基于实验数据分析的直立结构挤压冰荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先分析了直立结构挤压冰荷载的物理本质,阐明了直立结构的挤压冰力是一个固体破坏力学和结构力学/动力学的耦合问题。鉴于目前固体破坏力学不能准确描述冰的挤压破碎过程,理论和数值方法的应用非常困难。因此确定了研究直立结构挤压冰荷载的合理技术路线,即首先利用原型实验和模型实验获得冰力、结构的响应等相关实测数据,通过分析实测数据并结合一定的理论假设,建立挤压冰荷载的力学模型和计算方法,进而利用实测数据对模型进行检验和修正。
     对冰力学的研究、抗冰结构的发展作了简单总结。随后对挤压静冰力和动冰力的研究进展进行了综述,明确了目前直立结构挤压冰荷载需要继续研究的几个问题,即冰在压缩状态下的力学行为、极值挤压静冰力的计算、交变冰力的形成机理和力学模型、以及动冰力模型实验的方法等,这些也是本文主要探讨的问题。
     由于冰材料的力学行为存在显著的尺寸效应,因此原型实验的实测数据被认为是研究冰荷载的最可靠依据。本文首先简单概括了国内外已经开展的、具有代表性的原型结构实测冰荷载成果,随后详细介绍了在渤海辽东湾的采油平台上建立的监测体系,论述了该原型实验获得的信息对冰荷载研究的有力支持。
     根据原型结构实测数据的分析,本文把直立结构的挤压冰荷载分为三种不同的模式:准静态冰力、稳态交变冰力以及随机交变冰力。根据三种冰力模式发生在不同冰速范围内这一现象,本文提出了一套完整的物理机理解释,认为三种冰力模式对应着冰在不同加载速率下的力学行为,即低速率下的韧性、中等速率下的韧脆转变以及高速率下的脆性破坏特征,并深入分析了三种冰力模式分别包含的关键力学问题。
     模型实验是冰荷载研究的另一个重要手段。本文简单总结了国内外已经开展的各种尺度的冰荷载模型实验,分析了其中的相似性问题。根据原型实验的分析结果,认为冰与结构的相对速度是挤压冰荷载相似性的主要控制因素,并给出了直立结构挤压动冰力模型实验的设计原则,基于此设计了一个小尺度的动冰力模型实验系统,并完成了多次实验,成功模拟了直立结构的静冰力、动冰力以及带齿条的自升式平台桩腿冰力。
     在实测数据分析的基础上,本文对直立结构挤压静冰力的力学模型和计算方法进行了详细论述。现有静冰力公式的主要差异在于对同时/非同时破坏的认识不同,根据原型和模型实验的数据分析,本文证明了对于柔性窄结构的挤压静冰力计算,同时破坏和韧性破坏模型更为合理,所以柔性窄结构的挤压静冰力应该显著高于传统低值冰力公式的计算结果。
     直立结构的挤压动冰力分为稳态动冰力和随机动冰力两种模式。实测数据分析表明,冰激结构稳态振动属于自激振动,本文结合冰在压缩应变速率进入韧脆转变区时的力学行为,给出了冰致直立结构自激振动的物理机制,证明了冰内微裂纹的生成和扩展是结构运动控制动冰力的关键因素。提出了进一步的研究思路,用以建立自激振动的发生判据和计算方法。基于已有的随机动冰力研究工作,本文分析了影响随机冰力频率成分的主要因素,提出了利用断裂力学的概念描述冰的脆性破碎尺寸,进一步描述随机冰力频率成分的思路。
The essential physical process of crushing ice force on vertical structure is analyzed, and it is concluded that crushing ice force is a subject coupled with damage mechanics of solid material and structure mechanics/dynamics. Since modern damage mechanics is not able to describe the crushing process of ice sheet accurately, it is fairly difficult to study crushing ice force using theoretical or numerical methods. Therefore, the crushing ice force problem should be investigated according to the following approach:firstly prototype and model tests are conducted to obtain the real data of ice force, structure's response and other related information; then the qualitative model of ice crushing and ice force calculation methods are developed based on data analysis; finally the model and calculation of crushing ice force are verified using data from tests.
