无线定位中波达方向与时延估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达方向估计和时间延迟估计是无线被动定位技术中的重要手段,作为现代信号处理中信号参数估计与提取的重要组成部分,被广泛应用在雷达、声纳、无线通信系统定位、无线电监测和军事等领域。近年来,循环平稳信号的波达方向估计得到了越来越多的重视,但目前的算法大多都是基于二阶循环统计量的,这些算法的性能在α稳定分布噪声环境下会出现严重的退化,为此本文重点研究了脉冲噪声环境下循环平稳信号的波达方向估计问题。另一方面,时间延迟估计发展至今虽然出现了很多性能优良的估计方法,但针对射频窄带信号的时延估计问题仍然是无线定位技术中的难点,并且中频频差的存在也是影响时延估计精度的主要因素,因此本文还对基于频差补偿的射频窄带信号的时延估计方法进行了深入的研究。本文主要创新工作如下:
     (1)针对均匀线阵下宽带循环平稳信号DOA估计困难问题,将分数低阶循环统计量与谱相关信号子空间拟合算法(SC-SSF)相结合,提出了基于分数低阶循环相关的SC-SSF算法,实现了脉冲噪声环境下宽带循环平稳信号的DOA估计。在此基础上,通过构造新的扩展数据模型,提出了一种扩展的分数低阶循环MUSIC算法,该算法具有较高的估计精度。同时,为了进一步提高算法的估计性能,将相位分数低阶矩与循环统计量相结合,定义了相位分数p阶循环相关的概念,进一步提出相位分数p阶循环MUSIC算法及其快速根值MUSIC算法,算法具有较高分辨估计性能。
     (2)针对α稳定分布环境下均匀圆阵的循环平稳信号的DOA估计问题,在分析与验证分数低阶循环相关的相移特性的基础上,提出了基于均匀圆阵的韧性分数低阶循环MUSIC算法,实现了α稳定分布噪声下方位角和俯仰角的同时估计。同时,本文还提出了一种基于圆阵的扩展循环MUSIC算法,该算法通过构造扩展的数据矩阵,充分利用循环相关和共轭循环相关的信息,突破了传统算法要求阵元数大于信号源数的局限性,提高了方位角与俯仰角的估计精度,是一种具有较高分辨的DOA估计算法。
     (3)针对中频偏差对时延估计的影响,提出了两种基于频差补偿的时延估计方法。针对采用相位谱直接对窄带射频信号进行时延估计存在的局限性,利用平方倍频的方法估计中频偏差,采用CZT变换增加时延估计的有效频域点数,提出了基于频差补偿的相位谱时延估计方法,提高了时延估计的精度。为了解决相近信号源的时延估计问题,将频差存在时的时延估计模型与MUSIC算法估计模型相比拟,提出了一种基于频差补偿的MUSIC频率检测时延估计方法,该方法充分利用了MUSIC算法的具有较高分辨性能,提高了时延估计的性能。
Directions-of-arrival (DOA) estimation and time delay estimation are important means of wireless passive position technology. They are also important parts of parameters estimation and extraction in modern signal processing and have been widely used in radar, sonar, wireless communication positioning system, radio monitoring, military and other fields. In recent years, DOA estimation of cyclostationary signal has been obtained more and more attention, but most of the current algorithms are based on the second-order cyclic statistics. The performance of these algorithms will degenerate seriously in α-stable distribution noise environments. This desertation mainly studies DOA estimation of cyclostationary signal under impulsive noise environment. On the other hand, as the time delay estimation develops up to now, many excellent methods of the time delay estimation have been proposed. But the problem of narrowband RF signal delay estimation is still a difficult work in wireless location technology, and the existion of intermediate frequency difference (IFD) will affect the accuracy of time delay estimation. So this desertation mainly study the new methods of the time delay estimation based on frequency difference compensation (FDC). The main researches and conclusions are listed as follows:
     (1) Since DOA estimation of broadband cyclostationary signal based on ULA is a difficult work, by combining the fractional lower order cyclic statistics with SC-SSF algorithm, a spectral correlation signal subspace fitting algorithm (SC-SSF) based on the fractional lower order cyclic correlation is proposed. Then the DOA estimation of broadband cyclostationarity signal in impulsive noise is realized. Furthermore, an extended fractional lower order cyclic MUSIC algorithm is proposed by constructing a new extended data model. The algorithm has higher estimation accuracy. Meanwhile, in order to improve the estimation performance, a novel phase fraction pth-order cyclic correlation by fusing the phase fractional lower order statistics and cyclic statistics is defined. Then a novel extended phase fraction pth-order cyclic MUSIC algorithm (EX-POC-MUSIC) and phase fraction pth-order cyclic Root-MUSIC (EX-POC-RMUSIC) algorithm are proposed. Both algorithms have high-resolution estimation performance.
