基于ICESat和冰雷达数椐的南极Lambert冰川流域冰盖特征提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止,由于科学认知水平与技术条件的限制,人类对高影响冰盖变化的动力机制研究比较薄弱,造成海平面上升的预估结果仍具有很大的不确定性。因此,为了更准确的预测海平面的上升结果,急需强化对极地冰盖由表及里的观测,获取高时空分辨率和高精度的数据,为冰盖动力机制的理论分析和数值模拟等研究提供观测支撑和数据基础。
     Lambert冰川流域是研究冰盖物质平衡对海平面影响的重点区域之一。但是,目前国际上对其观测仍有许多不足之处。在冰川流域表面,缺乏对其高时空分辨率的物质平衡分布研究,不易为不同区域冰流动力过程提供直观的认识;在其底部,缺少亚公里分辨率尺度的冰下地形特征,而这种尺度的地形对分析不同类型的冰流动力机制具有重要的意义。
     为此,本文采用测高数据提取Lambert冰川流域表面高时空分辨率的高程变化信息,识别冰流变化的区域性特征。对其亚公里分辨率尺度的冰下地形特征提取主要集中在两个区域。一个是Lambert冰川流域源头的Dome A区域,另一个是冰川流域东侧的中山站-Dome A断面。主要研究内容和结论包括:
     (1)为提取表面高程变化特征,在对ICESat相邻工作期中重叠点对因坡度引起的高程差进行消除的基础上,计算了重叠点对的高程变化。然后采用反距离加权、自然邻域、径向基函数和ANUDEM (Australian National University DEM)等方法对每个阶段内高程变化进行插值,并选用插值精度最高的结果作为整个表面的高程变化。
     研究结果表明,本文的高程差消除方法效果更好,ANUDEM插值结果的精度最高。在时间上,Lambert冰川流域高程平均每年增长约0.002cm,且增长的加速度在减缓。因此,其物质处于相对平衡的状态。除接地线附近存在高程减小超过2m/a的区域外,多数区域的高程变化量都小于1m/a。在空间上,高程变化具有显著的区域性特征。纬度方向上,下游地区高程呈减小的趋势且减小的加速度在升高;上游高程增长0.84cm/a,但增长的加速度在减缓。经度方向上,三大支流高程均处于增长的趋势,其中Fisher支流增长最快,平均增长1.09cm/a。但三大支流高程增长的加速度也在变缓,以Mellor支流变缓的程度最大。通过与流速数据结合分析可知,高程减小超过1m/a的区域主要分布于Lambert和Mellor支流,二者流速大于100m/a的区域均深入内陆约200km,而Fisher支流的相应区域仅深入内陆75km,表明其所受冰流作用小于其它两个支流。
     (2)为了提取Dome A区域的冰下地形特征,首先建立了一种半自动方法从冰雷达数据中获取了各断面上覆冰层的厚度。然后采用多种方法对Dome A区域的冰厚和表面高程进行插值实验,从中确定出精度最好的结果(ANUDEM获得)作为冰厚和表面高程模型。最后将冰厚与表面高程结合,生成Dome A底部冰下地形数据。
     研究结果表明,半自动法所得交叉点厚度绝对差值在50m之内的点占76%,100m之内的点占92%,而人工数字化方法的对应值则分别为61%和89%。且半自动法所得结果与国际上AGAP(Antarctica's Gamburtsev Province)数据的一致性也明显优于人工数字化方法,表明半自动法所得结果的一致性和精度比之前方法均有所提高。通过采用AGAP数据将所得冰厚模型与人工数字化并插值后的结果进行对比,可知本文结果的厚度差均值仅为3.5m,远优于人工数字化方法的结果(17.7m)。因此,新的Dome A区域冰下三维地形精度最佳,对区域冰盖模式的模拟、冰流动力过程理解和冰盖演化过程分析均具有重要意义。基于此方法,创建了在Dome A区域运行Elmer/Ice模式所需的数据集,为Dome A区域底部温度场分布和冰层深度—年代关系研究提供数据支撑。
     (3)为提取中山站-Dome A断面的冰下地形特征,采用快速傅立叶变换计算了滑动窗口内冰岩界面的粗糙度双参数,用于定量描述冰岩界面高程的异常变化。在提取的过程中,除了获取冰岩界面的总粗糙度外,由于可以采用快速傅里叶变换将冰岩界面分解为一系列不同波长尺度的周期波,所以还将构成冰岩界面的波分为长波(大于1680m),中波(840-1680m)和短波(420-840m)三个类别,分析了不同波长尺度下的粗糙度分布。
     在本文采用的窗口尺度下,断面的冰岩界面主要有两种类型:ζ和η值均小对应高程起伏幅度小而水平变化频率快的冰岩界面类型;ζ和η值均大对应高程起伏幅度大而水平变化频率低的冰岩界面类型。结果表明,Lambert冰川支流南侧断面的冰岩界面起伏幅度普遍大于北侧,而且与北侧同为高大山峰的地形相比,其山峰的坡度也较大。通过不同波长尺度下的粗糙度分析,发现整个断面冰岩界面以长波尺度的地形为主要形式,但也存在一些特殊地形区域。例如,Lambert支流北侧断面两端高程起伏幅度不超过200m的区域,经分析发现以中短波的地形为主要特征。而南侧部分区域的冰岩界面则以中波尺度的地形特征为主要形式,短波尺度的地形则被侵蚀了。
So far, because of the limitations of scientific cognition levels and technical conditions, the researches of the high-impact factors on dynamic mechanisms of ice sheet change are so weak that sea level rise projections still have great uncertainties. Therefore, in order to predict the result of sea level rise more accurately, the urgent requirement is to strengthen the observations of ice sheet from surface to interior, and to obtain high spatial and temporal resolutions and high precision data to provide observation supports and data base for the theoretical analysis and numerical simulation studies for ice sheet dynamic mechanisms.