     Ice mechanics and development of ice-resistant structures are briefly summarized, and then the research on static and dynamic crushing ice forces is reviewed. The topics on crushing ice force on vertical structures which need further study include:mechanical behavior of ice under compressive state, calculation of peak static crushing ice force, mechanism and model of dynamic ice force, model test on dynamic ice-structure interaction and so on, which are the topics discussed in present thesis.
     Because of the remarkable scale effect of ice's mechanical properties, data from prototype tests is the most reliable information for ice force research. Typical prototype tests on ice force study are reviewed firstly, and then the field test system on jacket platforms in Bohai Sea is described in detail. The research of ice force is supported by the field tests information to a great extent.
     Based on analysis of the field tests data, crushing ice forces on vertical structures are classified into three modes:quasi static ice force, steady state dynamic ice force and stochastic ice force. According to the phenomenon that three ice force modes take place in different ranges of ice velocity, a set of physical mechanism is developed to explain the three ice force modes:the three modes accord with mechanical behavior of ice under different loading rates respectively, which include ductile behavior under low loading rates, ductile-brittle transition behavior under intermediate loading rates and pure brittle failure under high loading rates. Besides, the essential mechanical problems involved in the three modes are discussed thoroughly.
     Model test is another important way to study ice force. Previous model tests conducted in many countries are reviewed briefly, and problems of similarity and scaling are analyzed. According to the prototype tests results, it is concluded that relative velocity between structure and ice sheet is the dominant parameter for similarity of dynamic crushing ice force. Design principles of model tests which aim to dynamic crushing ice force are given, and a model test system is designed and constructed in the laboratory of DUT. A series of model tests are performed and different crushing ice force modes are obtained successfully, in addition, ice forces on jack-up leg which has gear teeth are also simulated using model tests.
     Based on ice force data from field and model tests, static crushing ice force calculation is discussed detailedly. The scattered results from existing ice force formulas are due to simultaneous/non simultaneous failure hypothesis. The field and model tests data indicate that ductile failure or so called simultaneous failure hypothesis is valid for static crushing ice force on narrow and compliant vertical structures, accordingly, the static crushing ice force on narrow and compliant structures should be remarkably higher than conventional low level ice force formulas.
     There are two modes of dynamic crushing ice forces on vertical structure:steady state ice force and random ice force. The field test data indicates that ice induced steady state vibration is a type of self excited vibration, and the physical mechanism is developed to explain ice induced self excitation. It is proved that during self excitation process, compressive strain rate in ice sheet enters ductile-brittle transition range, and the formation and failure of micro cracks in ice controls ice force's fluctuation and results in lock in phenomenon. In order to develop criterion and mathematical model for ice induced self excitation, further method is presented based on the physical mechanism. Based on previous research work on random dynamic ice force, the dominant factors on frequencies of random ice force are analyzed, and it is suggested that fracture mechanics is applied to describe the brittle failure size of ice sheet, and then the frequency distribution of random ice force could be predicted.
引文
[1]Subrata K. Chakrabarti. Handbook of offshore engineering[M]. Amsterdam, Netherland: Elsevier Ltd. Vol.1,2005, p2.
    [2]Subrata K. Chakrabarti. Handbook of offshore engineering[M]. Amsterdam, Netherland: Elsevier Ltd. Vol.1,2005, p133-196.
    [3]0. T. Gudmestad, S.L(?)set et al. Engineering Aspects Related to Arctic Offshore Developments[M]. St. Petersburg:Publisher:"LAN" 2007. Preface.
    [4]Bergdahl, L. Two lighthouses damaged by ice[C], Proc. IAHR Ice Symposium, Leningrad, USSR,1972:pp234-238.
    [5]段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论[J].石油矿场机械,1994,23(3):pp1-4.
    [6]Frederking. Maximum ice force on the Molikpaq during the April 12,1986 event[J]. Cold Regions Science and Technology.2006, vol.46:pp147-166.
    [7]Engineering and Design, Ice Engineering. Manual No.1110-2-1612 [R]. Department of the army, U. S. Army Corps of Engineers, Washington, DC 20314-1000, pp6-8,6-14.
