抗冰海洋平台动力分析与结构选型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前抗冰平台的设计仍处于静力设计阶段。但是近几年在渤海辽东湾多座平台的现场监测表明,渤海导管架平台存在比较剧烈的冰激振动现象,并直接威胁着平台的安全。本文基于渤海抗冰平台的现场监测数据以及冰荷载研究的最新成果,对渤海抗冰海洋平台在动冰力作用的结构特性、疲劳分析方法以及结构选型等内容进行了系统的分析和研究。
     首先,本文对渤海现场原型试验和基于现场原型试验取得的冰荷载研究成果进行了归纳与总结。研究结果表明,圆柱桩腿平台存在冰致稳态振动,安装破冰锥体后,结构也会发生冰激共振现象。基于直接冰力与结构响应的同步测量数据已经建立了比较实用的冰力模型,这为开展抗冰结构的动力分析创造了条件。本文的研究内容是在消化了冰荷载研究成果的基础上开展的。
     对开展现场监测的四座平台建立了有限元模型。基于实测的自由振动衰减曲线,利用对数缩减法确定了渤海抗冰导管架结构的综合阻尼比,为提高抗冰平台动力分析的精度提供了基础。同时分析了结构的模态特征,并利用实测数据进行了对比,验证了模型的合理性,
     通过对四座平台的动力响应分析,阐述了渤海抗冰导管架平台的动力特性,指出渤海的抗冰导管架结构为静刚度比较大的柔性结构。在动力特性方面,无论是直立结构还是锥体结构,其基频都与冰荷载的频率接近或一致,抗冰平台呈现明显的动力放大柔性特征。在静力特性方面,渤海抗冰平台的静刚度较大,在极值静冰力作用下,结构的位移响应较小,结构具有较大的静力安全储备。这个特点对开展结构动力优化与结构振动控制有指导意义。
     对渤海抗冰导管架平台的疲劳问题进行了比较全面的分析,并对冰振作用下管结点疲劳寿命的详细计算方法进行了研究。
     基于实测冰力时程和冰激振动响应数据,论述了渤海抗冰导管架平台存在冰激疲劳失效问题。通过安全寿命分析,给出了冰激疲劳分析的流程,进一步完善了柔性抗冰导管架平台冰激疲劳寿命的分析方法,指出估计冰激疲劳寿命的关键问题是冰荷载与冰疲劳环境参数。同时根据多年的现场冰情监测与海冰数值模拟成果,建立了渤海JZ20-2海域的海冰疲劳环境模型,为进行详细冰激疲劳寿命估计提供了基础。利用谱分析方法,分别对新建的JZ20-2NW平台和现役的JZ20-2MSW平台进行了详细的冰激疲劳寿命估计。
     另外,还分析了冰激甲板振动对工作人员和上部管线系统的影响,指出甲板加速度引起的上部管线和作业人员的疲劳也是平台设计需要考虑的问题,设计过程需要对平台的甲板加速度进行分析。利用谱分析方法计算了渤海四座典型抗冰导管架平台在不同冰况下最大振动加速度响应幅值,并利用实测冰激振动响应验证了计算结果的合理性,同时论述了数值结果在实际工程中的应用。
     最后,论述了抗冰海洋平台的结构特点和类型,目前已经应用的抗冰海洋平台主要有人工岛和导管架平台两类,总结了这两类抗冰海洋平台的发展历史和结构特点,分析了四腿、三腿与单腿抗冰导管架结构的抗冰性能。结果表明,针对渤海冰区边际油田的开发,独腿导管架平台加抗冰锥体用作卫星平台是可行的,四腿导管架结构加抗冰锥体适合用作中心平台,并进一步论述了简易抗冰平台在渤海应用的可行性以及需要解决的关键问题。
At present, the design of ice-resistant platforms is still in the state of static design. But itis indicated that the ice-induced vibration of ice-resistant platforms is quite intensive, anddirectly endangers the structural safety according to the field data monitored on severalplatforms in the Liaodong Bay of Bohai Sea in past years. A systematic research on thedynamic characteristic, ice-induced fatigue and structural lectotype of ice-resistant offshoreplatforms is presented based on in situ results of ice-induced vibration and the currentprogress Of ice load.
     Firstly, the full-scale field tests and the current achievements of ice load are summarized.It is found that the ice-induced steady vibration occurs on vertical structures, and theice-induced sympathetic vibration also happens on conical structures. The ice load model,which was developed based on the field synchronous results of ice load and structuralresponses, provides a probability to perform the dynamic analysis of ice-resistant platforms.The main works in this thesis are obtained with adopting the current achievements of ice load.
     The finite-element models of four ice-resistant structures are established, on whichfull-scale tests are carried on. The damping ratio of structures is determined with logarithmicreduced method using free damped curve of acceleration response obtained from field data,which can improve the precision of dynamic analysis. The modal analysis is conducted, and iscompared with the field data to prove its rationality.
     The dynamic characteristics of ice-resistant jacket platforms in the Bohai Sea areanalyzed, and it is pointed out that the platforms, as typical compliant structures, haverelatively large static rigidity according to dynamic response analysis of the four platforms.For the dynamic characteristics, both of the basic frequencies of vertical and conicalstructures are close or consistent with the frequency of ice load. The phenomenon of dynamicmagnifying, as a typical compliant characteristic, is obvious on the ice-resistant jacketplatforms. For the static characteristics, the static rigidity is relatively large with smalldisplacement, and the static safety stock of the structure is enough under the maximum staticice load. The characteristics above can be applied for dynamic optimization and vibrationcontrol of the structure.
     A general analysis about fatigue for ice-resistant jacket platform in the Bohai Sea isprocessed, and the method of computing ice-induced fatigue life of tube node is studied indetails.
