用户名: 密码: 验证码:
导管架海洋平台冰激振动控制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文工作是结合国家“十五·863”高技术研究发展计划-新型平台抗冰振技术项目(项目编号:2001AA602015)完成的。针对我国渤海冰区边际油田的现役抗冰导管架平台的冰激振动,通过比较不同的减振策略,选择合理、有效、可行的减振装置对现役平台进行减振控制,并试图通过对柔性抗冰平台的冰激振动减振研究,为大型复杂柔性结构在环境荷载作用下的振动减振研究提供一套新的思路和途径。本文研究内容主要包括以下几方面:
     第一章介绍了本文研究的背景、意义,对柔性结构在环境荷载作用下的振动及其减振策略进行概括,主要对柔性抗冰导管架平台的冰激振动及其相关研究现状进行阐述。
     第二章以渤海抗冰导管架平台作为研究对象。借助于抗冰平台现场监测对抗冰平台的结构特点、冰荷载特性以及平台的冰激振动响应特性进行分析,进一步明确了抗冰平台冰激振动危害以及对抗冰平台采取冰激振动减振措施的必要性。基于现场原型监测的冰荷载及冰激振动分析是开展抗冰平台减振的基础。
     第三章介绍了当前土木工程应用中较成熟的减振策略,如耗能减振、端部隔振以及动力吸振等减振策略在海洋平台冰激振动减振中应用的可行性。基于现场原型监测,认为采用调谐质量阻尼器(Tuned Mass Damper-TMD)对现役抗冰平台进行冰激振动减振是较优的选择。本章同时对TMD的参数优化、不同外激励作用下TMD减振效果进行了分析。
     第四章针对目前土木工程应用中TMD减振效果无法准确评估的问题,依据TMD的减振机理并基于TMD与结构相互作用位置产生对结构的作用力的实质提出的时域相位分析方法。该方法区别于以往在频域或采用附加阻尼的宏观效果评价方法,为从机理上研究TMD减振效果提供了参考。
     第五章主要研究TMD在抗冰平台冰激振动减振中应用的可行性。研制了可应用于实际抗冰平台减振的大比尺、单向、滑动式TMD装置,并对该装置的概念设计及详细设计进行介绍。同时针对该减振装置进行实验研究,建立了一套可对大型复杂结构进行减振、控振实验研究的半仿真实验系统(Semi-Simulation experimental testing system)。该实验系统由仿真部分和物理部分组成。仿真部分为实测响应数据(或通过计算机中建立的数学模型计算得到的结构响应)通过计算机控制的伺服作动器系统输出:物理部分为实物减振装置。该实验系统的建立为大型复杂结构的减振、控振实验研究提供了参考,该系统具有较大的实际工程意义。
     第六章介绍了一种用于测试TMD装置等效作用力的测量方法。TMD减振机理和要依靠装置运动过程中对结构产生的作用力,然而针对该作用力的测试和研究还不多。本章在研究TMD装置在海洋平台冰激振动减振效果时,提出了一种可以直接测量结构安装TMD装置时产生的作用力,并通过实验验证了该等效作用力测试的准确性。利用该测试系统检验了冰荷载作用下TMD对抗冰平台减振的减振效果,结果表明TMD能有效降低平台的动力响应。
     第七章提出了一种用于测量调谐液体阻尼器(Tuned Liquid Damper-TLD)等效阻尼力的测试方法。利用该方法可以实时测量TLD液体水箱晃动过程中对结构产生的作用力,从而解决了由于液体晃动剧烈时的强烈非线性而无法采用理论计算得到TLD对结构作用力计算的难题。为了从机理上研究TLD的减振效果并为实际应用中TLD减振效果评估提供依据,从TLD基本晃动特性分析出发,对设计制作的小比尺TLD减振装置进行共振情况下等效阻尼力的识别。
     第八章基于海洋平台结构复杂、某些物理参数不确定等因素,考虑系统参数不确定性影响的H_∞控制方法对海洋平台的冰激振动进行主动控制研究。导管架平台动力学模型的自由度数较多,但研究表明平台的振动主要集中在前几阶模态,甚至是第一阶模态起主导作用。本文采用模态空间平衡降阶法对平台动力学模型进行降阶,进而构造了H_∞控制器和H_∞模态观测器,并利用主动质量阻尼器(Active Mass Damper-AMD)作为控制装置对抗冰平台的冰激振动进行仿真分析。
     最后,对全文工作进行总结,并提出了需要进一步研究的内容。
This study was performed under the financial support of the National High-tech Research Development Program named Key Problems Study of the New Ice-Resistant Platform (No. 2001AA602015). The research subjects are the existing steel jacket offshore platforms in the Bohai Sea, Liaodong Gulf. The main goals are to find the optimal mitigation strategy to reduce ice-induced vibrations and to provide the instructive suggestions for the other flexible structures vibration mitigation under environmental loads.
     In section one, a summary of vibration induced by environmental loads of flexible structures are presented, especially for the ice-resistant offshore platforms as well as state-of-art of ice-induced vibration.
     In section two, analysis are conducted on ice forces features、dynamic characteristic of platform and features of dynamic deck response of offshore platform based on field measurements. Therefore, effective measures have to be introduced to reduce the vibration level down to acceptable limits. In others words, field observations are the basis of carrying out dynamic analysis and ice-induced vibration of offshore platforms.
     In section three, commonly used vibration mitigation strategies, like vibration dissipation, top isolation and dynamic vibration absorption that have already been implemented in civil engineering are introduced. According to the understanding of field observations as well as characteristics of environmental load, the geometric features of platforms, features of dynamic response, mitigation objectives, it is believed that adding an auxiliary device is an optimal choice.