    [8]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学,2006.第四章.
    [9]Wright and Timco. A review of ice forces and failure modes on the molikpaq[C]. IAHR94 12th International symposium on ice,1994:pp816-825.
    [10]Morten. Bjerkas.2006. Ice actions on offshore structures-with applications of continuous wavelet transforms on ice load signals[D]. Department of Civil and transport engineering, Norwegian University of Science and Technology (NTNU), p8.
    [11]Sanderson. Ice Mechanics:Risks to Offshore Structures[M]. London, UK:Graham & Trotman. 1988.
    [12]Sanderson. Ice Mechanics:Risks to Offshore Structures[M]. London, UK:Graham & Trotman. 1988. Chapter 4.
    [13]Engineering and Design, Ice Engineering. Manual No.1110-2-1612[R]. Department of the army, U.S. Army Corps of Engineers, Washington, DC 20314-1000, pp6-11.
    [14]Sanderson. Ice Mechanics:Risks to Offshore Structures[M]. London, UK:Graham & Trotman. 1988. Chapter 1 and 6.
    [15]Recommended Practice for Planning, Designing and Constructing Structures and Pipelines for Arctic Conditions, API Recommended Practice 2N, second edition[R], December,1995. P23.
    [16]Timco, Croasdale. How well can we predict ice loads[C]. Proceedings of the 18th IAHR International Symposium on Ice,2006:pp167-174.
    [17]Ashby, M. F., Palmer, A. C., Trouless, M., Goodman, D. J., Howard, M. W., Hallam, S. D., Murrell, S. A. F., Jones, N., Sanderson, J.O., Ponter, A. R. S.,1986. Non-simultaneous failure and ice loads on structures[C]. Proceedings of Offshore Technology Conference, Houston, TX, pp399-404.
    [18]Blenkarn, K. A.,1970. Measurement and analysis of ice forces on Cook Inlet structures [C]. Proceedings,2nd Off shore Technology Conference, Houston, TX, OTC 1261, Vol. Ⅱ, pp 365-378.
    [19]Sodhi. Ice induced vibrations of structures[C]. IAHR'88, Ice Symposium,1988: pp625-657.
    [20]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学,2006.第三章.
    [21]季顺迎.渤海海冰数值模拟及其工程应用[D].大连:大连理工大学.2001.
    [22]大连理工大学.JZ20-2平台冰激振动测量与分析海冰监测与预报.1999-2000年度工作报告[R].2000.5.
    [23]大连理工大学.海冰管理项目汇报2004—2005年度[R].2005.5.
    [24]大连理工大学.平台振动与冰力测量报告2002-2003年度[R].2003.
    [25]Eik, K. Iceberg Drift Modelling and Validation of Applied Metocean Hindcast Data[J], Cold Regions Science and Technology.2009, Vol.57, Issue2-3:pp67-90.
    [26]Sanderson. Ice Mechanics:Risks to Offshore Structures[M]. London, UK:Graham & Trotman. 1988, Chapter 2 and 3.
    [27]JZ20-2 NW平台的监测与评估,国家863重大专项项目报告[R].中海石油研究中心,大连理工大学等,2006.
    [28]Morten. Bjerkas.2006. Ice actions on offshore structures-with applications of continuous wavelet transforms on ice load signals[D]. Department of Civil and transport engineering, Norwegian University of Science and Technology (NTNU), May 2006,173p.
    [29]Wright and Timco. First-year ridge interaction with the Molikpaq in the Beaufort Sea[J]. Cold Regions Science and Technology.2001, vol.32:pp27-44
    [30]Croasdale.1988. Ice forces:current practice[C]. Seventh International conference on offshore mechanics and arctic engineering, pp133-151.
    [31]Timco. Ice loads on the caisson structures in the Canadian Beaufort Sea[J]. Cold Regions Science and Technology,2004, vol.38:pp185-209.
    [32]Frederking, Timco. Ice Pressure Distributions from First-Year Sea Ice Features Interacting with the Molikpaq in the Beaufort Sea[J]. Proceedings of the Ninth International Offshore and Polar Engineering Conference Volume II,1999:pp541-548.
