jinlun and Rothrock D. Modeling Arctic Sea ice with an efficient plastic solution.
    
     Journal of Geophysical Research, 2000, 105(c2) :3325-3338.
    47. Wang Zhilain Shen Hungtao and Wu Huiding. A Lagrangian sea ice model with discrete parcel method. Ice in Surface Wates, Shen(Edited), Balkema, Rotterdam, 1998, 313-320.
    48. Flato G M. A Particle-in-cell Sea-ice Model. Atmos. Ocean. 1993, 31(3) : 339-358.
    49. Huang Z J, Savage S B. Particle-in-cell and finite difference approaches for the study of marginal ice zone problems. Cold Regions Science and Technology, 1998, 28:1-28.
    50. Gutfraind R, Savage S B. Smoothed particle hydrodynamics for the simulation of broken-ice fields: Mohr-Coulomb-Type rheology and frictional boundary conditions. Journal of Computational Physics, 1997, 134:203-215.
    51. Pritchard R, Mueller A, Hanzlick D, Yang Y. Forecasting Bering sea ice edge behavior. Journal of Geophysical Research, 1990, 95:775.
    52. Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977, 82(12) :1013-1024.
    53. Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: Theory and application to non-sperical stars. Mon. Not. R. Astr. Soc., 181:375-389.
    54. Shen H T, Chen Y C and Wake A et al. Lagrangian discrete parcel simulation of river ice dynamics. International Journal of Offshore and Polar Engineering. 3(4) :328-332.
    55. Lepparanta M and Hibler W D. The role of plastic ice interaction in Marginal Ice Zone dynamics. Journal of Geophysical Research, 1985, 90(C6) :11,899-11,909.
    56. Coon M D and Pritchard R S. Application of an elastic-plastic model of Arctic pack ice. Symposium on Beaufort sea coastal and shelf research. Proceedings, Arctic Institute of North America, San Francisco. 173-193.
    57. Lepparanta M. An ice drift model for the Baltic Sea. Tellus,1981,33:583-596.
    58. Flato G M. et al. Modelling pack ice as a cavitation fluid. Journal of Physical Oceanography. 1993,22:626-650.
    59. 冯明晖。粘弹塑性统一本构理论.大连理工大学博士论文。 2000.
    60. Tucker W B and Perovich D K. Stress measurements in drifting pack ice. Cold Regions Science and Technology, 1992,20:119-139.
    61. Prinsenberg, S. J. and Fowler G A. Ice stress measurements from land-fast ice along Canada's Labrador Coast. Cold Regions Science and Technology, 1997,25:1-15.
    62. Hunke E C. The elastic-viscous-plastic sea ice dynamics model. IUTAM Scaling laws in ice mechanics and ice dynamics. 2000, Alsta Fairbanks.
    63. Zhang Zhanhai. On modeling ice dynamics of semi-enclosed seasonally ice-covered seas. Report Series in Geophysics. Helsinki, 2000.
    64. Shen H H, Hibler W D and Lepparanta M. The role of floe collisions in sea ice rheology. Journal of Geophysical Research, 1987,94(C10) :14525-14537.
    65. Mcphee M G, Maykut G A and Morison J H. Dynamics and thermodynamics of the
    
     ice/upper ocean system in the marginal ice zone of the Greenland Sea. Journal of Geophysical Research. 1987, 92(C7) :7017-7031
    66. Mcphee M G Inferring Ice/Ocean Surface Roughness from Horizontal Current Measurements. Journal of Offshore Mechanics and Arctic Engineering. 1989, 111:155-159.
    67. Morison J H, Mcphee M G and Maykut G A. Boundary layer, upper ocean and ice observations in the Greenland Sea Marginal Ice Zone. Journal Geophysical Research, 1987, 92(C7) : 6987-7011
    68. Myrhaug D. Prediction of the Current Structure Under Dring Pack Ice, Journal of Offshore Mechanics and Arctic Engineering, 1988, 110:395-402.
    69. Steele M, Morison J H and Untersteiner N. The Partition of air-ice-ocean momentum exchange as a function of ice concentration, floe size, and draft. Journal of Geophysical Research, 1989, 94(C9) : 2,739-12,750.