     In section four, based on the mechanism of the Tuned Mass Damper (TMD) and the fact that the interaction force generated between the relative position of the TMD and structure, time-domain and phase analysis for the vibration reduction of the TMD system is presented. Due to the stochastic characteristic of environmental excitation the motions between the structure and the TMD cannot lock in when out of phase, causing the sharp vibration reduction. In order to analyze the vibration reduction of the TMD from the mechanism, it is critical to conduct the analysis from the relative movement between structure and itself. The evaluation criteria for the performance of the TMD are given based on relative movement analysis between structure and itself. Experimental study and simulation analysis conducted demonstrated the reliability of the proposed criteria.
     In section five, to investigate the feasibility that the TMD can indeed mitigate the vibrations induced by ice forces on offshore steel jacket platforms, a large scale TMD device was designed and manufactured with respect to an offshore oil platform. Large scale testing is expensive and the requirements for model similarity in model scale testing are hard to meet. Thus, an experimental technique that focuses on the control device itself and emulates the behavior of the structure with a simulator is presented. This novel experimental system consists of a virtual part and a tangible part called semi-experimental testing system (also can be called Hybrid Experimental Testing system). The virtual parts include scaled external load and a scaled simplified platform model. The tangible parts include the TMD device and a moving table, which is controlled by a hydraulic actuator.
     In section six, to assess the effectiveness of the TMD to mitigate ice-induced vibrations of platforms, the method of measurement of the equivalent damping force of the TMD based on semi-simulation experimental testing system is presented. The interaction force between the TMD and the structure can be measured directly by this system. In this chapter, the principle and method to measure force is introduced. The force comparison between experimental and calculated values is made under sinusoidal displacement inputs. Experimental results show that the force measured from load cell is almost equal to the inertial force of the TMD. Therefore, the feasibility of using this system to measure equivalent damping forces of the TMD was confirmed. The vibration reduction performance of the TMD was carried out by incorporating its equivalent damping force. Experimental results show that the TMD is quite effective to mitigate ice-induced vibration.
     In section seven, to study the physical principle of TLD (Tuned Liquid Damper) device and provide references for evaluating the performance of TLD. A small scale rectangular TLD device was manufactured. A method to measure the equivalent damping force of the TLD device based on the semi-simulation experimental testing system is presented. Harmonic displacement input was used to identify the resonant frequency of the TLD device as well as the damping force. The experimental force results agree with the theoretical. So the feasibility of the testing system was verified.
     In section eight, H_∞method has been used extensively in many control systems designed for structural applications due to its stability and robustness. H_∞control of the critical modes of vibration of an offshore platform under ice loads is studied. The control is applied to a platform via an active tuned mass damper (AMD) located at the top of the platform. An algorithm combining the H_∞method together with a balanced reduction scheme in modal space is used for control design. The solution for ice-induced vibration response of the system is derived in terms of the pseudo-excitation method. With the derived solution, extensive parametric studies can be carried out. The optimal parameters of H_∞, controllers for achieving the maximum vibration response reduction of the platform can be identified. The effectiveness of H_∞controllers for this particular application is evaluated in this study. The results show that the ice-induced vibration response of the platform can be considerably reduced if the parameters of H_∞controllers are selected appropriately.
     At last, some concluding remarks are stated. Suggestions and directions on the further research and applications of structural control for offshore platforms are presented.
引文
[1]杨国金.海冰工程学.北京:石油工业出版社,2000.
    [2]段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [3]Peyton H R.Sea ice strength.University of Alaska.Geophysical Institute.Report UAG R-182.Alaska,1966.
    [4]Blenkam K A.Measurement and analysis of ice forces on Cook Inlet structures.Proceedings,2nd Offshore Technology Conference,1970,OTC1261(Ⅱ):365-378.
    [5]Engelbrektson A,Janson E.Field observations of ice action on concrete structures in the Baltic Sea.Concrete International,1985:48-52.
    [6]Engelbrekston A.Observations of a resonance vibrating lighthouse structure in moving ice,POAC,1984.
    [7]Maattanen M.Ice forces and vibration behavior of bottom-founded steel lighthouses.Proc.3rd International Symposium on Ice Problems,USA.1975:345-354.
    [8]渤海工程设计公司.JZ20-2-1平台冰力测量报告.1991.
    [9]岳前进等.2000-2001年渤海海冰管理报告.2001.
    [10]Yao,J.T.P.,1972.Concept of Structural Control.Journal of Structural Division,ASCE.98(7),pp.1567-1574.
    [11]Hounser,G.W.,et al.Structural control:past,present,and future.Journal of Engineering Mechanics,ASCE,1997,123(9):897-971.
    [12]周福霖.工程结构减振控制.北京:地震工程出版社,1997.
    [13]周福霖.隔震耗能减震和结构控制技术的发展和应用(上、下).世界地震工程.1989,(4);1990(1).
    [14]张文芳.建筑结构TMD振动控制及其新体系减震研究.太原理工大学学报.2004.1
    [15]吴波,李惠.建筑结构被动控制的理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1997
    [16]Nielsen,E.J.,et al.Viscoelastic Damper overview for Seismic and Wind Application.Pro.,First World Conf.on Struct.Control,vol.3,1994.
    [17]Den Hartog,J.P.,1956.Mechanical Vibrations,4th ed.,McGraw-Hill,New York.
    [18]Wiesner,K.B."Tuned Mass Dampers to Reduce Building Wind Motion",ASCE,Convention and Exposition,Boston,Mass.,1979.April 2-6.
    [19]Kitamura,H.,Fujita,T.,Teramoto,T.and Kihara,H.Design and Analysis of a Tower Structure with A Tuned Mass Damper,Proc.9th World Conf.Earthquake Eng.,Tokyo,Japan.1988.
    [20]Ueda,T.,Nakagak,R.and Koshida,K.Suppression of wind-induced vibration by dynamic dampers in tower-like structures.Journal of Wind Engineering and Industrial Aerodynamics.,1992.41-44:1907-1918.
    [21]Kwok,K.C.S.and Samali,B.,1995.Performance of tuned mass dampers under wind loads,Journal of Engineering Structure.1995.17:655-667.
    [22]McNamara,R.J."Tuned Mass Dampers for Buildings",Journal of the Structural Division,ASCE,Vol.103,1977.1785-1798.