     Based on the field data of ice load history and ice-induced response, the probability offatigue failure for ice-resistant jacket platforms is discussed. Through the safety fatigueanalysis, the flowcharts of fatigue analysis are given, and the further perfect estimationmethod of ice-reduced fatigue life is improved for ice-resistant platforms. With the analysisabove, it can be concluded that the ice load and the ice fatigue environmental parameters arethe key problems for estimating the ice-induced fatigue life. Moreover, the ice fatigueenvironmental model of JZ20-2 area in the Bohai Sea is established based on the field dataand simulated numerical results in the last decade. The ice-reduced fatigue lives ofJZ20-2NW platform that was built recently, and of JZ20-2MSW platform that is in service areanalyzed with the spectral method in details.
     Moreover, the influences of ice-indueed acceleration on the stuff and the pipeline systemon the platform are discussed. It is pointed out that the influence of ice-induced accelerationshould be also taken into consideration, and it is necessary to analyze the deck acceleration inthe structural design. The maximal acceleration amplitudes under ice combinationalconditions of various ice thickness and ice velocity are computed with spectrum method. Andthe accuracy of numeric results is proved with the field data. Meanwhile, the application ofnumeric results in practical engineering is discussed.
     At last, the ice-resistant structural types and their structural characteristics are discussed.There are two kinds of ice-resistant structures as man-made island and jacket platform. Thephylogeny and structural characteristics of the two kinds of ice-resistant structures aresummarized, and the ice-resistant performances of single-legged, three-legged andfour-legged platforms are compared. The results reveal that the monopod jacket platform withice-breaking cone is feasible for satellite platform, and the four-legged platform withice-breaking cones can be adapted as centre platform aiming at the exploitation of margin oilfield in the ice-covered zone of Bohal Sea. The feasibility of simple ice-resistant platform inthe Bohai Sea and the relative key problems are discussed briefly also.
引文
[1] 张振国.海洋石油工业的现状和前景.海洋技术,1994,13(4):71-74.
    [2] 张耀光.渤海海洋油气资源开发利用与前景展望.海洋开发,2003,6:6-9.
    [3] 许肖梅.海洋技术概论.北京:科学出版社,2000.
    [4] 张振国.中国海洋石油天然气的开发历程和前景.中国海洋平台,1996,11(6):243-244.
    [5] 曾恒一.我国海洋石油在创新中发展.船舶工业技术经济信息,2000,187:23-29.
    [6] 陈惠民.加快技术创新,促进我国海洋工程开发.中国海洋平台,1999,14(3):4-8.
    [7] API RP 2N. Recommended practice for planning, designing, and constructing fixed offshore structures in ice environments. 1988.
    [8] API RP 2A.Recommended practice for planning, designing, and constructing fixed offshore structures. 1991.
    [9] 中华人民共和国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法—工作应力设计法,SY 10030-2003,2004.
    [10] DNV. Rules for the design, construction, and inspection of fixed offshore structures.1977.
    [11] 曾恒一.影响我国海洋油气开发的海洋灾害.中国海洋平台,1998,15(3):21-24.
    [12] 杨国金.海冰工程学.北京:石油工业出版社,2000.
    [13] 丁德文等.工程海冰学概论.北京:海洋出版社,1999.
    [14] 段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [15] Peyton H R. Sea ice strength. University of Alaska. Geophysical Institute. Report UAG R-182. Alaska, 1966.
    [16] Blenkarn K A. Measurement and analysis of ice forces on Cook Inlet structures. Proceedings, 2nd Offshore Technology Conference, 1970, OTC1261(Ⅱ):365-378.
    [17] Engelbrektson A, Janson E. Field observations of ice action on concrete structures in the Baltic Sea. Concrete International, 1985:48-52.
    [18] Engelbrekston A. Observations of a resonance vibrating lighthouse structure in movingice, POAC, 1984.
    [19] Maattanen M. Ice forces and vibration behavior of bottom-founded steel lighthouses. Proc. 3rd International Symposium on Ice Problems, USA. 1975:345-354.
    [20] 杨国金.海洋工程灾害与环境荷载.中国海洋平台.1995,10(5):202-204.
    [21] 岳前进,毕祥军,季顺迎等.平台振动与冰力测量研究报告,大连理工大学,2001.
    [22] Loset S, Shkhinek K. Evaluation of existing ice Force prediction methods. Validation of Low Level Ice Forces on Coastal Structures(LOLEIF).Report No. 4. May 1999.
    [23] Loset S, Shkhinek K and Uvarova E. An overview of the influence of structure width and ice thickness on the global ice load. Proc. 15th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC),Helsinki, 1999,1:425-434.
    [24] Wright B. Ice load prediction methods for wide vertically sided structures. Validation of Low Level Ice Forces on Coastal Structures. LOLEIF Report No. 2. EU Project-Contract MAS3-CT 97-O098. June 1988.
    [25] Ashby M F, Palmer A C, Thouless M, et al. Nonsimultaneous failure and ice loads on Arctic structures. Offshore Technology Conference, Houston, TX, May 5-8,1986:399-404.
    [26] Blanchet D, DeFranco S J. Global first-year ice loads: Scale effect and non-simultaneous failure. Proc. 13th IAHR Ice Symposium. Beijing, 1996:203-214.
    [27] Blancher D. Ice loads from first-year ice ridges and rubble fields. Can. J. Civ. Eng.,1998, 25:206-219.
    [28] Wright B, Timco G. A review of ice forces and failure modes on the Molikpaq. Proc. 12th Int. Symp. On Ice. Trondheim, Norway, 1994,2:816-824.
    [29] Blancher D, DeFranco S. On the understanding of the local ice pressure area curve-Deterministic approach. In:IUTAM Scaling Laws in Ice Mechanics and Ice Dynamics. 2001:31-42.