    [33]M. D. Hardy, M. G. Jefferies et al. Molikpaq Ice loading experience[R]. Report to National Energy Board.1996.
    [34]Croasdale, K. R. (1985), Ice Investigations at a Beaufort Sea Caisson[R], Report to National Research Council of Canada,130p.
    [35]Jochmann, P. and Schwarz, J. (2001). Ice Force Measurements at Lighthouse Norstromsgrund. Winter 2000[R]. LOLEIF Report No 9. EU Contract MAS-CT-97-0098.170 p Appendix. Hamburg, Germany December 2001.
    [36]L(?)set, S., Shkhinek, K. (1999a). Evaluation of Existing Ice Force Prediction Methods. Validation of Low Level Ice Forces on Coastal Structures (LOLEIF) [R]. Report No 3. May 1999.
    [37]Schwarz, J. and Jochmann, P. Ice force measurement within the LOLEIF project[C]. Proc. 16th Int. Conf. on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada, August 1217,2001:pp669-680.
    [38]Morten. Bjerkas.2006. Ice actions on offshore structures-with applications of continuous wavelet transforms on ice load signals[D]. Department of Civil and transport engineering, Norwegian University of Science and Technology (NTNU),173p.
    [39]Belliveau, D. J., Hayden, H. and Prinsenberg, S. Ice Drift and Draft Measurements from Moorings at the Confederation Bridge[C], Proc. International conf. on Port and Ocean Eng. under Arctic Cond. (POAC), Ottawa, Canada, Vol.1.,2001:pp349-358.
    [40]Bhat, S.U. and Cox, G. F. N. Ice Loads on Multi-Legged Structures in Cook Inlet [C], Proc. International conf. on Port and Ocean Eng. under Arctic Cond. (POAC), Murmansk, Russia, Vol.4,1995:pp51-61.
    [41]Blanchet, D. and Kennedy, K. P. Global first-year ice load measurements in the arctic[C], Proc. of Off shore Mechanics and Arctic Engineering conference (OMAE), Florence, Italy, Vol.4,1996:pp103-113.
    [42]Duan, Z., Qu, J. and Spencer, B. F. (2002), Investigation of ice forces on jacket platforms structures:In-situ measured data on JZ20-2-1 Platform in the China Bohai Sea[C], Proc. Of ASCE Engineering Mechanics Conference, New York, USA.
    [43]Maattanen, M. Ice force measurements at the Gulf of Bothnia by the instrumented Kemi I lighthouse[C]. Proc.4rd Int. Conf. on Port and Ocean Eng. under Arctic Cond., St. John's, Newfundland, Canada, September 2630,1977, Vol II, pp730-740.
    [44]刘圆.抗冰海洋平台动力分析与结构选型研究[D].大连:大连理工大学,2006.
    [45]抗冰平台的冰荷载研究.国家高技术研究发展计划(863计划),渤海大油田勘探开发关键技术重大专项,新型平台抗冰振技术课题技术研究报告[R],2006年6月,pp4-16.
    [46]辽东湾北岸海冰物理力学性质测试与分析[R].渤海工程设计公司.1991.
    [47]渤海辽东湾海冰力学性能实验阶段报告[R].渤海石油公司,大连理工大学,1990.
    [48]辽东湾海冰物理力学性质测试研究报告[R].大连理工大学,渤海工程设计公司,1991.
    [49]丁德文.工程海冰学概论[M].北京:海洋出版社,1999.
    [50]杨国金.海洋工程学[M].北京:石油工业出版社,2000.
    [51]李辉辉.海洋平台冰振失效的预警标准[D].大连:大连理工大学.2004.