     Lambert Glacier drainage basin is one of the key areas for the study of ice sheet mass balance effect on sea level. However, the current international observations of this basin still have many inadequacies. On the surface of the glacier basin, high spatial and temporal resolution distributions of mass changes are lacking, which cannot support intuitive understanding for the different regions of ice flow dynamics; at its bottom, the subglacial topography with sub-km resolution scale, which is great significance for the analysis of the different types of ice flow dynamic mechanisms, is lacking.
     Therefore, this paper extracts elevation changes with high spatial and temporal resolution on the surface of Lambert Glacier drainage basin using altimetry data to identify the regional characteristics of ice flow change. The feature extraction of subglacial topography with sub-km resolution scale mainly concentrates in two areas. One is the Dome A region which is the source of Lambert Glacier drainage basin, and the other is Zhongshan Station-Dome A transect in eastern basin. The main contents and conclusions include:
     (1) To extract the surface elevation change, based on the elimination of elevation differences of overlapping footprint pairs caused by the slope from adjacent operation periods of ICESat, we calculate the elevation change of overlapping footprint pairs. Then we use the inverse distance weighting, natural neighbor, radial basis functions and ANUDEM (Australian National University DEM) to interpolate the elevation change of each stage and chose the most accurate interpolation results as the elevation changes of the entire surface.
     The result shows that our method of eliminating the elevation difference is better, and the interpolation accuracy of ANUDEM is the highest. In the time scale, the elevation of Lambert Glacier drainage basin grows about0.002cm/a, and the acceleration of growth is slowing. Therefore, the mass of the basin is in balance. Except near the grounding lines with regions of elevation reduction exceeding2m/a, the elevation changes in most regions are less than1m/a. In the spatial scale, the elevation change has significant regional distribution characteristics. In the latitude direction, the elevation of downstream areas shows a decreasing trend and the reduced acceleration is increasing; the elevation of upstream areas increases0.84cm/a, but the acceleration of the growth is slowing. In the longitude direction, the elevations of the three major tributaries are in growth trends, and the Fisher tributary has the fastest growing, about1.09cm/a. However, the accelerations of growth in the three major tributaries elevation are also slowing, and Mellor tributary has the maximum extent of slowing. Combined with the ice flow data, the regions with elevation reduction exceeding1m/a are mainly in Lambert and Mellor tributaries, and the regions with velocity greater than100m/a of the two tributaries are affecting further200km of the inland region, while the corresponding region of Fisher tributary is only75km. This indicates the role of ice stream in Fisher tributary is less than the other two tributaries.
     (2) In order to extract the subglacial topography of Dome A region, we firstly create a semi-automatic method to extract the ice thickness of the transect from ice radar data. Then we interpolate the ice thickness and surface elevation of Dome A using a variety of methods, and choose the best accuracy results (ANUDEM obtained) as the ice thickness and surface elevation model. Finally, we combine the ice thickness with the surface elevation to produce the subglacial topography of Dome A region.
     The result shows the cross points with absolute thickness difference less than50m derived by semi-automatic method account for76%and less than100m account for92%, while the corresponding points derived by artificial digital method are61%and89%. And compared with the international AGAP (Antarctica's Gamburtsev Province) data, the consistency of semi-automatic method is also better than artificial digital method. This indicates the consistency and accuracy of semi-automatic method have improved than previous methods. Using AGAP data to compare the ice thickness model derived by us with the one of previous method, we found the mean thickness difference of our result is only3.5m, which is far superior to artificial digital method (17.7m). Therefore, the accuracy of the new three-dimensional subglacial topography of Dome A is the best, which will play an important role in the regional ice sheet model simulation, the understanding of ice flow dynamics and the evolution of the ice sheet. Based on this method, we create datasets for Elmer/Ice model running in Dome A for the research on the basal temperature of ice and estimate the relationship between the depth and age of the ice layer.