    70. Omstedt A and Wettlaufer J S. Ice growth and oceanic heat flux: Models and Measurements. Journal of Geophysical Research., 1992,97(C6) :9383-9390
    71. Shirasawa K, Ingram G R and Hudier E J J. Oceanic heat flux under thin sea ice in Saroma-ko Lagoon, Hokkaido, Japan. Journal of Marine System, 1997,11:9-19.
    72. Perovich, D K, Tucker Ⅲ, W B and Krishfield, R A. Oceanic heat flux in the Fram Strait measured by a drifting buoy. Geophys. Res. Lett., 16, 995-998
    73. Liu Qinzhen, Bai Shan and Wu Huiding. Stability of thermodynamic sea ice model on the thermodynamic forcing. In: Ice in Surface Waters, Proceeding of the 14th inernational symposium on ice, New York, USA.1998,297-303.
    74. 季顺迎,岳前进。辽东湾海冰海洋热通量的确定与分析。海洋通报,2000,19(2) :8-14.
    75. Moore R M et al. A relationship between heat transfer to sea ice and temperature-salinity properties of Arctic ocean waters. Journal of Geophysical Research, 1988, 93(C1) :565-571.
    76. Harvey L D D. Testing alternative parameterizations of lateral melting and upward basal heat flux in a thermodynamic sea ice model. Journal of Geophysical Research, 1990, 95(C5) :7359-7365
    77. Josberger E G Bottom ablation and heat transfer coefficients from the 1983 Marginal Ice Zone Experiment. J. Geophys. Res., 1987, 92(C7) , 7012-7016
    78. Lytle V I and Ackley S F. Heat flux through sea ice in the western Weddell Sea: Convective and conductive transfer processes. Journal of Geophysical Research, 1996, 101(C4) :8853-8868
    79. Matousek V and Havlik A. Heat transfer between water and ice cover. Proceedings of the 10th International Symposium on Ice (IAHR). Sapporo, Japan, 1988, 367-377.
    80. Omestedt A and Svensson U. On the melt rate of drifting ice heated from below. Cold
    
     Regions Science and Technology, 1992, 21:91-100.
    81. Tang C L. A two-dimensional thermodynamic model for sea ice advance and retreat in the Newfoundland Marginal Ice Zone. Journal Geophysical Research, 1991, 96(C3) : 4723-4737
    82. Wettlaufer J S. Heat flux at the ice-ocean interface. Journal Geophysical Research, 1991, 96(C4) :7215-7236.
    83. Shirasawa K and Ingram G R. Currents and turbulent fluxes under the first-year sea ice in Resolute Passage, Northwest Territories, Canada. Journal of Marine System, 1997, 11: 21-32.
    84. Myrhang D. Note on water drag on sea ice for different surface roughness. Journal of Offshore Mechanics and Arctic Engineering. 1991, 113:67-69.
    85. Guest P S and Davidson K L. The effect of observed ice conditions on the drag coefficient in the summer East Greenland Sea Marginal Ice Zone. Journal of Geophysical Research, 1991, 92(C7) :6943-6954.
    86. Guest P S and Davidson K L. The aerodynamic roughness of different types of sea ice. Journal of Geophysical Research, 1991, 96(C3) :4709-4721.
    87. Pease C H, Salo S A and Overland J E. Drag measurements for first year sea ice over a shallow sea. Journal of Geophysical Research, 1983, 88(C5) :2853-2862.
    88. Wamser C and Martinson D G. Drag coefficients for winter Antarctic pack ice, Journal of Geophysical Research, 1993, 98(C7) :12,432-12,437.
    89. Madsen M S B. A methodology for the determination of drag coefficients for ice floes. Journal of Offshore Mechanics and Arctic Engineering, 1987, 109:381-387.
    90. Martinson D G. Ice drift and momentum exchange in winter Antarctic pack ice. Journal of Geophysical Research, 1990, 95(C5) :1741-1755.
    91. Andreas E L. Roughness of Weddell Sea ice and estimate of the air-ice drag coefficient. Journal of Geophysical Research, 1993, 98(C7) : 12,419-12,452.
    92. Bernard A W and Overland J E. Air-ice drag coefficients for first-year sea ice derived from Aircraft measurements. Journal Of Geophysical Research, 1984,89(C3) :3550-3560.