    [30] Sodhi D S. Non-simultaneous crushing during edge indentation of freshwater ice sheets. Cold Regions Science and Technology, 1998,27:179-194.
    [31] Sodhi D S. Crushing failure during ice-structure interaction. Engineering Fracture Mechanics, 2001,68:1889-1921.
    [32] 中国海洋石油总公司.渤海海域钢质固定平台结构设计规定.天津:中国海洋石油总公司企业标准.2002.
    [33] Jochmann P, Schwarz J. The influence of individual parameters on the effective pressure on level ice against lighthouse "Norstromsgund".Proc. 18th International Conference on Port and Ocean Engineering under Arctic Conditions. Clarkson University, Potsdam, NY,USA, 2005,4.
    [34] Karna T, Qu Y. Pressure-Area relationship based on field data. Proc. 18th International Conference on Port and Ocean Engineering under Arctic Conditions. Clarkson University, Potsdam, NY, USA, 2005,4.
    [35] Daley C, Tuhkuri J, Riska K. The role of discrete failures in local ice loads. Cold Regions Science and Technology, 1998,27:197-211.
    [36] 史庆增.海冰的动力作用和冰力谱.海洋学报,1994,16(5):106-112.
    [37] 欧进萍,段忠东.渤海导管架平台桩柱冰压力随机过程模型及其参数确定.海洋学报,1998,20(5):110-117.
    [38] Karna T, Qu Y, Kuhnlein W.A New spectral method for modeling dynamic ice actions. Proceedings of OMAE04 23rd International Conferense on Offshore Mechanics and Arctic Engineering. Vancouver, Canada, 2004:8-16.
    [39] Maattanen M. Ice force design and measurement of conical structure. Proc. of 12th International Symposium on Ice(IAHR). Trondheim, Norway, 1994, 1:401-410.
    [40] Maattanen M. et al. Ice failure and ice loads on a conical structure-Kemi-1 cone full scale ice force measurement data analysis. Proc. of 13th International Symposium On Ice (IAHR).Beijing, China, 1996, 1:8-17.
    [41] Thomas G. Brown, Mauri Maattanen. Comparison of KEMI-I and Confederation Bridge cone Ice Load Measurement Results. In Proc. IAHR Symposium on Ice, DUNEDIN NEW ZEALAND, 2002,503-514.
    [42] Brown T G. The Confederation bridge-early results from ice monitoring program. In proc. CSCE Annual Conference, Sherbrooke, Canada, 1997(1):177-186.
    [43] Mayne D C, Brown T G. Rubble pile observations. In Proc. 10th International Offshore and Polar Engineering Conference, Seattle, USA, 2000(1):596-599.
    [44] Edwards R Y, Crosasdale K Y. Model experiments to determine ice forces on conical structures. Symposium of Applied Glaciology International Glaciological Socialty. 1976.
    [45] Kato K, Izumiyama K. Simulation of Ice Load on a Conical Shaped Structure:Comparison with Experimental Results. Proceedings of the Seventh International Offshore and Polar Conference, 1997:360-367.
    [46] Hirayama K, Obara I. Ice forces on inclined structures. Proc of the 5th International Offshore Mechanicsand Arctic Engineering. Japan, 1986:515-520.
    [47] Ralston T D. Plastic Limit Analysis of Sheet Ice Loads Structures. IUTAM Symposium on Physics and Mechanics of Ice. Springer-Verlag, New York, 1980:289-308
    [48] Crosadale K R. Ice Forces on Fixed Rigid Structures, Report for the Working Group on Ice Forces on Structures, Astate-of-the-art Report, CRREL Special Report, 1980:34-106.
    [49] 岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报,2003,36(2):16-19.
    [50] Lau M, et al. Influence of velocity on Ice-Cone interaction. IUTAM symposium "scaling laws in Ice Mechanics and Ice Bynamics",June, 2000.
    [51] Dmitri G. Matskevitch. Velocity effects on conical structure ice loads. Proceeding of OMAE' 02: 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, 2002:1-10.
    [52] Karl Shkhinek, Ekaterina Uvarova. Dynamics of the ice sheet interaction with the sloping structure. Proc. 16th Int. Conf. Port Ocean Eric. Arctic Cond. (POAC' 01).Ottawa, Canada, 2001, 2:639-648.
    [53] Wessels E, Kato K. Ice forces on fixed and floating conical structures. Proc. Of the 9th International IAHR Symposium on Ice. Sapporo, Japan, 1988,2:666-691.
    [54] 史庆增,黄焱,宋安等.锥体冰力的试验研究.海洋工程,2004,22(1):88-92.
    [55] 史庆增,刘波,李勇等.锥体上冰力的实验研究.中国海上油气,2005,17(2):119-124.
    [56] 史庆增,彭忠.冰力作用下锥体的合理结构形式及在柱体上设计锥体的合理性讨论.中国海上油气,2005,17(5):342-346.
    [57] Yue Q J, Bi X J, Sun B, et al. Full-scale force measurement on JZ20-2 platform. Proc. IAHR Ice Symp. (AHR' 96) Beijing, 1996:282-289.
    [58] Yue Q J, Bi X J. Ice-induced jacket structure vibrations in Bohai Sea. Journal of Cold Regions Engineering. 2000,14(2):81-92.
    [59] 屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25:326-329.
    [60] 屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学.2006.
    [61] Karna T, Qu Y,and Kuhnlein W.A new spectral method for modeling dynamic ice actions. Proceedings of OMAE04 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada, 2004:953-960.
    [62] Qu Y,Yue Q.J, Bi X.J, et al. Random Ice Forces on Conical Structures, Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions, POAC' 03, Trondheim, Norway, 2003:259-270.