     (3) For the extraction of the subglacial topography of the Zhongshan Station-Dome A transect, we calculate two-parameter roughness index in the sliding window using the Fast Fourier Transform to quantitatively describe the abnormal elevation change of the ice-bedrock interface. In the extraction process, because the Fast Fourier Transform can transform ice-rock interface into a sum of several various wavelength periodically corrugated surfaces, besides obtaining the total ice-rock interface roughness, we also divide the ice-rock interface into three scales:long wavelength (greater than1680m), medium wavelength (840-1680m) and short wavelength (420-840m), and the analyzed the distribution of roughness with different wavelengths scales.
     The ice-rock interface includes two main types in the window scale which this paper used:both of the ζ and η values are small relating to the ice-rock interface with small elevation fluctuation and fast frequency of horizontal change; both of the ζ and η values are large relating to the ice-rock interface with high elevation fluctuation and slow frequency of horizontal change. The result indicates that the vertical fluctuation of ice-rock interface in the south side transect of Lambert tributary is generally greater than the north side, and compared with the high peaks in the north side, the slopes of peaks in the south side are also high. By analyzing the roughness among the different wavelength scales, we find long wavelength scale terrain is the main characteristics for the ice-rock interface of the entire transect, but there are also some special terrain areas. For example, the analysis finds that short wavelength terrain is the main feature in the areas with elevation fluctuation less than200m in the two ends of the transect in the north side of Lambert tributary. The medium wavelength is the main feature in some parts of the transect in the south side of Lambert tributary, and the short wavelength topography has been eroded.
引文
[1]Alley R., Berntsen T., Bindoff N. L., et al. Climate change 2007:the physical science basis. Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom: Cambridge University Press,2007.
    [2]Pfeffer W. T., Harper J. T., O'Neel S. Kinematic constraints on glacier contributions to 21st-century sea-level rise [J]. Science,2008,321 (5894):1340-1343.
    [3]Richardson K., Steffen W., Schellnhuber H. J., et al. Synthesis report from climate change [R]. The Kingdom of Denmark:University of Copenhagen,2009.
    [4]Bamber J. L., Aspinall W. P. An expert judgement assessment of future sea level rise from the ice sheets [J]. Nature Climate Change,2013,3 (4):424-427.
    [5]The_ice2sea_Consortium. From Ice to High Seas:Sea-level rise and European coastlines [M]. Cambridge, United Kingdom:British Antarctic Survey,2013.
    [6]Vaughan D. G., Arthern R. Why is it hard to predict the future of ice sheets? [J]. Science,2007, 315(5818):1503-1504.
    [7]Taylor J., Siegert M. J., Payne A. J., et al. Regional-scale bed roughness beneath ice masses: measurement and analysis [J]. Computers & Geosciences,2004,30 (8):899-908.
    [8]Li X., Sun B., Siegert M. J., et al. Characterization of subglacial landscapes by a two-parameter roughness index [J]. Journal of Glaciology,2010,56 (199):831-836.
    [9]Vaughan D. G., Corr H. F. J., Ferraccioli F., et al. New boundary conditions for the West Antarctic ice sheet:Subglacial topography beneath Pine Island Glacier [J]. Geophysical Research Letters,2006,33 (9):L09501.
    [10]Fretwell P., Pritchard H. D., Vaughan D. G., et al. Bedmap2:improved ice bed, surface and thickness datasets for Antarctica [J]. The Cryosphere,2013,7 (1):375-393.
    [11]Rignot E., Mouginot J., Scheuchl B. Ice flow of the Antarctic ice sheet [J]. Science,2011,333 (6048):1427-1430.
    [12]Bingham R. G., Siegert M. J. Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history [J]. Quaternary Science Reviews,2009,28 ):223-236.
    [13]Allison I. The mass budget of the Lambert Glacier drainage basin, Antarctica [J]. Journal of Glaciology,1979,22 (87):223-235.
    [14]Fricker H. A., Hyland G, Coleman R., et al. Digital elevation models for the Lambert Glacier-Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry [J]. Journal of Glaciology,2000,46 (155):553-560.
    [15]Yu J., Liu H., Jezek K. C., et al. Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier-Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements [J]. Journal of Geophysical Research,2010,115 (B11): B11102.
    [16]Fricker H. A., Warner R. C., Allison I. Mass balance of the Lambert Glacier-Amery Ice Shelf system, East Antarctica:a comparison of computed balance fluxes and measured fluxes [J]. Journal of Glaciology,2000,46 (155):561-570.
    [17]Lythe M. B., Vaughan D. G, the B. C. BEDMAP:A new ice thickness and subglacial topographic model of Antarctica [J]. Journal of Geophysical Research,2001,106 (B6): 11335-11351.
    [18]Sun B., Siegert M. J., Mudd S. M., et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet [J]. Nature,2009,459 (7247):690-693.