    [23]Haruyuld KITAMURA,Takafumi FUJITA,Takayuki TERAMOTO,Hiromi KIHARA.(1988),Design and Analysis of a Tower Structure with A Tuned Mass Damper,Proc.9th World Conf.Earthquake Eng.,Japan,Vol(8),415-420
    [24]Ohtake.K.,Mataki,Y.,Ohkuma,T.,Kanda,J.and Kitamura,H.'Full-scale measurements of wind action on Chiba Port ower',J.Wind Engng Ind.Aerodyn.1992,41-44.2225-2236
    [25]Yang J N,Soong T T.Recent advances in active control of civil engineering structures.Probabilistic Engineering Mechanics,1988,3(4):179-188.
    [26]Anderson B D O,Moore J B,Optimal Control,Linear Quadratic Methods.New Jersey:Prentice Hall,1995.
    [27]Green M,Limbeer D J N.Linear Robust Control.New Jersey:Prentice Hall,1995.
    [28]Ulsoy A G,Hrovat D,Tseng T.Stability robustness of LQ and LQG active suspensions.Journal of Dynamic Systems,Measurement and Control,1994,116(3):123-131.
    [29]Zhou KM,Doyle JC,and Glover K.Robust and Optimal Control,New Jersey:Prentice Hall,1996.
    [30]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997.
    [31]Fang J Q,Li Q S,Jeary A P.Modified independent modal space control of m.d.o.f,systems.Journal of Sound and Vibration,2003,261(3):421-441.
    [32]Park K S,Koh H M,Seo C W.Independent modal space fuzzy control of earthquake-excited structures.Engineering Structures,2004,26(2):279-289.
    [33]Soong T.T.Active structural control:theory and practice,New York:Longman Scientific &Technical,1990.
    [34]Soong T.T.State-of-the-art review active structural control in civil engineering[J].Engineering Structure,1988.10:74-84.
    [35]Faryar J,Schmitendorf W E,Yang J N.H_∞Control for Seismic-Excited Building with Acceleration Feedback.ASCE,Journal of Engineering Mechanics,1995,121(9):994-1002.
    [36]Kose I E,Schmitendorf W E,Faryar J,Yang J N.H_∞ Active Seismic Response Control Using Static Output Feedback.ASCE,Journal of Engineering Mechanics,1996,122(7):651-659.
    [37]Abdel-Rohman M.Feasibility of Active Control of Tall Buildings Against Wind.ASCE Journal of Structural Engineering.1987.113.349-362.
    [38]Abdel-Rohman M.Effectiveness of Active TMD for Building Control.Transactions of the Canadian Society of Mechanical Engineers.1984.8.179-184.
    [39]Hrovat D,Barak P and Robins M.1983.Semi-Active vs.Passive or Active Tuned Mass Dampers for Structural Control.ASCE Journal of Engineering Mechanics.109.691-701.
    [40]Kobori T,Kanayama H and Kamagata S.Dynamic Intelligent Building as Active Seismic Response Controlled Structure.Proceedings of Annual Metting of the Architectural Institute of Japan Tokyo.1987.
    [41]Kobori T,Kanayama H and Kamagata S.A proposal of New Anti-seismic Structure with Active Seismic Response control system-Dynamic Intelligent Building.Proceeding of 9~(th) World Conference on Earthquake Engineering.Tokyo/Kyoto.Japan.465-470.1988.
    [42]Soong,T.T.,Reinhomm,A.M.and Yang J.N.Active Response Control of Building Structures under Seismic Excitation.Proceeding of 9~(th) World Conference on Earthquake Engineering.Tokyo-Kyoto,Japan,1988,8:453-458.
    [43]Reinhorn,A.M.,Soong,T.T.,Lin,R.C.et al.1:4 scale model studies of active tendon system and active mass dampers for a seismic protection[C].NCEER-89-0026,1989.
    [44]田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动.1999,19(4):90-94.
    [45]田石柱.AMD结构主动控制研究.哈尔滨建筑大学博士学位论文.1998.
    [46]欧进萍等.海洋平台结构振动的主动质量驱动(AMD)控制技术,技术报告.2004.
    [47]Yang J N and Giannopoulos F.Active Tendon Control of Structures.ASCE Journal of Engineering Mechanics Derision 104.1978.505-521.
    [48]Xu Y L,Zhang W S.Intelligent adiacent buildings with active tendons for seismic response control [J].World Information on Earthquake Engineering,2001,17(1):15-29.
    [49]Okubo H,Komatsu N,Tsumura,T.Tendon control system for active shape control of flexible space structures.Journal of Intelligent Material Systems and Structures.1996,7(4):470-475.
    [50]Kobori,T.Dynamics Loading Test of Real Scale Steel Frame with Active Variable Stiffness Device,Journal of Structural Engineering,1991,37B:317-328.
    [51]刘季,李敏霞.变刚度结构半主动控制的研究.地展工程与工程振动,1997,17(1),231-240.
    [52]李敏霞,刘季.变刚度结构半主动控制的试验研究.地展工程与工程振动,1998,18(4),90-95.
    [53]Hrovat.D.et al.,Semi-active versus Passive or Active Tuned Mass Dampers for Structural Control,Journal of Engineering Mechanics,109(3),691-705.1983.
    [54]Kawashima K,et al,Seismic Response Control of Bridges by Variable Dampers.Journal of Structural Engineering ASCE.120.9.1994.
    [55]刘季,孙作玉.结构可变阻尼半主动控制.地展工程与工程振动,1997,17(2),92-97.
    [56]Abé M.Semi-active Tuned Mass Dampers for Seismic Protection of Structures.Engineering and Structural Dynamics,1996,25.743-749.
    [57]Lou,J.Y K.,et al.Active Tuned Liquid Damper for Structural Control.Proceeding of the First World Conference on Structural Control,Los Angeles,1994.
    [58]盟伟廉,项海帆.ER智能材料在结构振动控制中的应用.地展工程与工程振动,1998,18(3):49-55.