    [52]岳前进,李辉辉,于学兵.渤海石油平台的冰振及其对作业人员的影响[J].中国海洋平台,2005,20(3):35-39.[53]JZ20-2中南平台及管线冰振监测与分析[R].大连理工大学,2001.[54]JZ20-2中南平台冰振事故分析与改造项目报告[R].大连理工大学,2001.[55] Qianjin Yue, Fengwei Guo, Tuomo Karna,2009. Dynamic Ice Forces of Slender Vertical Structures due to Ice Crushing[J]. Cold Regions Science and Technology, Vol 56, p77-83. [56] Fengwei Guo, Qianjin Yue. Physical Mechanism and process of ice induced steady state vibration[C]. Proceedings of the 20th International Conference on Port and Offshore Engineering under Arctic Conditions. POAC09-34. [57] Karna, T. and Turunen, R. A straightforward technique for analysing structural response to dynamic ice action[C]. Proc.9th Int. Conf. Offshore Mech. and Arctic Eng.,1990: pp 135-142.
    [58]Engelbrektson, A. Dynamic ice loads on a lighthouse structure[C], Proc. International conf. on Port and Ocean Eng. under Arctic Cond. (POAC), St. Johns, Canada, Vol.3,1977: pp654-663.
    [59]Engelbrektson, A. and Jansson, J. E. Field observations of ice action on concrete structures in the Baltic sea[J]. Concrete international.1985, Vol.7, No.8:pp48-52.
    [60]Engelbrektson, A. An ice-structure interaction model based on observations in the Gulf of Bothnia[C], Proc. International conf. on Port and Ocean Eng. under Arctic Cond. (POAC), Lulea, Sweden, Vol.3,1989:pp504-517.
    [61]Engelbrektson, A. A refined ice/structure interaction model based on observations in the Gulf of Bothnia[C], Proc. of Offshore Mechanics and Arctic Engineering conference (OMAE), Yokohama, Japan, Vol.4,1997:pp373-376.
    [62]Toyama, Y. Sensu. T., Minami, M. and Yashima, N. Model test on ice-induced self excited vibration of cylindrical structures[C]. Proc.7th Int. Conf. Port and Ocean Engineering under Arctic Cond. (POAC 83). Espoo, Finland,5-9 April, Vol.2,1983:pp834-844.
    [63]Yue, Q., Zhang, X, Bi, X and Shi, Z. Measurements and analysis of ice induced steady state vibration[C]. Prod 16th Int. Conf. Port Ocean Eng. Under Arctic. Cond., Ottawa, Canada, August 12-17.2001:pp413-420.
    [64]Yue, Q. J, Bi, X, Zhang, X and Karna, T. Dynamic ice forces caused by crushing failure[C]. Proc.16th Int. Symposium on Ice. Dunedin, New Zealand,2-6 December 2002:pp134-141.
    [65]Yue, Q. J. and Li, L. Ice problems in Boha Sea oil exploitation[C]. Proc.17th Int. Conf. Port and Ocean Eng. Under Arctic Cond. Trondheim, Norway, June 16-19. Vol.1, 2003:pp151-174.
    [66]Jordaan, I. Mechanics of ice-structure interaction [J]. Engineering Fracture Mechanics. 2001,68:pp1923-1960.
    [67]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学,2006.第三章.
    [68]Karna, T., Qu, Y., Kuhnlein, W, Yue, Q and Bi, X. A Spectral Model of Ice Forces due to Ice Crushing[J]. Journal of Offshore Mechanics & Arctic Engineering.2007,129: pp138-145.
    [69]刘圆.抗冰海洋平台动力分析与结构选型研究[D].大连:大连理工大学,2006.
    [70]Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Phil. Mag.,1974,29: pp23-97.
    [71]J. M. J. Journee and W. W. Massie. Off shore hydromechanics (lecture notes), first edtion. Delft University of Technology. January,2001.570p.
    [72]Garry W. Timco. Ice forces on structures:Physical Modeling Techniques[C], IAHR Ice Symposium, Hamburg,1984:pp117-150.
    [73]Oddgeir Dalane:Ice model testing, project thesis of Norwegian University of Technology, 42p.
    [74]Atkins. Icebreaker modeling[J]. J. ship Res.1975,19, No.1:pp40-43.
    [75]Atkins, Caddell. The laws of similitude and crack propagation[J]. Int. J. Mech. Sci. 1974,16:pp541-548.