    [19]Tang X., Sun B., Zhang Z., et al. Structure of the internal isochronous layers at Dome A, East Antarctica [J]. Science China Earth Sciences,2011,54 (3):445-450.
    [20]McIntyre N. F. A re-assessment of the mass balance of the Lambert Glacier drainage basin, Antarctica [J]. Journal of Glaciology,1985,31 (107):34-38.
    [21]Rignot E., Thomas R. H. Mass Balance of Polar Ice Sheets [J]. Science,2002,297 (5586): 1502-1506.
    [22]温家洪,孙波,李院生,等.南极冰盖的物质平衡研究:进展与展望[J].极地研究,2004,16(2):114-126.
    [23]Chen J. L., Wilson C. R., Blankenship D. D., et al. Antarctic mass rates from GRACE [J]. Geophysical Research Letters,2006,33 (11):L11502.
    [24]Chen J. L., Wilson C. R., Blankenship D., et al. Accelerated Antarctic ice loss from satellite gravity measurements [J]. Nature Geoscience,2009,2 (12):859-862.
    [25]Bindschadler R. Monitoring ice sheet behavior from space [J]. Reviews of Geophysics,1998, 36(1):79-104.
    [26]Gloersen P., Salomonson V. V. Satellites-New global observing techniques for ice and snow [J]. Journal of Glaciology,1975,15 (73):373-387.
    [27]Howat I. M., Smith B. E., Joughin I., et al. Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations [J]. Geophysical Research Letters,2008,35 (17): L17505.
    [28]Lee H., Shum C. K., Howat I. M., et al. Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data [J]. Earth and Planetary Science Letters,2012,321-322:74-80.
    [29]Rignot E. Changes in ice dynamics and mass balance of the Antarctic ice sheet [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2006,364 (1844):1637-1655.
    [30]Li Y., Davis C. H. Decadal Mass Balance of the Greenland and Antarctic Ice Sheets from High Resolution Elevation Change Analysis of ERS-2 and Envisat Radar Altimetry Measurements [C].2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA,2008:IV-339-IV-342.
    [31]Remy F., Parouty S. Antarctic Ice Sheet and Radar Altimetry:A Review [J]. Remote Sensing, 2009,1 (4):1212-1239.
    [32]Wingham D. J., Shepherd A., Muir A., et al. Mass balance of the Antarctic ice sheet [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2006,364 (1844):1627-1635.
    [33]Zwally H. J., Bindschadler R. A., Brenner A. C., et al. Growth of greenland ice sheet: measurement [J]. Science,1989,246 (4937):1587-1589.
    [34]Brenner A. C., DiMarzio J. R., Zwally H. J. Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45 (2):321-331.
    [35]Llubes M., Lemoine J. M., Remy F. Antarctica seasonal mass variations detected by GRACE [J]. Earth and Planetary Science Letters,2007,260 (1):127-136.
    [36]Velicogna I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE [J]. Geophysical Research Letters,2009,36 (19):L19503.
    [37]Robin G. d. Q. Mapping the Antarctic ice sheet by satellite altimetry [J]. Canadian Journal of Earth Sciences,1966,3 (6):893-901.
    [38]Brooks R. L., Campbell W. J., Ramseier R. O., et al. Ice sheet topography by satellite altimetry [J]. Nature,1978,274 (5671):539-543.
    [39]Zwally H. J., Bindschadler R. A., Brenner A. C., et al. Surface elevation contours of greenland and Antarctic Ice Sheets [J]. Journal of Geophysical Research,1983,88 (C3): 1589-1596.
    [40]Bamber J. L., Gomez-Dans J. L., Griggs J. A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data-Part 1:Data and methods [J]. The Cryosphere,2009,3 (1):101-111.
    [41]Zwally H. J. Growth of greenland ice sheet:interpretation [J]. Science,1989,246 (4937): 1589-1591.
    [42]Davis C. H. Elevation Change of the Southern Greenland Ice Sheet [J]. Science,1998,279 (5359):2086-2088.
    [43]Wingham D. J. Antarctic Elevation Change from 1992 to 1996 [J]. Science,1998,282 (5388): 456-458.
    [44]Shepherd A., Wingham D. J., Mansley J. A. D., et al. Inland thinning of Pine island glacier, West Antarctica [J]. Science,2001,291 (5505):862-864.
    [45]Shepherd A., Wingham D. J., Mansley J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica [J]. Geophysical Research Letters,2002,29 (10):1364.
    [46]Zwally H. J., Giovinetto M. B., Li J., et al. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise:1992-2002 [J]. Journal of Glaciology, 2005,51 (175):509-527.
    [47]Smith B. E. Recent elevation changes on the ice streams and ridges of the Ross Embayment from ICESat crossovers [J]. Geophysical Research Letters,2005,32 (21):L21S09.