    [63] Yue Qianjin, Qu Yah, Bi Xiangjun, et al. Ice load spectrum on narrow conical structures. Proc. 18th International Conference on Port and Ocean Engineering under Arctic Conditions. USA. 2005,4,
    [64] Qu Yan,Yue Qianjin, Bi Xiangjun, et al.A random ice fForce model for nNarrow conical Structures. Cold Regions Science and Technology. 2006. (Accepted)
    [65] 曲月霞,李志军,王永学等.作用于正倒锥结构上冰力物理模拟试验研究.大连理工大学学报.2001,41(3):231-236.
    [66] 曲月霞,李广伟,李志军等.正倒锥结构上冰力谱分析实验研究.海洋工程,2001,19(3):38-42.
    [67] Koh Izumiyama, Hiromitsu Kitagawa, Koichi Koyama, et al. On the interaction between a conical structure and ice sheet. Proc. of the llth International Conference on Port and Ocean Engineering under Arctic Conditions (POAC),St. John's, Canada, 1991:155-166.
    [68] Sodhi D S. Dynamic analysis of failure modes on ice sheets encountering sloping structures, Proc. 6th Int. Conf. on Offshore Mechanics and Arctic Engineering. Houston. 1987,4:281-284.
    [69] C James Montgomery, A William Lipsett. Dynamic test and analysis of a massive pier subjected to ice force. Can. J. CIV. Eng. 1980,7:432-441.
    [70] 黄炎.冰激海洋平台振动的动力模型试验研究:(博士学位论文).天津:天津大学.2004.
    [71] Karna T.A flaking model of dynamic ice-structure interaction. VTT Building Technology 1997.
    [72] 岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载.工程力学,2004,21(1):202—208.
    [73] 佟建锋,史庆增.海冰引起的结构振动的研究与进展.船舶工业技术经济信息,2001,10:39-42.
    [74] Matlock H, Dawkins W, Panak J.A model for the prediction of ice structure interaction. Journal of Engineering mechanics, ASCE, EM4,1969:1083-1092.
    [75] Sodhi D S. Vertical penetration of floating ice sheets. International Journal of Solids and Structures, 1998,35(31-32):4275-4297.
    [76] Sanderson T J O. Ice Mechanics. Risk to Offshore structures. 1988.
    [77] Maattanen M. Stability of self-excited ice-induced structural vibration. 4th Int. Conf. On Port and Ocean Engineering Under Arctic Conditions, Newfoundland, 1977:684-694.
    [78] Maattanen M. On conditions for the rise of self-excited ice-induced autonomous oscillations in slender marine pile structures. Research Report No 25, Winter Navigation Board, 1978.
    [79] Maattanen M. The effect of structural properties on ice-induced self-excited vibrations, Proc. IAHR Symposium on Ice 1984, Hamburg, West Germany, 1984, 2:11-20.
    [80] Maattanen M. Ten years of ice-induced vibration isolation in lighthouses. OMAE 1987, Houston, TX,USA, 1987,4:261-266.
    [81] Maattanen M. Ice-induced Vibrations in Structures-Self-Excitation. Proc. IAHR Symposium on Ice 1988, University of Hokkaido, Sapporo, Japan, 1988,2:658-664.
    [82] Yue Q J, Zhang X, Bi X J, et al. Measurements and analysis of ice induced steady state vibration. Proc. 16th Int Conf. Port and Ocean Engineering under Arctic Conditions. POAC' 01, 2001:12-17.
    [83] Karna T, Steady-state vibrations of offshore structures. Proceedings of the 1st RAO Conference, 1993:77-186.
    [84] Karna T, Kamesaki K,Tsukuda H.A numerical model for dynamic ice-structure interaction. Computers and Structures, 1999:645-658.
    [85] Karna T, Turunen R.A straightforward technique for analyzing structural response to dynamic ice action. Proc. 9th OMAE Conf. Houston, 1990,4:135-142.
    [86] Karna T.Mitigation of steady-state vibration induced by ice. Proc. 4th ISOPE Conf., Osaka, Japan, 1994:534-539.
    [87] Toyama Y, Sensu T, Minami M,et al. Model test on ice-induced self-excited vibration fo cylindrical structures. Proc. 7th POAC Conf.,1983,2:834-844.
    [88] 徐继祖,王翎羽.冰力振子模型及其数值解.天津大学学报,1988,21(2):28-34.
    [89] 欧进萍,段忠东,王刚.海冰作用下平台结构自激振动的参数分析与响应的数值计算.工程力学,2001,18(5):8-17.
    [90] 张希.冰激直立结构稳态振动:(硕士学位论文).大连:大连理工大学.2002.
    [91] D P Jin, H Y Hu. Ice-induced No-linear vibration of an offshore platform. Journal of Sound and Vibration, 1998.214(3):422-431.
    [92] Sundararajan C, Reddy D V. Stochastic analysis of ice-structure interaction. Proc. 2nd Int. Conf. Port Ocean Eng. Arctic Cond. (POAC' 73).Reykjavik, Iceland, 1973:345-354.
    [93] Reddy D V, Swamidas A S, Cheema P S. Ice force response spectrum modal analysis of offshore towers. Proc. 3rd Int. Conf. Port and Ocean Engineering under Arctic Conditions. University of Alaska, 1975:887-910.
    [94] Reddy D V, Cheema P S, Sundarajan C. Relationship between response spectrum and power spectral density analysis of ice-structure analysis. Proc. 4th Int. Conf. Port and Ocean Engineering under Artic Conditions. Memorial University of Newfoundland, Canada, 1977,2: 664-684.
    [95] 欧进萍,段忠东,肖仪清等.基于实测动冰力时程的海洋平台结构冰振反应分析.海洋工程,1999,17(2):71-78.
    [96] 欧进萍.海洋平台结构安全评定—理论、方法与应用.北京:科学出版社,2004.
    [97] 马网扣,唐友刚,宋峥嵘.基于自激冰力的导管架平台冰激振动计算.中国海上油气(工程),2003,15(5):16-19.