    [76]Andrew Palmer, John Dempsey. Model tests in ice[C]. Proceedings of the 20th international conference on port and ocean engineering under arctic conditions, POAC09-40.
    [77]Izumiyama, K., Irani, M. B. and Timco, G. W. Influence of compliance of structure on ice load[C]. Proc. IAHR Ice Symposium, Trondeim, Norway, Vol.1,1994:pp229-238.
    [78]Izumiyama, K. and Uto, S. Ice loading on a compliant indentor[C]. Proc.14th Int. Conf. Port and Ocean Engineering under Arctic Cond. (POAC 97). Yokohama, Japan, April 13-17. Vol.4,1997:pp431-436.
    [79]史庆增,宋安.海工低温实验室工艺设计[J].中国海上油气(工程).1990,Vol.2No.1:p29-35.
    [80]佟建峰,宋安,史庆增.冰激振动及冰荷载动力特性的试验研究[J].海洋工程.2001,Vol.19No.4:p34-39.p45.
    [81]史庆增,宋安.海冰静力作用的特点及几种典型结构的冰力模型试验[J].海洋学报.1994,Vol.16 No.6:p133-141.
    [82]史庆增,黄焱,宋安,孙振平,李桐魁.锥体冰力的实验研究[J].海洋工程.2004,Vol.22 No.1:p88-92.
    [83]Sodhi, D.S. and Morris, C.E.,1984. Ice forces on rigid, vertical, cylindrical structures[R]. U.S. Army Cold Regions Research and Engineering Laboratory, CRREL Report.
    [84]Toyama, Y., Sensu, T., Minami, M. And Yashima, N. Model tests on ice-induced self-excited vibration of cylinfrical structures[C]. Proceedings,7th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Helsinki, Finland, Vol. II,1983:pp834-844.
    [85]Tsuchiya, M., Kanie, S., Ikejiri, K., Yoshida, A. and Saeki, H. An experimental study on ice interactions with an arctic offshore structures[C]. Proceedings,17th offshore Technology Conference, Houston, TX, USA, OTC 5055,1985:pp321-327.
    [86]Ari Muhonen, Tuomo Karna, Esa Eranti, Kaj Riska, Erkki Jarvinen & Eila Lehmus[R]. Laboratory indentation tests with thick freshwater ice, VTT Research Notes 1370.
    [97]Hirayama, K. Properties of Urea-doped ice in the CRREL test basin[R]. U.S. Army CRREL report 83-8, Hanover, N.H., U.S.A.,1983a.
    [98]Hirayama, K. Experience with Urea-doped ice in the CRREL test basin[C]. Proc. POAC 83, Vol.Ⅱ, Helsinki, Finland,1983b, pp788-801
    [99]李志军.DUT-1非冻结合成模型冰物模技术及应用[J].大连理工大学学报.2001,第41卷第1期:pp94-99.
    [100]王永学,李志军.非冻结合成模型冰物理模拟冰作用力的试验技术[J].冰川冻土.2003,第25卷增刊2:pp227-233.
    [101]Maattanen. Laboratory tests for dynamic ice structure interaction[C]. Proc. POAC 79, Vol.Ⅱ, Trondheim, Norway,1979:pp1139-1153.
    [102]Clough, Ray W. Dynamics of structures,3rd edition[M]. New York:McGraw-Hill,1993, pp33-61.
    [103]Yue qianjin, Guo Fengwei and Stephen Chu,2006. Laboratory Tests of Ice Induced Structure Vibrations[C]. Proceedings of the 18th IAHR International Symposium on Ice, Vol.1, Sapporo, Japan,2006:ppl91-198.
    [104]Fengwei Guo, Qianjin Yue, et al. A medium scale model test system of ice-structure interaction and test results[C]. Proceedings of 19th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Dalian, China,2007:p216-224.
    [105]Fengwei Guo, Qianjin Yue et al. Model Test of Ice-Structure Interaction[C]. Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, U.S.,2009:OMAE 2009-79780.
    [106]Subrata K. Chakrabarti. Handbook of offshore engineering[M]. Amsterdam, Netherland: Elsevier Ltd. Vol.1,2005, p1-38.