    [48]Csatho B., Ahn Y., Yoon T., et al. ICESat measurements reveal complex pattern of elevation changes on Siple Coast ice streams, Antarctica [J]. Geophysical Research Letters,2005,32 (23):L23S04.
    [49]Shuman C. A., Berthier E., Scambos T. A.2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula [J]. Journal of Glaciology,2011,57 (204): 737-754.
    [50]Nguyen A. T., Herring T. A. Analysis of ICESat data using Kalman filter and kriging to study height changes in East Antarctica [J]. Geophysical Research Letters,2005,32 (23):L23S03.
    [51]Scambos T. A. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica [J]. Geophysical Research Letters,2004,31 (18):L18402.
    [52]Fricker H. A., Padman L. Ice shelf grounding zone structure from ICESat laser altimetry [J]. Geophysical Research Letters,2006,33 (15):L15502.
    [53]Fricker H. A., Scambos T., Bindschadler R., et al. An active subglacial water system in West Antarctica mapped from space [J]. Science,2007,315 (5818):1544-1548.
    [54]Moholdt G, Hagen J. O., Eiken T., et al. Geometric changes and mass balance of the Austfonna ice cap, Svalbard [J]. The Cryosphere,2010,4 (1):21-34.
    [55]Moholdt G, Nuth C., Hagen J. O., et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry [J]. Remote Sensing of Environment,2010,114 (11): 2756-2767.
    [56]Pritchard H. D., Arthern R. J., Vaughan D. G, et al. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets [J]. Nature,2009,461 (7266):971-975.
    [57]Thomas R., Rignot E., Casassa G, et al. Accelerated Sea-Level Rise from West Antarctica [J]. Science,2004,306 (5694):255-258.
    [58]Rignot E. Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula [J]. Geophysical Research Letters,2005,32 (7):L07502.
    [59]Slobbe D. C., Lindenbergh R. C., Ditmar P. Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints [J]. Remote Sensing of Environment, 2008,112 (12):4204-4213.
    [60]Slobbe D. C., Ditmar P., Lindenbergh R. C. Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data [J]. Geophysical Journal International,2009,176 (1):95-106.
    [61]Harding D. J., Carabajal C. C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure [J]. Geophysical Research Letters,2005, 32(21):L21S10.
    [62]Rinne E. J., Shepherd A., Palmer S., et al. On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland [J]. Journal of Geophysical Research,2011,116 (F3):F03024.
    [63]Davis C. H., Segura D. M. An algorithm for time series analysis of ice sheet surface elevations from satellite altimetry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):202-206.
    [64]Ferguson A. C., Davis C. H., Cavanaugh J. E. An autoregressive model for analysis of ice sheet elevation change time series [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42 (11):2426-2436.
    [65]Shepherd A., Ivins E. R., A G., et al. A Reconciled Estimate of Ice-Sheet Mass Balance [J]. Science,2012,338(6111):1183-1189.
    [66]Herzfeld U. C., McBride P. J., Zwally H. J., et al. Elevation changes in Pine Island Glacier, Walgreen Coast, Antarctica, based on GLAS (2003) and ERS-1 (1995) altimeter data analyses and glaciological implications [J]. International Journal of Remote Sensing,2008, 29 (19):5533-5553.
    [67]施雅风,任贾文.南极洲——国际上的科学竞技场[J].科技导报,1989,(1):48-50.
    [68]谢自楚.南极洛多姆冰帽的成冰作用和冰结构研究[J].冰川冻土,1984,6(1):1-27.
    [69]韩建康,谢自楚.南极洛多姆冰帽中心覆冰冰晶结构特征[J].科学通报,1988,(16):1279-1280.
    [70]韩建康,金会军,许晨海,等.南极南设得兰群岛近百年年平均气温变化趋势[J].冰川冻土,1995,17(3):268-273.
    [71]韩建康.南极威德尔海周边雪冰和大气气溶胶中的MSA,nssSO42-浓度及其比率研究[J].极地研究,1998,10(4):4-14.
    [72]韩建康,温家洪,尚新春,等.南极洲乔治王岛柯林斯冰帽的温度分布[J].南极研究,1995,(1):62-69.
    [73]Hou S., Qin D., Ren J. Different post-depositional processes of NO3- in snow layers in East Antarctica and on the northern QinghaiTibetan Plateau [J]. Annals of Glaciology,1999,29 (1):73-76.
    [74]秦大河.发展中的我国南极冰川学研究[J].冰川冻土,1988,10(3):250-255.
    [75]秦大河,任贾文,康世昌.中国南极冰川学研究10年回顾与展望[J].冰川冻土,1998,(3):35-40.
    [76]韩建康,谢自楚,戴枫年,等.南极洲乔治王岛柯林斯冰帽冰芯火山喷发记录[J].极地 研究,1999,11(4):255-263.