    [59]Spencer B F.and Nagarajaiah S.State of the art of structural control.ASCE Journal of Structural Engineering.2003,129(7):845-856.
    [60]Chu,S.Y.,Soong,T.T.,Reirthorn,A.M.Active,Hybrid,and Semi-active Structural Control:A Design and Implementation Handbook.WILEY.2005.
    [61]李爱群等.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,(3),9-17.
    [62]Maebayashi K.,et al.Hybrid Mass Damper System for Response Control of Building.Proceeding of the Tenth Word Conference on Earthquake Engineering,Spain,1992.
    [63]Craig J.L,et al.Active Passive Damping for Structural Response Attention in Building.Proceeding of ATC-17-1 Seminar on Seismic Isolation,Passive Dissipation,and Active Control,Vol.2,San Francisco,1993.
    [64]Qurwshi S.M.,et al,Hybrid Control of Sliding Structures,Proceeding of the Tenth World Conference on Earthquake Engineering,Spain,1992.
    [65]Kawamura,S.,et al,Hybrid Isolation System Using Friction-Control Sliding Bearing,Proc.Of the Tenth World Conference on Earthquake Engineering,Madrid,Spain,July,1992.
    [66]马玉宏.主动或半主动-基础隔振混合控制方法的研究.哈尔滨建筑大学硕士论文,1994.
    [67]曾恒一.我国海洋石油在创新中发展.船舶工业技术经济信息,2000,187:23-29.
    [68]张振国.中国海洋石油天然气的开发历程和前景.中国海洋平台,1996,11(6):243-244.
    [69]陈惠民.加快技术创新,促进我国海洋工程开发.中国海洋平台,1999,14(3):4-8.
    [70]黄新生.滩海油田开发中海工技术发展问题思考(上)石油规划设计,1996,No.6:9-12.
    [71]黄新生.滩海油田开发中海工技术发展问题思考(下)石油规划设计,1997,No.1:10-12.
    [72]Sarpkaya,T.and Isaacson,M.Mechanics of Wave Forces on Offshore Structures.Van Nostrand Reinhold Company.1981.
    [73]李润培.王志农.海洋平台强度分析.上海交通大学出版社.1992.
    [74]Howe,R.J.Evolution of offshore drilling and production technology,OTC5354,1986.
    [75]亚洲海上油气田最大平台导管架成功下水.国家国资委,能源要闻.2008.
    [76]段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [77]API RP 2N.Recommended practice for planning,designing,and constructing fixed offshore structures in ice environments.1988.
    [78]API RP 2A.Recommended practice for planning,designing,and constructing fixed offshore structures.1991.
    [79]中华人民共和国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法-工作应力设计法,SY 10030-2003,2004.
    [80]DNV.Rules for the design,construction,and inspection of fixed offshore structures.1977.
    [81]Ralston,T.D.Ice force design considerations for conical offshore structures.Proc.4th International Conference on Port and Ocean Engineering under Arctic Conditions.St.John's,New Foundland,Canada.1977.2:741-752.
    [82]Yuc,Q.J.,Bi,X.J.Full-scale test and analysis of dynamic interaction between ice sheet and conical structure.Proc.14~(th) International Association for Hydraulic Research(IAHR) Symposium on Ice.1998.2:939-945.
    [83]曾恒一.影响我国海洋油气开发的海洋灾害.中国海洋平台,1998,15(3):21-24.
    [84]杨国金.海冰工程学.北京:石油工业出版社,2000.
    [85]丁德文等.工程海冰学概论.北京:海洋出版社,1999.
    [86]Peyton H R.Sea ice strength.University of Alaska.Geophysical Institute.Report UAG R-182.Alaska,1966.
    [87]Blenkarn K A.Measurement and analysis of ice forces on Cook Inlet structures.Proceedings,2nd Offshore Technology Conference,1970,OTC1261(Ⅱ):365-378.
    [88]Engelbrektson A,Janson E.Field observations of ice action on concrete structures in the Baltic Sea.Concrete International,1985:48-52.
    [89]Engelbrekston A.Observations of a resonance vibrating lighthouse structure in moving ice,POAC,1984.
    [90]M(a|")(a|")tt(a|")nen M.Ice forces and vibration behavior of bottom-founded steel lighthouses.Proc.3rd International Symposium on Ice Problems,USA.1975:345-354.
    [91]岳前进,毕祥军,季顺迎等.平台振动与冰力测量研究报告,大连理工大学,2001.
    [92]Evaluation of human exposure to whole-body vibration.International standard,ISO 2631-2.
    [93]人体全身振动暴露的舒适性降低界限和评价标准.中华人民共和国国家标准GB/T 13442-92.
    [94]关于固定结构特定时建筑物和海上结构的居住者对低频(0.063-1Hz)水平运动响应的评价导则.中华人民共和国标准GB/T13921-92.
    [95]Frederking,R.and Sehwarz,J.Model test of ice forces on fixed and oscillating cones,Cold Regions Science and Technology.1982,61-72.
    [96]Shkhinek,K.,Kapustiansky,S.,Jilenkov,A.Ice loads onto the sloping structures,International Conference on Development and Commercial Utilization of Technologies in Polar Regions,1996,St.Petersburg,Russia,171-178.
    [97]Wessels,E.,and Kato,K.(1988).Ice forces on fixed and floating conical structures.Proc.,9th Int.Symp.on Ice,International Association for Hydraulic Research,Delft,The Netherlands,666-707.
    [98]Croasdale,K.R.(1980).Ice forces on fixed rigid structures.CRREL Rep.80-26,IAHR Working Group on lee Forces,Cold Regions Research and Engineering Laboratory,Hanover,N.H.,34-106.
    [99]徐田甜,王宁.渤海导管架平台的破冰锥体设计.船舶结构.2007.6:33-42.
    [100]Yue,Q.J.and Bi,X.J.Ice-Induced Jacket Structure Vibrations in Bohai Sea.J.of Cold Regions Engineering,2000,14(2),81-92.