     (2) In order to solve the DOA estimation problem of cyclostationary signal based on uniform circular array (UCA) under α-stable distribution environment, after analysing and verifing the phase shift characteristics of the fractional lower order cyclic correlation, we propose a fractional lower order cyclic MUSIC algorithm based on UCA, which can estimate both azimuth and elevation angles accurately even in impulsive noise. Meanwhile, a novel extended cyclic MUSIC algorithm based on UCA is developed in this paper. The algorithm exploits simultaneously the information contained in both cyclic correlation matrix and cyclic conjugate correlation matrix of the extended array data vector, and breaks through the limitation of the classic MUSIC algorithm in which the number of source signal can not be greater than the number of element in the receiving array. The algorithm improves the estimation accuracy of the azimuth and elevation angle, which is a high-resolution DOA estimation algorithm.
     (3) As the intermediate frequency difference (IFD) impacts the delay estimation, two time delay estimation (TDE) algorithms based on the frequency difference compensation (FDC) are proposed. Since time-delay estimation using the phase spectrum for narrowband radio frequency (RF) signal exists limitations, frequency doubling methods is used to estimate the intermediate frequencier (IF) of both receicved signals, and chirp Z transform (CZT) is applied to increasing the available frequency bins within a limited bandwidth. Then, a phase spectrum TDE method based on FDC is proposed, which can improve the accuracy of TDE. In order to solve the time delay estimation problem of the closely spaced signals, the model of TDE with IFD and the model of MUSIC algorithm are compared, and then an effective time delay estimation method based on FDC for narrowband RF signals is proposed. This method exploits the high-resolution performance of MUSIC algorithm, which improves the performance of TDE.
引文
[1]CHEN C II, FENG K T, CHEN C L. Wireless location estimation with assistance of virtual base station [J]. IEEE Transactions on Vehicular Technology,2009,58(1):93-106.
    [2]SPIRITO A M. On the accuracy of cellular mobile station location estimation [J]. IEEE Transactions on Vehicular Technology,2001,50(3):674-685.
    [3]RAPPAPORTTS, REED J H, WOERNER B D. Position location using wireless communications on highways of the future [J]. IEEE Communications Magazine,1996,34(10):33-41.
    [4]SAYED A H, TARIGHAT A, KHAJEHNOURI N. Network-based wireless location challenges faced in developing techniques for accurate wireless location information [J]. IEEE Signal Processing Magazine,2005,22(4):24-40.
    [5]MCVICAR G N, PARKER P A. Spectrum dip estimator of nerve conduction velocity [J]. IEEE Transactions on Biomedical Engineering,1988,35(12):1069-1076.
    [6]KRIM H, VIBERG M. Two decades of array signal processing research:the parametric approach [J]. IEEE Signal Processing Magazine,1996,13(4):67-94.
    [7]LAGUNA P, JANE R, CAMINAL P. A time delay estimator based on the signal integral: Theoretical performance and testing on ECG signals [J]. IEEE Transactions on Signal Processing,1994,42(11):3224-3229.
    [8]HAYKIN S, REILLY J P, KEZYS V. Some aspects of array signal processing[C]. IEE Proceedings F (Radar and Signal Processing). IET Digital Library,1992,139(1): 1-26.
    [9]JASROTIA V S, PARKER P A. Matched filters in nerve conduction velocity estimation [J]. IEEE Transactions on Biomedical Engineering,1983 (1):1-9.
    [10]CAFFERY J J, STUBER G L. Overview of radiolocation in CDMA cellular systems [J]. IEEE Communications Magazine 1998,36(4):38-45.
    [11]LIU H, DARABI H, BABERJEE P. Survey of wireless indoor positioning techniques and systems [J]. IEEE Transactions on Systems, Man and Cybernitics-Part C,2007, 37(6):1067-1080.
    [12]LI C, ZHUANG W H. Hybrid TDOA/AOA mobile user location for wideband CDMA cellular system [J]. IEEE Transactions on Wireless Communications,2002,1 (3):439-447.