    [98] 张剑波,张韶光.冰载荷作用下自升式平台的动力响应分析研究.中国海洋平台,2005,20(4):20-24.
    [99] 陈新权,谭家华.导管架平台在冰载荷作用下的动力响应分析研究.中国海洋平台,2005,20(4):25-28.
    [100] 刘健,陈国明,杨晓刚等.基于ANSYS软件实现平台结构的冰激振动分析.中国海上油气,2005,17(1):65-69.
    [101] 段梦兰,高照杰,吴永宁.固定石油平台冰激振动的时域与频域响应.机械强度,1999,21(1):14-17.
    [102] 李辉辉.海洋平台冰振火效的预警标准:(硕士学位论文).大连:大连理工大学.2004.
    [103] 岳前进,李辉辉,于学兵.渤海石油平台的冰振及其对作业人员的影响.中国海洋平台,2005,20(3):35-39.
    [104] 周庆.冰振下海洋平台上部管线法兰风险分析:(硕士学位论文).大连:大连理工大学.2006.
    [105] 陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2001.
    [106] 陈传尧,高大兴.疲劳断裂的基础.武汉:华中理工大学出版社,1991.
    [107] 林吉忠,刘淑华.金属材料的断裂与疲劳.北京:中国铁道出版社,1989.
    [108] 贾星兰,陈国明,黄东升等.海洋工程用钢的低温S-N曲线.中国海洋平台,1998,13(2):8-9.
    [109] 方华灿,许发彦,陈国明.冰区海上平台管结点疲劳寿命计算的新方法.中国海洋平台,1997,12(6):259-264.
    [110] 方华灿,许发彦,陈国明.随机冰载作用下海上固定平台管节点的疲劳寿命估算.石油大学学报(自然科学版),1997,21(2):50-54.
    [111] 方华灿,许发彦,陈国明.冰区海上结构物疲劳分析的新概念与计算方法.石油大学学报(自然科学版),1998,22(6):65-67.
    [112] 方华灿.冰区海洋石油钢结构工程力学.东营:石油大学出版社,1996.
    [113] 方华灿.海洋石油钢结构的疲劳寿命.东营:石油大学出版社,1990.
    [114] 方华灿,许发彦,陈国明.渤海平台构件疲劳分析的新方法.石油学报,1997,18(4):95-100.
    [115] 方华灿,吴小薇,贾星兰.海海冰作用下采油平台的模糊疲劳寿命估算.冰川冻土,2003,25(2):317-321.
    [116] Fang H C, Xu F Y,Chen G M.A new method for fatigue life calculation of tubular joint of offshore platform in ice region. China Offshore Platform, 1997,12(6):259-264.
    [117] Fang Huacan, Duan Menglan, XU Fayan, et al. Reliability analysis of ice-induced fatigue and damage in offshore engineering structures. China Ocean Engineering, 2000,14(1):12-24.
    [118] Fang Huacan, Duan Menglan, et al. Fuzzy fatigue reliability analysis of offshore platforms in ice_infested waters. China Ocean Engineering, 2003,17(3):307-314.
    [119] 刘健,陈国明.基于Maattanen模型的冰激疲劳寿命分析.石油大学学报(自然科学版),2004,28(4):89-94.
    [120] J G RILEY,郝新胜译.波弗特海人工岛的建造.海岸工程,1994,13(2,3):8-14.
    [121] Malcolm comyn,吕莉娃译.波弗特海沉箱式人工岛的建设.海岸工程.1994,13(2,3):83-88.
    [122] 李林普.渤海湾极浅海域油气开发工程结构形式探讨.中国海上油(工程),1990,2(3):43-47.
    [123] 纪作民,庞玉宝,张宝增等.中国浅海石油开发人工岛设计与建造.中国海洋平台,1996,11(6):272-274.
    [124] 黄磊.“辽海葵花一号”人工岛建造及钢模拖航.中国修船,2000,5:19-20.
    [125] 李玉珊.锦州9-3桩基沉箱式平台结构选型.中国海上油气(工程).1996,8(4):12-14.
    [126] 李玉珊.海上新型多功能移动式采油系统技术的专题可行性研究报告.国家高技术研究发展计划,中国海洋石油总公司 1997.
    [127] 方华灿.我国海上边际油田采油平台选型浅谈.石油矿场机械,2005,34(1):24-26.
    [128] 方华灿.我国海洋石油工业及装备的关键技术创新.化工设备与防腐蚀.2004,3:12-16.
    [129] 杨国金.渤海抗冰结构设计中的若干问题.中国海上油气(工程),1994,6(3):5-10.
    [130] 胡洪勤.导管架平台在浅海石油开发中的应用.中国海洋平台,199611(4)172-174.
    [131] 唐海燕,史庆增.浅海混凝土平台的发展与应用前景.石油工程建设,1999,(1):8-10.
    [132] 王勇.用混凝土平台开发海上边际油田.中国海洋平台,1995,10(1):43-44.
    [133] 徐铨彪,宋玉普.多功能混凝土采油平台在我国浅海地区应用研究.中国海洋平台,2004,19(3):38-41.
    [134] 张燕坤,宋玉普.适用于渤海边际油田的轻骨料混凝土平台结构选型及优化.中国海洋平台,2005,20(3):31-44.
    [135] 衣伟,宋玉普,张燕坤.近海多功能混凝土平台选型与优化.海洋学报,1999,21(3):126-134.
    [1] Peyton H R. Sea ice strength. University of Alaska. Geophysical Institute. Report UAG R-182. Alaska, 1966.
    [2] Nordlund O P,Karna T.Jarvinen E. Measurements of ice-induced vibrations of channel markers. Proc. IAHR Ice Symposium, 1988:537-548.