    [107]郭峰玮,许宁,岳前进等.自升式平台冰荷载模型实验研究报告[R].中石油规划总院,大连理工大学,‘2009年7月,共102页.
    [108]Croasdale. Ice forces:current practice[C]. Seventh International conference on offshore mechanics and arctic engineering,1988:ppl33-151.
    [109]丁德文.工程海冰学概论[M].北京:海洋出版社,1999,pp117-173.
    [110]Sanderson. Ice Mechanics:Risks to Offshore Structures[M]. London, UK:Graham & Trotman.1988, pp145-187.
    [111]Ashby, M. F., Palmer, A. C., Trouless, M., Goodman, D. J., Howard, M. W., Hallam, S. D., Murrell, S. A. F., Jones, N., Sanderson, J.O., Ponter, A. R. S.,1986. Non-simultaneous failure and ice loads on structures[C]. Proceedings of Offshore Technology Conference, Houston, TX, pp399-404.
    [112]Sodhi, et al. Crushing Ice forces on Structures[J]. Journal of cold regions engineering.2003, Vol.17, No.4:ppl53-170.
    [113]Sodhi. Nonsimultaneous crushing during edge indentation of freshwater ice sheets [J]. Cold regions science and technology.1998,27:pp179-195.
    [114]Sodhi, D. S. Crushing failure during ice-structure interaction[J]. Engineering Fracture Mechanices.2001,68:pp1889-1921.
    [115]Bjerkas,M. Global design ice loads dependence of failure mode[C]. Proceedings of the 14th international offshore and polar engineering conference. Toulon, France,2004: pp871-877.
    [116]杨国金.海冰工程学[M].北京:石油工业出版社,2000.
    [117]Blenkarn, K. A. Measurement and analysis of ice forces on Cook Inlet structures[C]. Proceedings of 2nd Offshore Technology Conference, Houston, TX, OTC 1261,1970:Vol. II, pp 365-378.
    [118]Maattanen, M. On conditions for the rise of self-excited ice-induced autonomous oscillations in slender marine pile structures. Winter navigation research board[R]. Research report No 25. Helsinki University of Technology, May 1978.98p.
    [119]Maattanen, M. Numerical model for ice-induced vibration load lock-in and synchronization[C]. Proc.14th Int. Symposium on Ice. Potsdam, NY. USA,27-31 July 1998. Vol.2, pp923-930.
    [120]Engelbrektson. Dynamic ice loads on lighthouse structures[C]. In Proc.4th Int. Conf. on Port and Ocean Eng. under Arctic Conditions, St. John's, Canada,2,1977: pp654-864.
    [121]Engelbrektson. An Ice-structure Interaction Model Based on Observations in the Gulf of Bothnia[C]. POAC 89, vol.1,1989:pp504-517.
    [122]Engelbrektson. A refined Ice/structure Interaction Model Based on Observations in the Gulf of Bothnia[C].OMAE1997, vol.Ⅳ,1997:pp373-376.
    [123]Matlock, H., Dawkins, W. P. and Panak, J. J. Analytical model for ice-structure interaction[J]. Journal of engineering mechanics, ASCE, EM4,1971:pp1083-1092.
    [124]王海期.非线性振动[M].北京:高等教育出版社,1992,p1-22,p129-131.
    [125]锗亦清,李翠英.非线性振动分析,第一版[M].北京:北京理工大学出版社,1996,pp691-744.
    [126]Peyton, H. R. (1966). Sea ice strength[R]. University of Alaska Geophysical Institute. Report 182.
    [127]Peyton, H. R.1968. Sea ice forces[R]. Ice pressures against structures. National Research Council of Canada, Ottawa, Canada, Technical Memorandum 92, pp117-123.
    [128]Michel, B. and Toussaint, N.1977, Mechanism and analysis of indentation of ice plat[J]. Journal of Glaciology, Vol.19, No.81. p285-300.
    [129]Tuomo Karna, Koh Izumiyama, Qianjin Yue, Yan Qu, Fengwei Guo and Xu Ning[C]. An upper bound model for self-excited vibrations. Proceedings of 19th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC),2007, p177-189.
    [130]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700