    [101]M(a|")(a|")tt(a|")nen,M.(1987).Ten Years of Ice-induced Vibration Isolation in Light-house,Proceedings of Offshore Mechanics and Arctic Engineering,Houston,TX,USA.Vol.4,pp.261-266.
    [102]The Sakhalin II Project.Techuological design institute of scientific instrument engineering.http://www.tdisie.nsc.ru
    [103]Lee H.H.Stochastic Analysis for Offshore Platform with Added Mechanical Dampers.Ocean Engineering.1997.24(9):817-834.
    [104]欧进萍,段忠东.肖仪清.基于实测冰力时程的海洋平台冰振反应分析.海洋工程,1999,17(2):70-78.
    [105]欧进萍,邹向阳等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制.海洋工程.2000.18(3):9-14.
    [106]Ou,J.P.,Long,X.,Li,Q.S.and Xiao,Y.Q.Vibration control of steel jacket offshore platform structures with damping isolation systems.Engineering Structures.2007,29,1525-1538.
    [107]王翎羽,金明,陈星,靳军.TLD的减振原理及其在JZ20-2MUQ平台减冰振中的应用研究[J].海洋学报,1996,18(6):106-113
    [108]Chen,X.,Wang,L.Y.and Xu,J.Z.TLD technique for reducing ice-induced vibration on platforms.Journal of Cold Regions Engineering,1999,13(3),139-152.
    [109]张春巍,欧进萍.海洋平台结构振动的AMD主动控制参数分析,地震工程与工程振动,2002.22(4):151-156.
    [110]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究.高技术通讯,2002,(10):85-90.
    [111]张纪刚,吴斌,欧进萍.海洋平台冰振控制试验研究.东北大学学报(自然科学版).2005.35(Sup Ⅰ):31-34.
    [112]岳前进,毕祥军,于晓,时钟民.锥体结构的冰激振动与冰力函数.土木工程学报.2003.36(2):16-32.
    [113]屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学.2006.
    [114]Qu,Y.,Yue,Q.J.,Bi,X.J.and K(a|")rn(a|"),T.A Random Ice Force Model for Narrow Conical Structures.Cold Regions Science and Technology.2006,45,148-157.
    [115]Sodhi,D.S.Ice-induced vibrations of structures,Proc.of the IAHR,Ice.Symposium,Sapporo,Japan,1988,625-657.
    [116]Peyton H R.Sea ice strength.University of Alaska.Geophysical Institute.Report UAG R-182.Alaska,1966.
    [117]Blenkarn K A.Measurement and analysis of ice forces on Cook Inlet structures.Proceedings,2nd Offshore Technology
    [118]M(a|")(a|")tt(a|")nen,M.Experiences of ice forces against a steel lighthouse mounted on the seabed and proposed constructional refinements.University of Alaska,Fairbanks.Proc.POAC'75,1975,857-869.
    [119]Lipsett,A.W.and Gerard,R.Field measurement of ice forces on bridge piers 1973-1977.Alberta Research Council Report,No.SWE80-3.1980.
    [120]Engelbrekston,A.Observations of resonant vibrating lighthouse structure in moving ice.Proc.,7th Conf.on Port and Oe.Engrg.under Arctic Conditions,Helsinki,Finland,1983.2,855-864.
    [121]Jefferies,M.G.,and Wright,W.H.Dynamic response of 'Molikpaq' to ice-structure interaction.Proc.,7th Int.Conf.on Offshore Mech.and Arctic Engrg.,Houston,Tex.,1988.4,201-220.
    [122]Sodhi D.S.Ice-induced vibration of structures.Proc.IAHR Symposium on Ice 1988,Sapporo,Japan,Vol 2.1988.pp.625-657.
    [123]K(a|")rn(a|"),M.G.,and Wright,W.H."Dynamic response of narrow structures to ice crushing." Cold Regions Sci.and Technol.,1989.17,173-187.
    [124]Yue,Q.J.,Bi,X.J.,Yu,X.B.Full scale tests and analysis of dynamic interaction between ice sheet and conical structures.Proc.14th International Association for Hydraulic Research(IAHR)Symposium on Ice.1998,2,939-945.
    [125]M(a|")(a|")tt(a|")nen,M.The effect of structural properties on ice-induced self-excited vibrations.IAHR'84.1984.2:11-20.
    [126]M(a|")(a|")tt(a|")nen,M.Ice interaction with structures,Ice-Structure Interaction.Jones S.et al.Eds,Canada,1991:563-579.
    [127]Sodhi D.S.Morris C.E.Characteristic Frequency of Forced Vibration in Continuous Crushing of an Ice sheet against Rigid Cylindrical Structures.Cold Regions Science and Technology.1986,12:1-12.
    [128]Timco G.W.The Transfer Function Approach for a Structure Subjected to Ice crushing.POAC'89,1:420-430.
    [129]Montgomery C.J.,Lipsett A.W.Estimation of Ice Forces from Dynamic Response.IAHR'81,1981,2:771-782.
    [130]Nadreau,Jean-Pail.Ice-Induced Dynamic Behavior of Structures.Centre for Cold Ocean Resources Engineering,Memorial University,St-John's.Canada.1987.19:30-34.
    [131]徐继祖.海冰引起的结构振动.海洋工程,1986,4(2):42-47.
    [132]断梦兰,柳春图.冰与结构的动力相互作用:随机自激振动.工程力学,1995(增刊).9:1070-1074.
    [133]Fang H.C.and Doan M.L.Ice-induced Displacement response of Fixed Platform in Bohai Gulf.SOSC'94.Beijing,1994:731-742.
    [134]Yue,Q.J.and Bi,X.J.Ice-Induced Jacket Structure Vibrations in Bohai Sea.J.of Cold Regions Engineering,2000,14(2),81-92.
    [135]断梦兰,柳春图.海冰工程中的结构力学问题.机械强度.1995,17(3):7-35.