    93. Overland J E. Atmospheric boundary layer structure and drag coefficients over sea ice. Journal of Geophysical Research, 1985, 90(c5) :9029-9049
    94. Weitz M and Keller J B. Reflection of water waves from floating ice in water of finite depth. Communications of Pure Applied Mathematics. 1950,3(3) :305-318.
    95. Squire V A. Ocean wave propagation in an ice field with varying concentration. Proceedings of the 3th IOPEC, 1993, Singapore, 6-11.
    96. 李春花,王永学等。1999。海浪与海冰相互作用。14(2) , 10-14.
    97. Crocker G B and Wadhams P. Breakup of Antarctic fast ice. Cold Regions Science and Technology, 1989, 17: 61-76.
    
    
    98. Kjeldsen P and Olsen B. Some results from the Labrador ice margin experiment. Proceedings of the Second International Offshore and Polar Engineering Conference, 1992, San Francisco, USA, 14-19.
    99. Liu A K, Hakkinen S and Peng C Y. Wave effects on ocean-ice interaction in the Marginal Ice Zone, Journal of Geophysical Research, 1993, 98(C6): 10,025-10,036.
    100. Lepparant M and Hakala R. The structure and strength of first-year ice ridges in the Baltic Sea. Cold Regions Science and Technology, 1992, 20: 295-311.
    101. Kovacs A and Sodhi D S. Sea ice piling at fairway rock, Bering Strait, Alaska: observations and theoretical analyses, Proceedings of Intemational Conference of POAC, 1981, 2: 985-1000.
    102. Kovacs A and Sodhi D S. Shore ice pile-up and ride-up field observation, models, theoretical analyses. Journal of Cold Regions Science and Technology, 1980, 2: 209-288.
    103. Lepparanta M, Lensu M, Kosloff P, and Veitch B. The life story of a first-year sea ice ridge. Cold Regions Science and Technology, 1995, 23: 279-290.
    104. Palosuo E. The structure of an ice ridge in the Baltic. Proceedings of IAHR Symposium on Ice, Reykjavik. 1970, Delft, 3: 10-14.
    105. Timco G W and Burden R P. An analysis of the shapes of sea ice ridges. Cold Regions Science and Technology, 1977, 25: 65-77.
    106. Tucker W B and Govoni J W. Morphological investigations of first-year sea ice pressure ridge sails. Cold Regions Science and Technology, 1981, 5: 1-12.
    107. Wright B D, Hnatiuk J and Kovas A. Sea ice pressure ridges in the Beaufort Sea. Proceedings of IAHR Symposium on Ice, 1978, Lulea, Sweden. 249-271.
    108. Parmerter R.R. and M. D. Coon. Mechanical models of ridging in the Arctic sea ice cover. AIDJEX Bull, 1973, 19: 59-112.
    109. Cox. Assessment of ice ride up/pile up on slopes and beaches. Proceedings of IAHR Symposium on Ice Problems. 1983, 971-981.
    110. Hopkins M A and Hibler W D. On the Numerical Simulation of the Sea Ice Ridging Process. Journal of Geophysical Research, 1991, 96(C3): 4809-4820.
    111. Hopkins M A. Four stages of pressure ridging. Journal Of Geophysical Research, 1998, 103(C10): 883-891.
    112. Hopkins M A, Tuhkuri J, Lensu M. Rafting and riding of thin ice sheets. Journal of Geophysical Research, 1999, 104(C6): 13605-13613.
    113.渤海工程设计公司.辽东湾北岸海冰物理力学性质测试与分析.1991.
    114.渤海石油公司,大连理工大学.渤海辽东湾海冰力学性能实验阶段报告.1990.
    115.大连理工大学,渤海工程设计公司,辽东湾海冰物理力学性质测试研究报告.1991.
    116.国家海洋环境保护研究所,辽河油田滩海勘探开发公司.盖州辽东湾北部盖州滩海区工程海冰环境原位监测与研究.1995.
    
    
    117.国家海洋局第一海洋研究所,渤海石油工程设计公司.辽东湾北部潮间海冰调查及分析.1991.
    118.国家海洋环境监测中心等.辽东湾北部盖州滩海区海冰冰情预报.1993.
    119.渤海石油检测公司.JZ9-3油田DRPW沉箱海冰调查总结报告.1996.
    120.杨国金,刘春厚,张涛.渤海海冰工程图集,海洋出版社.1991.