    [77]谢自楚,温家洪,韩建康.柯林斯冰帽小冰穹物质平衡多年变化的推算[J].南极研究,1994,6(2):35-42.
    [78]褚永海,李建成,赵向方,等.利用测高数据研究南极冰盖高程变化[J].大地测量与地球动力学,2008,28(2):67-70.
    [79]Wen H., Zhu G., Cheng P., et al. The ice sheet height changes and mass variations in Antarctica by using ICESat and GRACE data [J]. International Journal of Image and Data Fusion,2011,2 (3):255-265.
    [80]史红岭,陆洋,杜宗亮,等.基于ICESat块域分析法探测2003~2008年南极冰盖质量变化[J].地球物理学报,2011,54(4):958-964.
    [81]Lingle C. S., Lee L.-H., Zwally H. J., et al. Recent elevation increase on Lambert Glacier, Antarctica, from orbit cross-over analysis of satellite-radar altimetry [J]. Annals of Glaciology,1994,20 (1):26-32.
    [82]李震,秦翔,董庆.雷达高度计探测东南极地区冰面变化[J].冰川冻土,2003,25(3):268-271.
    [83]Davis C. H., Li Y., McConnell J. R., et al. Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise [J]. Science,2005,308 (5730):1898-1901.
    [84]沈强,陈刚,鄂栋臣,等.基于ICESat轨道交叉点分析的东南极Lambert-Amery系统当前高程变化特征分析[J].地球物理学报,2011,54(8):1983-1989.
    [85]任贾文,秦大河.东南极洲Lambert冰川流域西部地区的雪层剖面和积累速率变化特征[J].冰川冻土,1995,17(3):274-282.
    [86]任贾文,效存德,秦大河,等.东南极冰盖Lambert冰川流域的物质平衡研究[J].中国科学(D辑:地球科学),2002,32(2):134-140.
    [87]刘吉英.东南极Lambert冰川盆地上游物质平衡的时空变化研究[D].上海:上海师范大学,2007.
    [88]Wen J., Jezek K. C., Monaghan A. J., et al. Accumulation variability and mass budgets of the Lambert GlacierAmery Ice Shelf system, East Antarctica, at high elevations [J]. Annals of Glaciology,2006,43 (1):351-360.
    [89]温家洪,K. C.Jezek, B. M.Csatho,等.南极Lambert,Mellor和Fisher冰川的物质平衡及Amery冰架底部物质通量的估算[J].中国科学(D辑:地球科学),2007,37(9):1192-1204.
    [90]Wen J., Wang Y., Liu J., et al. Mass budget of the grounded ice in the Lambert Glacier-Amery Ice Shelf system [J]. Annals of Glaciology,2008,48:193-197.
    [91]Drewry D., Jordan S., Jankowski E. Measured properties of the Antarctic ice sheet:surface configuration,ice thickness,volume and bedrock characteristics [J]. Annals of Glaciology,3: 83-91.
    [92]崔祥斌,孙波,田钢,等.冰雷达探测研究南极冰盖的进展与展望[J].地球科学进展,2009,24(4):392-402.
    [93]Steinhage D., Nixdorf U., Meyer U., et al. Subglacial topography and internal structure of central and western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding [J]. Journal of Applied Geophysics,2001,47 (3-4):183-189.
    [94]Ferraccioli F., Jones P. C., Curtis M. L., et al. Subglacial imprints of early Gondwana break-up as identified from high resolution aerogeophysical data over western Dronning Maud Land, East Antarctica [J]. Terra Nova,2005,17 (6):573-579.
    [95]Rippin D. M., Bamber J. L., Siegert M. J., et al. Basal topography and ice flow in the Bailey/Slessor region of East Antarctica [J]. Journal of Geophysical Research:Earth Surface, 2003,108 (F1):6008.
    [96]Holt J. W., Blankenship D. D., Morse D. L., et al. New boundary conditions for the West Antarctic Ice Sheet:Subglacial topography of the Thwaites and Smith glacier catchments [J]. Geophysical Research Letters,2006,33 (9):L09502.
    [97]Ross N., Bingham R. G, Corr H. F. J., et al. Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica [J]. Nature Geosci,2012, advance online publication.
    [98]Welch B. C., Jacobel R. W. Analysis of deep-penetrating radar surveys of West Antarctica, US-ITASE 2001 [J]. Geophysical Research Letters,2003,30 (8):1444.
    [99]孙波,崔祥斌.2007/2008年度中国南极冰穹A考察新进展[J].极地研究,2008,20(4):371-378.
    [100]Zhang S., E D., Wang Z., et al. Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica [J]. Annals of Glaciology,2008,48 (1): 113-118.
    [101]Cui X., Sun B., Tian G, et al. Ice radar investigation at Dome A, East Antarctica:Ice thickness and subglacial topography [J]. Chinese Science Bulletin,2010,55 (4-5):425-431.