    [136]Matlock H.,Dawkins W.P.and Panak I.J.Analytical Model for Ice-Structure Interaction.J.Eng.Mech.Div.,1971,97(EMD4):1083-1092.
    [137]Kivisild H.R.Ice impact on Marine Structures.Ice Seminar,Calgary.Alberta.1968.
    [138]M(a|")(a|")tt(a|")nen M.Ice forces and vibration behavior of bottom-founded steel lighthouses.Proc.3rd International Symposium on Ice Problems,USA.1975:345-354.
    [139]K(a|")rn(a|") T.A flaking model of dynamic ice-structure interaction.VTT Building Technology 1997
    [140]岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载.工程力学,2004,21(1):202-208.
    [1]Yue Q J,Bi X J,Sun B,et al.Full-scale force measurement on JZ20-2 platform.Proc.IAHR Ice Symp.(IAHR'96) Beijing,1996:282-289.
    [2]Yue,Q.J.,Bi,X.J.,Yu,X.B.Full scale tests and analysis of dynamic interaction between ice sheet and conical structures.Proc.14th International Association for Hydraulic Research(IAHR)Symposium on Ice.1998,2,939-945.
    [3]李辉辉.海洋平台冰振失效的预警标准:(硕士学位论文).大连:大连理工大学.2004.
    [4]大连理工大学.JZ20-2MSW平台冰振失效预警标准研究.2004.
    [5]K(a|")rn(a|") T,Qu Y.A spectral model for dynamic ice actions,EU FP5 EESD project No EVG1-CT-2002-00024:Measurements on Structures in Ice(STRICE).Deliverable D-2.1.Rev.1.1,January 2004.
    [6]Yue,Q.J.,Zhang,X.,Bi,X.J.and Shi,Z.M.Measurement and analysis of ice induced steady state vibration.Proceedings of the 16th International Conference on Port and Ocean Engineering Under Arctic Conditions,2001.1:413-420.
    [7]Frederking,R.and Schwarz,J.,1982.Model test of ice forces on fixed and oscillating cones,Cold Regions Science and Technology.6.pp:61-72.
    [8]Shkhinek,K.,Kapustiansky,S.,and Jilenkov,A.,1996.Ice loads onto the sloping structures,International Conference on Development and Commercial Utilization of Technologies in Polar Regions,24th-26th Sep.1996,St.Petersburg,Russia),pp.171-178.
    [9]Barker,A.,Timco,G.,Gravesen,H.and Volund,P.,2005.Ice loading on a Danish wind turbines:Part 1.Dynamic model tests,Cold Regions Science and Technology.41,pp.1-23.
    [10]Yue Q J,Bi X J.Ice-induced jacket structure vibrations in the Bohai Sea.Journal of Cold Regions Engineering,2000,14(2):81-92.
    [11]岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报 2003,36(2):16-19.
    [12]Qu Y,Yue Q J,Bi X J.et al.Random Ice Forces on Conical Structures,Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions,POAC'03,Trondheim,Norway,2003:259-270.
    [13]Hirayama K,Obara I.Ice forces on inclined structures.Proc of the 5th International Offshore Mechanicsand Arctic Engineering.Tokyo,Japan,1986:515-520.
    [14]Yue Qianjin,Qu Yan,Bi Xiangjun,et al.Ice force spectrum on narrow conical structures.Cold Regions Science and Technology.2007:161-169.
    [15]Neumann G.On wind generated ocean waves with special reference to the problem of wave forecasting.N.Y.U.,Coll of Eng.,Res.Div,Dept.of Metcor.And Ocean-ogr.,1952.
    [16]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2000.
    [17]刘圆.抗冰海洋平台动力分析与结构选型研究:(博士学位论文).大连:大连理工大学.2006.
    [1]DNV,Report No.SP / D / 87008,1987.
    [2]Den Hartog,J.P.Mechanical Vibrations,4th ed.,Mcgraw-Hill,New York.1956.
    [3]Sodhi,D.S.Ice-induced vibrations of structures,Proc.of the IAHR,Ice.Symposium,Sapporo,Japan,1988,625-657.
    [4]刘圆.抗冰海洋平台动力分析与结构选型研究:(博士学位论文).大连:大连理工大学.2006.
    [5]Randall,S.E.,Halsted,D.M.and Taylor,D.L.Optimum Vibration Absorbers for Linear Damped Systems.ASME.Journal of Mechanical Design.1981.103:908-913.
    [6]Rana,R.,Soong,T.T.Parametric study and simplified design of tuned mass dampers.Engineering Structure.1998.20(3):193-204.
    [7]Li H J,Sau L J and Tomotsuka T.The optimal design of TMD for offshore structures.China Ocean Engineering.1999.13(2):133-144.
    [8]陆建辉,彭临慧,李华军.海洋石油平台TMD振动控制及参数优化.青岛海洋大学学报.1999,29(4)1733-738.
    [9]Hugo Bachmann,et al.Vibration problems in structures-Practical Guidelines[M].Basel.Boston.Berlin.1995.
    [10]陆文发,李林普,高明道.近海导管架平台.北京:海洋出版社,1992.
    [11]Kwok,K.C.S.and Samali,B.Performance of tuned mass dampers under wind loads,Journal of Engineering Structure.1995.17:655-667.
    [12]渤海石油工程设计公司.JZ20-2详细设计:MSW导管架结构设计文件.1989
    [1]Soong,T.T.Dargush,.G.F.Passive energy dissipation systems in structural engineering[M].John Wiley & Sons,Chichester,New York:1997
    [2]Kwok,K.C.S.and Samali,B.,1995.Performance of tuned mass dampers under wind loads,Journal of Engineering Structure.17.655-667.
    [3]A.Carotti,E.Turci,A tuning criterion for the inertial tuned damper.Design using phasors in the Argand-Gauss plane[J].Applied Mathematical Modelling 23(1999) 199-217
    [4]UEDA,T.,NAKAGAKL R.and KOSHIDA,K.Suppression of wind-induced vibration by dynamic dampers in tower-like structures[J].Journal of Wind Engineering and Industrial Aerodynamics.41-44,1992,1907-1918.