    121.黄润恒等.渤海海冰卫星遥感监测业务系统.海洋预报,1991,8(3),57-63
    122.苏洁,费立淑等.海冰卫星遥感资料的分析与应用技术研究.海洋通报,1997,16(1):56-64.
    123.国家海洋局海洋技术研究所.辽东湾航空遥感冰情调查分析报告.1986.
    124.杜碧兰等.渤海航空遥感冰情图集,海洋出版社.1990.
    125.国家海洋局第一海洋研究所.辽东湾JZ20-2油田海域冬季水文气象分析观测报告.1994.
    126.大连理工大学工程力学系.雷达测冰技术开发与应用.1995.
    127.岳前进,季顺迎.辽东湾冰季太阳辐射分析.海洋与湖沼,2000,31(5):562-567.
    128.岳前进,毕祥军等.航海雷达识别与跟踪海冰试验.大连理工大学学报,2000(4).
    129.李桐魁等.渤海中日合作区海冰设计条件研究.海洋石油,1985,33:72-80.
    130.杨国金.渤海冰工程中的若干问题.第三届全国冰工程学术会议论文集,1997,大连,6-35.
    131.李桐魁,徐继祖等.渤海结构物冰荷载计算荐用方法.海洋石油,1986,1:68-77.
    132.李桐魁,刘春厚.渤海辽东湾海冰设计标准研究.海洋石油,1988,3:68-79.
    133.李志军,隋吉学等.辽东湾海冰设计要素的初步统计.海洋工程,1992, 10(2):72-78.
    134.张方俭.我国的海冰.海洋出版社.1986.
    135.张明元等.辽东湾海冰物理特性.中国海洋平台,1995,10(2):59-65.
    136.孟广琳等.渤海海冰单轴抗压强度的研究.冰川冻土,1987,9(4):329-338.
    137.孟广琳等.辽东湾北部三道沟平整冰单轴抗压强度特征.海洋通报,1991,10(3):21-28.
    138.李洪升,岳前进等.海冰韧脆转变特性的宏微观分析,冰川冻土,2000,22(1):48-52.
    139.隋吉学等.渤海海冰三点弯曲强度的试验研究.海洋环境科学,1989,8(1):91-95.
    140.隋吉学等.辽东湾三道沟附近海域海冰弯曲强度.中国海洋平台,1992,7(1):8-11.
    141.隋吉学等.环渤海海冰弯曲强度影响因素分析.海洋环境科学,1996,15(1):73-77.
    142.张明元等.海冰平面应变断裂韧度K_Ic.海洋湖沼,1989,20(4):338-342.
    143.张明元等.三道沟附近海域海冰剪切强度.中国海洋平台,1991,7(1):8-11.
    144.李志军等.海冰蠕变特性试验研究.冰川冻土,,1990,12(3):243-249.
    145.沈梧等.渤海冰尺寸效应的实验研究.大连工学院学报,1988,27(2):9-16.
    146.林树枝,沈梧.冰块尺寸效应的分析和实验研究.力学与实践,1988,10(1):34-37.
    147.王仁树.渤海海冰的数值试验.海洋学报,1984,6(4):572-580.
    148.吴辉碇.海冰的动力-热力过程的数学处理.海洋与湖沼,1991,20(2):321-327.
    
    
    149.白珊,吴辉碇.渤海的海冰数值预报.气象学报,1998,56(2):139-151.
    150.国家海洋环境预报中心.渤海海冰的生消、漂移规律及工程海冰预测研究.2000.
    151.王仁树,刘钦政等.渤海海冰漂移过程的数值模拟和试验.海洋与湖沼,1994,25(3):408-415.
    152.王志联,吴辉碇.海冰的热力过程及其动力过程的耦合模拟.海洋与湖沼,1994,25(4):408-415.
    153.吴辉碇,白珊,张占海.海冰动力学的数值模拟.海洋学报,1998,22(7),1-13.
    154.王可光,吴辉碇等.渤海冰期的基本水文气象参量研究.海洋通报,1999,18(2):17-27.
    155.程斌.一维海冰热力模型的守恒型差分格式和数值模拟.海洋通报,1996,15(4):-15.
    156.季顺迎,岳前进.渤海特征冰厚分析.海洋学报,2000,19(2):8-14.
    157.季顺迎,岳前进,张希.辽东湾海冰生消的热力要素分析.海洋环境科学,2000,19(4):56-72..