    [3] Engelbrekston A. Observations of a resonance vibrating lighthouse structure in moving ice, POAC, 1984.
    [4] Maattanen M,Reddy D, Arockiasamy M, et al. Ice-structure interaction studied on a lighghouse in the Gulf of Bothnia using response spectrum and power spectral density function analyses. Proc. 4th International Conference on Port and Ocean Engineering under Arctic Conditions. Newfoundland, Canads, 1977:321-334.
    [5] 段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [6] 渤海工程设计公司.JZ20-2-1平台冰力测量环境工况表,1991.
    [7] 大连理工大学.JZ20-2平台冰激振动测量与分析海冰监测与预报.1999-2000年度工作报告,2000.5
    [8] 季顺迎.渤海海冰数值模拟及其工程应用:(博士学位论文).大连:大连理工大学.2001.
    [9] 毕祥军,于雷,王瑞学等.海冰厚度的现场图像测量方法.冰川冻土,2005,27(4):563-567.
    [10] 大连理工大学.JZ20-2平台冰激振动测量分析与海冰监测预报.1999-2000年度工作报告,2000.5
    [11] 李辉辉.海洋平台冰振失效的预警标准:(硕士学位论文).大连:大连理工大学.2004.
    [12] 大连理工大学.JZ20-2MSW平台冰振失效预警标准研究.2004.
    [13] Tuomo Karna,Qu Yan. A New Spectral Method for Modeling Dynamic Ice Actions. Proceedings of OMAE' 04,23rd International Conference on Offshore Mechanics and Arctic Engineering, 2004:8-16.
    [14] Yue Q J, Bi X J. Ice-induced jacket structure vibrations in Bohai Sea. Journal of Cold Regions Engineering, 2001,14(2):81-92.
    [15] 岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报 2003,36(2):16-19.
    [16] Qu Y,Yue Q J, Bi X J. et al. Random Ice Forces on Conical Structures, Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions, POAC' 03, Trondheim, Norway, 2003:259-270.
    [17] Hirayama K, Obara I. Ice forces on inclined structures. Proc of the 5th International Offshore Mechanicsand Arctic Engineering. Tokyo, Japan, 1986:515-520.
    [18] 屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25(2):326-329.
    [19] Qu Yan,Yue Qianjin, Bi Xiangjun, et al.A random ice fForce model for nNarrow conical Structures. Cold Regions Science and Technology. 2006. (Accepted)
    [20] Neumann G. On wind generated ocean waves with special reference to the problem of wave forecasting. N.Y.U.,Coll of Eng.,Res. Div, Dept. of Metcor. And Ocean-ogr.,1952.
    [21] 俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2000.
    [22] 大连理工大学.2004-2005年海冰管理报告.2005.
    [23] Timco G, Jonston M. Ice loads on the caisson structures in the Canadian Beaufort Sea. Cols Regions Science and Technology, 2004,38:185-209.
    [24] Jefferies M G, Wright W H. Dynamic response of Molikpaq to ice-structure interaction. Proc. 7th Int. Conf. on Offshore Mechanics and Arctic Engineering, 1988,4:201-220.
    [25] 陆文发,李林普,高明道.近海导管架平台.北京:海洋出版社,1992.
    [26] 杨志勇.随机阻尼结构理论及其应用研究.武汉:武汉工业大学,1998.
    [27] A Kareem, K Gurley. Dampinginstructure:itevaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamic, 1996,59:131-157.
    [28] 周传荣,赵淳生.机械振动参数识别及其应用.北京:科学出版社,1989.
    [29] 陈荣振.应用随机减量技术测量结构物固有频率与阻尼的实验研究.石油大学学报(自然科学版),1986,(1):98-108.
    [30] 龙驭球,包世华.结构力学教程.北京:高等教育出版社,1998.
    [1] 龙驭球,包世华.结构力学教程.北京:高等教育出版社,1998.
    [2] 田海姣,王铁龙,张小艳.柔性结构分析特点.中国科技信息,2005,21:75-76.
    [3] 王伯惠,徐风云.柔性墩台梁式桥设计.北京:人民交通出版社,1991.
    [4] API RP 2A. Recommended practice for planning, designing, and constructing fixed offshore structures. 1991.
    [5] 中华人民共和国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法—工作应力设计法,SY 10030-2003,2004.
    [6] DNV. Rules for the design, construction, and inspection of fixed offshore structures. 1977.
    [7] API RP 2N. Recommended practice for planning, designing, and constructing fixed offshore structures in ice environments. 1988.
    [8] 岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报,2003,36(2):16-19.
    [9] Kato K. Total ice force on multi legged structures. Proc. 10th International Symposium on Ice, 1990, Espoo, Finland, 2:974-984.
    [10] 陆定发,李林普,高明道.近海导管架平台.北京:海洋出版社,1992.
    [11] 吴玉良等.高等动力学.大连:大连理工大学,1999.
    [12] 陈耀东,李培玉.机械振动学.杭州:浙江大学出版社,2004.
    [13] 岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载.工程力学,2004,21(1):202-208.
    [14] Yue Q J, Zhang X, Bi X J, et al. Measurements and analysis of ice induced steady state vibration. Proc. 16th Int Conf. Port and Ocean Engineering under Arctic Conditions. POAC'01, 2001:12-17.
    [15] 张希.冰激直立结构稳态振动:(硕士学位论文).大连:大连理工大学.2002.
    [16] Karna T, Qu Y, Yue Q J. An equivalent lateral force for continuous crushing. 25thInternational Conference on Offshore Mechanics and Arctic Engineering, Proceeding of OMAE2006, Hamburg, Germany, 2006:1-8.
    [17] Karna T, Qu Y. Analysis of the size effect in ice crushing-edition 1. VTT Technical Research Centre of Finland. Internal Report RTE-IR-6/2005. Version 2.0,2005.