    [102]Weertman J. On the sliding of glaciers [J]. Journal of Glaciology,1957,3 (21):33-38.
    [103]谢自楚,刘潮海.冰川学导论[M].上海:上海科学普及出版社,2010.
    [104]Fowler A. C. A Theoretical Treatment of the Sliding of Glaciers in the Absence of Cavitation [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1981,298 (1445):637-681.
    [105]Fowler A. C. Weertman, Lliboutry and the development of sliding theory [J]. Journal of Glaciology,2010,56 (200):965-972.
    [106]Bennett M. M., Glasser N. F. Glacial geology:ice sheets and landforms [M]. Chichester, West Sussex, United Kingdom:John Wiley & Sons,2009.
    [107]Kamb B. Sliding motion of glaciers:Theory and observation [J]. Reviews of Geophysics and Space Physics,1970,8 (4):673-728.
    [108]Lliboutry L. General theory of subglacial cavitation and sliding of temperate glaciers [J]. Journal of Glaciology,1968,7 (49):21-58.
    [109]Nye J. F. Glacier Sliding Without Cavitation in a Linear Viscous Approximation [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1970, 315 (1522):381-403.
    [110]Hubbard B., Hubbard A. Bedrock surface roughness and the distribution of subglacially precipitated carbonate deposits:implications for formation at Glacier de Tsanfleuron, Switzerland [J]. Earth Surface Processes and Landforms,1998,23 (3):261-270.
    [111]Hubbard B., Siegert M. J., McCarroll D. Spectral roughness of glaciated bedrock geomorphic surfaces:Implications for glacier sliding [J]. Journal of Geophysical Research, 2000,105 (B9):21295-21303.
    [112]Siegert M. J., Taylor J., Payne A. J., et al. Macro-scale bed roughness of the siple coast ice streams in West Antarctica [J]. Earth Surface Processes and Landforms,2004,29 (13): 1591-1596.
    [113]Siegert M. J., Taylor J., Payne A. J. Spectral roughness of subglacial topography and implications for former ice-sheet dynamics in East Antarctica [J]. Global and Planetary Change,2005,45 (1-3):249-263.
    [114]Bingham R. G, Siegert M. J. Radar-derived bed roughness characterization of Institute and Moller ice streams, West Antarctica, and comparison with Siple Coast ice streams [J]. Geophysical Research Letters,2007,34 (21):L21504.
    [115]Rippin D. M., Bamber J. L., Siegert M. J., et al. Basal conditions beneath enhanced-flow tributaries of Slessor Glacier, East Antarctica [J]. Journal of Glaciology,2006,52 (179): 481-490.
    [116]Ross N., Bingham R. G, Corr H. F. J., et al. Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica [J]. Nature Geoscience,2012,5 (6):393-396.
    [117]任贾文,效存德,秦大河.Lambert冰川流域物质平衡和南极冰盖变化[J].自然科学进展,2002,12(10):58-63.
    [118]鄂栋臣,徐莹,张小红.ICESat卫星及其在南极Dome A地区的应用[J].武汉大学学报(信息科学版),2007,32(12):1139-1142.
    [119]蒋芸芸.南极中山站-Dome A断面冰盖浅层特征的雷达遥感探测研究[D].南京:南京大学,2009.
    [120]侯书贵,李院生,效存德,等.南极Dome A地区的近期积累率[J].科学通报,2007,52(2):243-245.
    [121]Xiao C., Li Y., Allison I., et al. Surface characteristics at Dome A, Antarctica:first measurements and a guide to future ice-coring sites [J]. Annals of Glaciology,2008,48 (1): 82-87.
    [122]Zhang S., E. D., Wang Z., et al. Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica [J]. Annals of Glaciology,2008,48 (1): 113-118.
    [123]崔祥斌.基于冰雷达的南极冰盖冰厚和冰下地形探测及其演化研究[D].杭州:浙江大学,2010.
    [124]文汉江,程鹏飞.ICESAT/GLAS激光测高原理及其应用[J].测绘科学,2005,30(5):33-35.
    [125]Bae S., Urban T. Summary of Laser Profile Array (LPA) Parameter Estimation [EB/OL]. University of Texas, USA:University of Texas Center for Space Research ICESat/GLAS Document,2011 [2012-10-1]. http://nsidc.org/data/icesat/pdf/CSR_Summary_of_LPA_para-m_est_v2.pdf.
    [126]Abshire J. B., Sun X., Riris H., et al. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission:On-orbit measurement performance [J]. Geophysical Research Letters,2005, 32 (21):L21S02.
    [127]Zwally H. J., Schutz B., Bentley C., et al. GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data V018 [DB/OL]. USA:National Snow and Ice Data Center,2003 [2010-6-6]. http://nsidc.org/data/glal2.html.
    [128]Alberti M., Biscaro D. Height variation detection in polar regions from ICESat satellite altimetry [J]. Computers & Geosciences,2010,36 (1):1-9.