    [5]秦丽,周锡元,闫维明.Velocity adjustable TMD and numerical simulation of seismic performance.Earthquake engineering and engineering vibration.Vol.6,2007,147-158.
    [6]张俊平,结构振动控制的两个理论问题[J].地震工程与工程振动.2000,20(1):125-129.
    [7]大连理工大学.JZ20-2平台冰激振动测量与分析海冰监测与预报.1999-2000年度工作报告,2000.5.
    [1]Soong,T.T.and Dargush,G.F.Passive Energy Dissipation Systems in Structural Engineering.Buffalo,USA.John Wiley & Sons.1997.
    [2]Shirly,D.and Laura,M.J.Implication of Control-Structure Interaction in Scaled Structural Control System Testing.IEEE Conference on Control Applications.Proceedings 1,2005,339-344.
    [3]Shirly,D.,Spencer,B.F.,Quast,P.and Sain,M.K.Role of Control-Structure Interaction in Protective System Design.ASCE Journal of Engineering Mechanics.1995.12(2):322-338.
    [4]潘峰,薛定宇,徐心和.基于dSPACE半实物仿真技术的伺服控制研究与应用.系统仿真学报,2004,16(5):936-939.
    [5]Jokic M D,Asokanthan S F.Tethered satellite syste models for use in hardware-in-the-loop simulations.Structures,Structural Dynamics and Materials Conference,2001,3:1791-1799.
    [6]Joo E M,Changboonl H N K.Real-time implementation of a dynamics fuzzy neural networks controller for a SCARA.Microprocessors and Microsystems,2002,26(9):449-461.
    [7]恒润科技.dSPACE-基于Windows平台的实时快速原型及半实物仿真的一体化解决途径.恒润科技公司,2001.
    [8]dSPACE.DS1104 R&D Controller Board,Installation and Configuration Guide.Paderborn:dSPACE GmbH,2001.
    [9]dSPACE.Real-Time Interface(RTI and RTI-MP) Implementation Guide,Release 3.3.Paderbom:dSPACE GmbH,2001.
    [10]dSPACE.ControlDesk Automation Guide,Release 3.2&3.3.Paderborn:dSPACE GmbH,2001.
    [11]dSPACE.ControlDesk Experiment Guide,Release 3.2&3.3.Paderborn:dSPACE GmbH,2001.
    [12]Ibrahim,I.M.Anti-slosh damper design for improving the roll dynamic behavior of cycindrical tank trucks.SAE paper.1999-0103729,1999.
    [13]刘圆.抗冰海洋平台动力分析与结构选型研究:(博士学位论文).大连:大连理工大学.2006.
    [14]屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工学.2006.
    [1]Den Hartog,J.P.Mechanical Vibrations,4th ed.,Mcgraw-Hill,New York.1956.
    [2]大连理工大学.J220-2平台冰激振动测量与分析海冰监测与预报.1999-2000年度工作报告,2000.5.
    [3]Yue,Q.J.and Bi,X.J.,2000.Ice-Induced Jacket Structure Vibrations in Bohai Sea,Joural of Cold Regions Engineering,Vol.14,No.2,pp.81-92.
    [4]Yue,Q.J.,and Li,L.,2003.Ice Problems in Bohai Sea Oil Exploitation,Proceeding of the 17th International Conference on Port and Ocean Engineering Under Arctic Conditions(POAC).Trondheim,Norway,June 16-19,pp.151-163.
    [5]刘圆.抗冰海洋平台动力分析与结构选型研究:(博士学位论文).大连:大连理工大学.2006.
    [6]屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学.2006.
    [7]Qu,Y.,Yue,Q.J.,Bi,X.J.and K(a|")rn(a|"),T.A Random Ice Force Model for Narrow Conical Structures.Cold Regions Science and Technology.2006,45,148-157.
    [8]Hirayama K,Obara I.Ice forces on inclined structures.Proc of the 5th International Offshore Mechanicsand Arctic Engineering.Tokyo,Japan,1986:515-520.
    [9]岳前进等.渤海辽东湾海冰管理.大连理工大学与中海石油天津分公司合作科研报告.1999-2006.
    [1]梁启智,熊明俊,黄庆辉.调谐液体阻尼器对高层建筑和高耸结构动力反应控制研究综述[J].世界地震工程.2002,18(1):123-128.
    [2]Modi V J,Welt f.Vibration control using nutation dampers[A].Proc.Int.Conf.on Flow Induced Vibration[C].BHRA.England.1987,369-376.
    [3]Fujino Y.Sun L M.Pacheeo B M.et.al.Tuned liquid damper(TLD) for suppressing horizontal motion of structures[J].Journal of Engineering Mech,ASCE,1992,118(10):2017-2030.
    [4]Koh C G,Mahatma S,Wang C M.Theoretical and experimental studies on rectangular liquid dampers under arbitrary excitation[J].Earthquake Engineering and Structural Dynamics.1994,23:17-31.
    [5]瞿伟廉,宋波,陈妍佳,瞿新民.TLD对珠海金山大厦主楼风振控制的设计[C].建筑结构学报.1995,16(3):21-28.
    [6]任振华,丁大钧,陆勤.TLD装置的工作原理及其在南京电视塔风振控制中的应用[J].地震工程与工程振动,1994,14(3):105-113.
    [7]Dorothy Reed,Harry Yeh,Jinkyu Yu,Sigurdur Gardarsson.Tuned Liquid Dampers Under Large Amplitude Exeitation[J].Journal of Wind Engineering and Industrial Aerodynamics.1998,74-76:923-930.
    [8]Housner G W.Dynamic pressure on accelerated fluid container[J].Bult Seism.Soc.Am.1957,47(1):15-35.
    [9]Kareem A.and Sun W.J.Stochastic Response of Structures with Fluid-Containing Appendages.Journal of Sound and Vibration.1987.119:389-408.