    [18] Yue Q J, Bi X J. Ice-induced jacket structure vibrations in Bohai Sea. J. Cold Regions Engineering, 2001,14(2):81-92.
    [19] Karna T, Qu Y.A spectral model for dynamic ice actions. EU FP5 EESD project No EVG1-CT-2002-O0024: Measurements on Structures in Ice (STRICE). Deliverable D-2.1. Rev. 1.1, January 2004.
    [20] Karna T, Qu Y, Kuhnlein W.A new spectral method for modelling dynamic ice actions. Proc. 23rd Int. Conf. Offshore Mechanics and Arctic Engineering, 20-25 June 2004, Vancouver, Canada. Paper No. OMAE2004-51360.
    [21] Karna T, Qu Y,Kuhnlein W, et al.A Spectral Model of Ice Forces due to Ice Crushing.J. Offshore Mechanics & Arctic Engineering, 2006. (submitted)
    [22] Yue Q J,Bi X J,Sun B, et al. Full-scale force measurement on JZ20-2 platform. Proc. IAHR Ice Symp. (IAHR' 96) Beijing, 1996:282-289.
    [23] 屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学.2006.
    [24] 屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25:326-329.
    [25] 董加礼,孙丽华.工科数学基础.北京:高等教育出版社,2002.
    [26] 张亚辉,林家浩.结构动力分析.大连:大连理工大学出版社,2004.
    [1] API 2N. Recommended practice for planning, designing, and constructing fixed offshore structures in ice environments (API RP 2N).lst Edition. June 1988.
    [2] Fang Huacan, Duan Menglan, XU Fayan, et al. Reliability analysis of ice-induced fatigue and damage in offshore engineering structures. China Ocean Engineering, 2000,14(1):12-24.
    [3] Fang Huacan, Duan Menglan, Jia xinglan and Xie bin. Fuzzy fatigue reliability analysis of offshore platforms in ice infested waters. China Ocean Engineering, 2003,17(3):307-314.
    [4] 方华灿,许发彦,陈国明.冰区海上平台管结点疲劳寿命计算的新方法.中国海洋平台,1997,12(6):259-264.
    [5] 陈传尧.疲劳与断裂.华中科技大学出版社.2001.
    [6] 陆文发,李林普,高明道.近海导管架平台.海洋出版社,1992.
    [7] 蔡其巩,王仁智编.工程断裂力学(上).北京:国防工业出版社,1977.
    [8] 陈传尧,高大兴.疲劳断裂的基础.武汉:华中理工大学出版社,1991.
    [9] 林吉忠,刘淑华.金属材料的断裂与疲劳.北京:中国铁道出版社,1989.
    [10] API RP 2A. Recommended practice for planning, design, and constructing fixed offshore structures.API RP 2A, 19Ed. 1991.
    [11] DNV. Rules for the design, construction, and inspection of fixed offshore structures. 1977.
    [12] 黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海交通大学出版社,1992.
    [13] 胡瑞华.近海钢质桩基平台.北京:海洋出版社,1989.
    [14] D E 纽兰著,方同等译.随机振动与谱分析概论.北京:机械工业出版社,1978.
    [15] 俞载道,曹国敖.随机振动理论及其应用.上海:同济大学出版社,1988.
    [16] 庄表中,王行新.随机振动概论.北京:地震出版社,1982.
    [17] Karna T and Jochmann P. Field observations on ice failure modes. Proc. 17th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC' 03).Trondheim, Norway, 2003,2:839-848.
    [18] 岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载.工程力学,2004,21(1):202-208.
    [19] 杜小振.冰致柔性直立结构振动的动冰力:(硕士学位论文).大连:大连理工大学.2004.
    [20] 刘健,陈国明.基于Maattanen模型的冰激疲劳寿命分析.石油大学学报(自然科学版),2004,28(4):89-94.
    [21] Tuomo Karna, QU Yan. A New Spectral Method for Modeling Dynamic Ice Actions. Proceedings of OMAE' 04,23rd International Conference on Offshore Mechanics and Arctic Engineering, 2004:8-16.
    [22] Yue Q J, Bi X J. Full-scale tests and analysis of dynamic interaction between ice sheet and conical structures. Proc.,14th Int. Assoc. for Hydr. Res. Symp. on Ice, International Association for Hydraulic Research, Delft, The Netherlands, 1988,939-944.
    [23] Yue Q J, Bi X J. Ice-induced jacket structure vibrations in Bohai Sea. Journal of Cold Regions Engineering, 2001,14(2):81-92.
    [24] 岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报,2003,36(2):16-19.
    [25] Qu Y,Yue Q J, Bi X J, et al. Random Ice Forces on Conical Structures, Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions, POAC' 03, Trondheim, Norway, 2003:259-270.
    [26] 屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25(2):326-329.
    [27] Qu Yan, Yue Qianjin, Bi Xiangjun et al. A random ice fForce model for nNarrow conical Structures. Cold Regions Science and Technology. 2006. (Accepted)
    [28] 欧进萍.海洋平台结构安全评定—理论、方法与应用.北京:科学出版社,2004.
    [29] 国家海洋环境保护研究所,辽河油田滩海勘探开发公司.盖州辽东湾北部盖州滩海区工程海冰环境原位监测与研究.1994.
    [30] 国家海洋局第一海洋研究所,渤海石油工程设计公司.辽东湾北部潮间海冰调查及分析.1991.
    [31] 国家海洋环境监测中心等.辽东湾北部盖州滩海区海冰冰情预报.1994.
    [32] 邓树奇.渤海海冰特征.海洋预报,1985,2(2):73-75.
    [33] 刘德辅,李桐魁,张涛等.渤海辽东湾海冰条件的概率分布.天津大学学报,19874:48-55.