    [129]舒宁.微波遥感原理(修订版)[M].武汉:武汉大学出版社,2003.
    [130]张向培.基于冰雷达探测技术的南极冰盖冰层厚度和冰下地形特征研究[D].长春:吉林大学,2007.
    [131]曾昭发,刘四新,等.探地雷达方法原理及应用[M].北京:科学出版社,2006.
    [132]王海婴,徐晓明,刘义,等.脉冲雷达天线近场的准时域测量方法[J].舰船电子工程,2007,27(5):169-172.
    [133]Reynolds J. M. An introduction to applied and environmental geophysics [M]. Chichester: Wiley,1997.
    [134]DiMarzio J., Brenner A., Schutz R., et al. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica [DB/OL]. USA:National Snow and Ice Data Center,2007.
    [135]Bindschadler R., Choi H., ASAID Collaborators. High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet [DB/OL]. USA:National Snow and Ice Data Center,2011 [2011-12-3]. http://nsidc.org/data/nsidc-0489.html.
    [136]Lu G. Y., Wong D. W. An adaptive inverse-distance weighting spatial interpolation technique [J]. Computers & Geosciences,2008,34 (9):1044-1055.
    [137]Watson D. The natural neighbor series manuals and source codes [J]. Computers & Geosciences,1999,25 (4):463-466.
    [138]Sibson R. Interpolating Multivariate Data [M]. New York:John Wiley & Sons,1981:21-36.
    [139]Chaplot V., Darboux F., Bourennane H., et al. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density [J]. Geomorphology,2006,77 (1-2):126-141.
    [140]Buhmann M. D. Radial basis functions [J]. Acta Numerica,2000,9:1-38.
    [141]Skala V. Progressive RBF interpolation [C]. Proceedings of the 7th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, Franschhoek, South Africa,2010:17-20.
    [142]Ozdamar L., Demirhan M., Ozpinar A. A comparison of spatial interpolation methods and a fuzzy areal evaluation scheme in environmental site characterization [J]. Computers, Environment and Urban Systems,1999,23 (5):399-422.
    [143]Mitasova H., Mitas L. Interpolation by regularized spline with tension:Ⅰ. Theory and implementation [J]. Mathematical Geology,1993,25 (6):641-655.
    [144]Apaydin H., Sonmez F. K., Yildirim Y. E. Spatial interpolation techniques for climate data in the GAP region in Turkey [J]. Climate Research,2004,28 (1):31-40.
    [145]Hardy R. L. Multiquadric equations of topography and other irregular surfaces [J]. Journal of Geophysical Research,1971,76 (8):1905-1915.
    [146]Ferreira A. J. M., Fasshauer G E. Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method [J]. Computer Methods in Applied Mechanics and Engineering,2006,196 (1-3):134-146.
    [147]Hutchinson M. F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits [J]. Journal of Hydrology,1989,106 (3-4):211-232.
    [148]杨勤科,T. R.Mcvicar,李领涛,等.ANUDEM-专业化数字高程模型插值算法及其特点[J].干旱地区农业研究,2006,(3):36-41.
    [149]O'Callaghan J. F., Mark D. M. The extraction of drainage networks from digital elevation data [J]. Computer Vision, Graphics, and Image Processing,1984,28 (3):323-344.
    [150]ESRI. Flow Accumulation (Spatial Analyst) [EB/OL]. USA:ArcGIS Resourse Center,2012 [2013-3-20]. http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z000000510-00000.htm.
    [151]汤国安,杨听ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [152]李林,金先级.数值计算方法(MATLAB语言版)[M].广州:中山大学出版社,2006.
    [153]Rippin D. M., Siegert M. J., Bamber J. L., et al. Switch-off of a major enhanced ice flow unit in East Antarctica [J]. Geophysical Research Letters,2006,33 (15):L15501.
    [154]Plewes L. A., Hubbard B. A review of the use of radio-echo sounding in glaciology [J]. Progress in Physical Geography,2001,25 (2):203-236.
    [155]Bianchi C., Cafarella L., De Michelis P., et al. Radio Echo Sounding (RES) investigations at Talos Dome (East Antarctica):bedrock topography and ice thickness [J]. Annals of Geophysics,2003,46 (6):1265-1270.
    [156]Zwinger T., Zhao L., Moore J. C., et al. A full-Stokes anisotropic ice flow model for Dome A, Antarctica [C]. EGU General Assembly 2013, Vienna, Austria,2013.
    [157]莱昂斯.数字信号处理(原书第2版)[M].朱光明,程建远,等译.北京:机械工业出版社,2006.
    [158]姜建国,曹建中,高玉明.信号与系统分析基础[M].北京:清华大学出版社,1994.
    [159]普埃克,等.数字信号处理(第四版)[M].方艳梅,刘永清,等译.北京:电子工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700