    [10]瞿伟廉.高层建筑和高耸结构的风振控制设计[M].武汉:武汉测绘科技大学出版社,1991
    [11]张敏政,丁世文,郭迅.利用水箱减振的结构控制研究[J].地震工程与工程振动,1993,13(1):40-48
    [12]Holmes J.D.List of installations of auxiliary damping systems.Engineering Structures.1995.
    [13]Soong T.T.and Dargush,G.F.Passive Energy Dissipation Systems in Structural Engineering [M].State University of New York at Buffalo,USA..1998.
    [14]Kareem A,Kijewski T,Tamura Y.Mitigation of motions of tall buildings with specific examples of recent applications.Wind and Structures,1999,2(3):201-251.
    [15]Vandiver J.K.and Mitome S.Effect of Liquid Storage Tanks on The Dynamic Response of Offshore Platform[J].Applied Ocean Research,1978,1:67-74.
    [16]李宏男,闫石,贾连光.利用调液阻尼器减振的结构控制研究进展[J].地震工程与工程振动,1995,15(3):99-110
    [17]Tomotsuka T.,LI H.J.(李华军),DONG S.(董胜).Suppression of Wave-excited vibration of Offshore Platform by Use of Tuned Liquid Dampers.China Ocean Engineering.2001.15(2):175-176.
    [18]陈星,王翎羽,宋安,郑沧波.TLD水箱减(冰)振的现场试验研究[J].海洋学报.1995,17(2):140-144.
    [19]Chen,X.,Wang,L.Y.and Xu,J.Z.TLD technique for reducing ice-induced vibration on platforms.Journal of Cold Regions Engineering,1999,13(3),139-152.
    [20]井秦阳.大连国贸大厦高层水箱减振控制研究及应用:(硕士学位论文).大连:大连理工大学,2005.
    [21]贾影,李宏男,李玉成.调液阻尼器液体动水压力的模拟.[J].地震工程与工程振动,1998,18(3):82-87.
    [22]Kareem A..Reduction of wind induced motion utilizing a tuned sloshing damper.Journal of Wind Engineering and Industrial Aerodynamics.1990,36:725-737.
    [1]Soong T.T.Active structural control:theory and practice,New York:Longman Scientific & Technical,1990.
    [2]王晓勇,顾明.高层建筑风振控制ATMD的完整反馈方法.振动工程学报.1999,12(2):218-222.
    [3]Fujino,Y.Soong,T.T.and Spencer,B.F.Structural Control:Basic Concepts and Applications.Proceedings of the 1996 ASCE Structures Congress,Chiago,Ⅲinois,1996.1-11.
    [4]Spencer,B.F.and Nagarajaiah,S.State of the Art of Structural Control.ASCE Journal of Structural Engineering.2003,129(7):845-856.
    [5]Li hua jun.Sau-Lon JAMES HU,Tomotsuka.Optimal active control of wave-induced vibration for offshore platforms.China Ocean Engineering,2001,15(1):1-14.
    [6]Suhardjo,J.,Kareem,A.Structural control of offshore platforms.Proceeding of 7th ISOPE,USA,Honolulu.1997.416-424.
    [7]Suhardjo,J.,Kareem,A.Feedback-feedforward control of offshore platforms under random waves.Earthquake Engineering and Structural Dynamics,2001,30(2):213-235.
    [8]Abdel-Rohman,M.Structural control of steel jacket platforms.Structural Engineering and Mechnics.1996.4:25-38.
    [9]欧进萍.结构振动控制-主动,半主动与智能控制.科学出版社,2003.
    [10]张文首,林家浩,于骁.海洋平台地震响应的LQG控制.动力学与控制学报,2005,3(3):86-91(Zhang wenshou,Lin jiahao,Yu xiao.Seismic response of offshore platform with linear quadratic Gaussian controllers.Journal of Dynamics and Control,2005,3(3):86-91(in Chinese))
    [11]Zhou KM,Doyle JC,and Glover K.Robust and Optimal Control,New Jersey:Prentice Hall,1996
    [12]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997.
    [13]Pernebo L,Silverman LM.Model reduction via balanced state space representations.IEEE Transactions on Automatic Control,1982,27(2):382-387
    [14]胡明华,胡寿松.平衡降阶方法及其进展.南京航空学院学报,1990,22(4):92-101.
    [15]Moore B C,Principal component analysis in linear system:controllability,observability,and model reduction[J],IEEE Trans.on Automatic Control,1981,26(1):17-32
    [16]Gregory,Jr.C Z,Reduction of large flexible spacecraft models using internal balancing theory[J],Journal of Guidance,Control and Dyoamics,1984,7(6):725-732
    [17]Meirovitch L.Introduction to dyrtamic and control.New York:Wiley,1985.
    [18]Meirovitch L,et al.A comparison of control techniques for large flexible systems,Journal of Guidance,Control,and Dynamics,1983,6(4):302-310.
    [19]Tse.E.C,Medanic.J.Perkins,W.R.Generalized Hessenberg transformations for reduced order modeling of large scale system[J].International Journal of Control.1978.27(4):493-512.
    [20]Santiago.J.M,Jamshidi.M.Some extension of the open-loop balanced approach for model reduction[J].In Proc of American Control Conference.1985,1005-1009.
    [21]Green M,Limbeer D J N.Linear Robust Control.New Jersey:Prentice Hall,1995.
    [22]Meirovith L,OzHL.Modal-space control of distributed gyroscopic systems[J].Journal of Guidance and Control,1980,3(2):140- 150.
    [23]Lin J H,Zhang W S,Li J J.Structural responses to arbitrarily coherent stationary random excitations.Computers & Structures.1994,50(5):629-633.
    [24]屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学.2006.
    [25]大连理工大学.JZ20-2平台冰激振动测量分析与海冰监测预报.2000-2001年度工作报告,2001.5
    [26]张春巍.结构振动的电磁驱动AMD控制系统及其相关理论与试验研究:(博士学位论文).哈尔滨:哈尔滨工业大学.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700