    [34] 董须瑜,刘春厚等.关于辽东湾JZ20-2海区海冰设计条件的修改意见.中国海上油气(工程),1989,1(1):36-44.
    [35] 季顺迎,岳前进.渤海特征冰厚分析.海洋学报,2000,19(2):8-14.
    [36] 季顺迎,岳前进,毕祥军.辽东湾JZ20-2海域海冰参数的概率分布.海洋工程,2002,20(3):39-44.
    [37] 石油大学,中国海洋石油渤海公司.概率型冰载荷与冰激疲劳寿命研究.2000.
    [1] 岳前进等.冰振海洋平台预警研究报告,2004.
    [2] 欧进萍,段忠东,肖仪清等.基于实测动冰力时程的海洋平台结构冰振反应分析.海洋工程,1999,17(2):71-78.
    [3] 陈新权,谭家华.导管架平台在冰载荷作用下的动力响应分析研究.中国海洋平台,2005,20(4):25-28.
    [4] 张剑波,张韶光.冰载荷作用下自升式平台的动力响应分析研究.中国海洋平台,2005,20(4):20-24.
    [5] 中华人民共和国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法—工作应力设计法,SY 10030-2003,2004.
    [6] API RP 2N. Recommended practice for planning, designing, and constructing fixed offshore structures in ice environments. 1988.
    [7] API RP 2A. Recommended practice for planning, designing, and constructing fixed offshore structures. 1991.
    [8] 渤海工程设计公司.JZ20-2-1平台冰力测量环境工况表,1991.
    [9] GB/T 13442-92,人体全身振动暴露的舒适性降低界限和评价标准.1992.
    [10] GB/T 13921-92,关于固定结构特别是建筑物和海上结构的居住者对低频(0.0063~1Hz)水平运动响应的评价导则.1992.
    [11] 申仲翰,刘玉标,崔瑞意.涠11-4平台在极端环境条件下的人员工作安全性评估.海洋工程,1998,16(3):36-44.
    [12] 岳前进,李辉辉,于学兵.渤海石油平台的冰振及对作业人员的影响.中国海洋平台,2005,20(3):35-39.
    [13] 岳前进等.2000-2001年海冰管理报告.2001.
    [14] 庄表中,陈乃立.随机振动的理论及实例分析.北京:地震出版社,1985.
    [15] 林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [16] D.E.纽兰.随机振动与谱分析概论.北京:机械工业出版社,1980.
    [1] Aktas E, Moses F, Ghosn M. Cost and safety optimization of structural design specifications. Reliability Engineering and System Safety, 2001,73(3):205-212.
    [2] 马红艳,刘书田,顾元宪等.考虑设计规范的海洋平台结构选型优化.计算力学学报,2004,21(1):38-44.
    [3] 王立成,宋玉普.基于水深和地址条件的海洋平台的选型优化.石油工程建设,2003,29(5):1-6.
    [4] Chen s, Fu G.A fuzzy approach to the lectotype optimization of offshore platforms. Ocean Engineering, 2003,30(7):887-891.
    [5] 衣伟,宋玉普,张燕坤.近海多功能混凝土平台选型与优化.海洋学报,1999,21(3):126-134.
    [6] 方华灿.我国海上边际油田采油平台选型浅谈.石油矿场机械,2005,34(1):24-26.
    [7] 王勇.用混凝土平台开发海上边际油田.中国海洋平台,1995,10(1):43-44.
    [8] 李林普.渤海湾极浅海域油气开发工程结构形式探讨.中国海上油(工科),1990,2(3):43-47.
    [9] 杨国金.渤海抗冰结构设计中的若干问题.中国海上油气(工程),1994,6(3):5-10.
    [10] 周玲译.加拿大波弗特海人工岛的建造.海岸工程,1994,13(2,3):33-50.
    [11] J G RILEY,郝新胜译.波弗特海人工岛的建造.海岸工程,.1994,13(2,3):8-14.
    [12] 杨国金.海冰工程学.北京:石油出版社,2000.
    [13] 纪作民,庞玉宝,张宝增等.中国浅海石油开发人工岛设计与建造.中国海洋平台,1996,11(6):272-274.
    [14] 黄磊.“辽海葵花一号”人工岛建造及钢模拖航.中国修船,2000,5:19-20.
    [15] 李玉珊.锦州9—3桩基沉箱式平台结构选型.中国海上油气(工程),1996,8(4):12-14.
    [16] Malcolm comyn,吕莉娃译.波弗特海沉箱式人工岛的建设.海岸工程,1994,13(2,3):83-88.
    [17] 大连理工大学.海冰管理项目汇报2005-2006年度.2006.4.
    [18] Blenkarn K A. Measurement and analysis of ice forces on Cook Inlet structures. Proceedings, 2nd Offshore Technology Conference, 1970, OTC1261(Ⅱ):365-378.
    [19] Yue Q J, Bi X J. Full-scale tests and analysis of dynamic interaction between ice sheet and conical structures. Proc. 14th IAHR Ice Symposium, 1998,2.
    [20] Yue Q J, Bi X J and Zhang T, Full-scale measurement on JZ20-2platform. Proc. of Symposium on ice(IAHR),1996:282-289.
    [21] 段梦兰,方华灿,陈如恒.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [22] 许明亮,陈国明.简易平台技术的发展与展望.中国海上油气(工程),2001,13(2):1-4.
    [23] 汪昌.简易平台之工程简介.第七届全国海洋工程学术会议论文集,1994:119-122.
    [24] 黄新生.海洋简易平台.石油规划设计,1997(5):39-41.
    [25] 李宏伟.近海边际油田开发的现状与前景.中国海洋平台,1997,12(3):100-104.
    [26] 严世华.论海上边际油田的勘探开发.中国海洋平台,1996,11(1):16-19.
    [27] 王立忠.简易平台技术的研究.中国海洋平台,2006,21(2):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700