    158.程斌,刘春厚等.海冰数值研究在海洋石油开发和工程设计中的释用.中国海上油气(工程),1996,8(1):37-42.
    159.大连理工大学,中国海洋石油渤海公司.局地海冰数值模拟及其工程应用.1999.
    160.董须瑜,刘春厚等.关于辽东湾JZ20-2海区海冰设计条件的修改意见.中国海上油气(工程),1989,1(1):36-44.
    161.李玉珊.导管架静冰力计算实用方法,中国海上油气(工程),1995,7(6):4-8.
    162. Schwarz J. Advances in ice mechanics in West Germany. Applied Mechanics Reviews, 1987, 40(9): 1208-1213.
    163.史庆增.作用于直立圆柱上的横向冰力.海洋学报,1994,16(4):126-129.
    164.宋安,王翎羽,徐继祖.渤海导管架平台桩腿及其隔水导管群上的冰力.天津大学学报,1995,28(3):390-397
    165.大连理工大学.渤海海冰研究及其工程应用(重点基金中期研究报告).1999.
    166.岳前进.冰荷载—海冰与近海结构相互作用.国际学术动态,1999,5:97-103.
    167. Matlock H. Analytical model for ice structure interaction. Journal, of Engineering Mechanica, ASCE, 1971, (EM4), 1083-1092.
    168. Maattanen M. Ice-structure dynamic interaction in continuous crushing. CRREL Report, Hanover, NH, USA, 1981.
    169.徐继祖,王翎羽,冰力振子模型及其数值解.天津大学学报,1988,21(2):28-34.
    170. Kama T. Steady-state vibrations of offshore structures. First International Conference on Development of the Russian Arctic Offshores. 1993, St. Peterburg.
    171. Sodhi D S. A theoretical model for ice-structure interaction. Proceedings of 12th International IAHR Symposium on Ice 1994, 2: 807-815.
    172.杨国金.抗冰振的理想构件—寄生在潮差段的正倒锥组合体.中国海上油气(工程),1991,3(3):45-51.
    
    
    173.大连理工大学.基于原型结构测量的锥体冰荷载研究.1999.
    174. Yue Qianjin and Bi Xiangjun. Using of ice-breaking cones for mitigating ice induced vibrations. Proceedings of IUTAM, 2000, Alaska, Fair Bank.
    175.隋吉学.作用于斜坡结构物上海冰荷载的二维计算.海洋环境科学,1996,15(2):70-73.
    176.于永海,岳前进.冰对锥体结构的作用力预测模型分析.海洋学报,2000,22(3):74-85.
    177.王翎羽,陈星等.大尺度圆锥结构的冰堆积计算.天津大学学报,1994,27(2):205-208.
    178.岳前进等,冰与宽大锥体结构作用时的爬升分析与对策.第三届冰工程学术会议论文集,大连,1997,114-125
    179.李锋,岳前进.冰在斜面结构的纵横弯曲破坏分析.水利学报,2000,9:44-47.
    180.李大华等.海洋平台冰力反应谱数值算法的研究.海洋工程,1993,11(4):1-6
    181.史庆增.海冰的动力作用和冰力谱.海洋学报,1994,16(5):106-112.
    182.欧进萍,段忠东.渤海导管架平台桩柱冰压力随机过程模型及其参数确定.海洋学报,1998,20(3):110-118.
    183.段忠东,欧进萍.作用于平台桩腿的海冰屈曲破坏冰压力随机过程模型及其参数确定.海洋工程,1996,14(4):1-8.
    184.初良成,曲乃泗,邬瑞锋等.近海平台冰荷载的一个新的频域识别方法.海洋工程,1993,11(2):23-32.
    185.史庆增.冰力现场量测的间接法及其数据处理程序.洋工程,1990,8(2):35-42.
    186.智浩,岳前进,林家浩.海洋平台随机冰力谱的识别.洋工程,2000,18(2):13-17.
    187.孟广琳等.渤海平整冰抗压强度设计标准的划区分析.海洋环境科学,1994,13(2):75-80.
    188.杨国金.渤海海冰区划.第七界全国海洋工程学术会议论文集.1994.
    189.李志军,张涛.渤海平整冰厚度的分区统计.中国海上油气(工程),1996,8(1):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700