    [13]YANG K, An J P, Bu X Y. et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements [J]. IEEE Transactions on Vehicular Technology,2010,59(3):1558-1562.
    [14]BELKACEMI H, Marcos S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter [J]. Signal Processing,2007,87(7):1547-1558.
    [15]VANDERVEEN A J, VANDERVEEN M C, PAULRAJ A. Joint angle and delay estimation using shift-invariance techniques [J]. IEEE Transactions on Signal Processing,1998, 46(2):405-418.
    [16]SO H C, HUI S P. Constrained location algorithm using TDOA measurements [J]. IEICE transactions on fundamentals of electronics, communications and computer sciences, 2003,86(12):3291-3293.
    [17]HO C K, LU X N, KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors:Analysis and solution [J]. IEEE Transactions on Signal Processing,2007,55 (2):684-696.
    [18]HE W W, PENG R, WAN Q. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements [J]. IEEE Transactions on Signal Processing,2010,58(3):1677-1688.
    [19]SUN M, HO K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties [J]. IEEE Transactions on Signal Processing,2011,59(7):3434-3440.
    [20]朱良学.蜂窝定位中TDOA定位方法研究[D].合肥:中国科学技术大学电子工程与光电技术学院,2001.
    [21]解家宝,李坤,胡博.时差定位系统中时延估计的研究[J].电子工程,2008,3:40-44.
    [22]ZHENG C, TJHUNG T T. A New time delay estimator based on ETDE [J]. IEEE Transactions on Signal Processing,2003,51(7):1859-1869.
    [23]SO H C, CHING P C, CHAN Y T. A new algorithm for explicit adaptation of time delay [J]. IEEE Transactions on Signal Processing,1994,42(7):1816-1820.
    [24]SHARMA K K, JOSHI S D. Time delay estimation using fractional fourier transform [J]. Signal Processing,2007,87(5):853-865.
    [25]刘东霞,林象平.四阶统计量和时差定位中的应用[J].雷达与对抗,2002(2):27-31.
    [26]行鸿彦,刘照泉,万明习.基于小波变换的广义相关时延估计法[J].声学学报,2002,27(1):88-93.
    [27]SCHMIDT R. Multiple emitter location and signal parameter estimation [J]. IEEE Transactions on Antennas and Propagation,1986,34(3):276-280.
    [28]ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989, 37(7):984-995.
    [29]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2004:193-210.
    [30]SILVERTEIN S D, ZOLTOWSKI M D. The mathematical basis for element and Fourier beam space MUSIC and Root-MUSIC algorithms [J]. Digital signal processing,1991, 1(4):1-15.
    [31]REN Q S, WILLIS A J. Fast Root-MUSIC algorithm [J]. IEE Electronics Letters,1997, 33(6):450-451.
    [32]RAO B D, HARI K V S. Performance analysis of root-MUSIC [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(12):1939-1949.
    [33]智婉君,严胜刚,李志舜.宽带方位估计的波束域Root-MUSIC算法[J].电子与信息学报,2002,24(5):644-648.
    [34]ZOLTOWSKI M D, KAUTZ G M, SILVERSTEIN S D. Beamspace Root-MUSIC [J]. IEEE Transactions on Signal Processing,1993,41 (1):344-364.
    [35]KRIM H, FORSTER P, PROAKIS J G. Operator approach to performance analysis of Root-MUSIC and root min-norm [J]. IEEE Transactions on Signal Processing,1992, 40(7):1687-1696.
    [36]ZOlTOWSKI M D, SILVERSTEIN S D, MATHEWS C P. Beamspace Root-MUSIC for minimum redundancy linear arrays [J]. IEEE Transactions on Signal Processing,1993, 41(7):2502-2507.
    [37]TAYEM N, NARAGHI P M. Unitary root MUSIC and unitary MUSIC with real-valued rank revealing triangular factorization [C].Proc. IEEE Military Communications Conference (MILCOM-07), Orlando, FL, USA,2007,1-7.
    [38]VIBERG M, OTTERSTEN B, KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting [J]. IEEE Transactions on Signal Processing,1991, 39(11):2436-2449.
    [39]CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1988,36(7):965-979.
    [40]VIBERG M, OTTERSTEN B. Sensor array processing based on subspace fitting [J]. IEEE Transactions on Signal Processing,1991,39(5):1110-1121.
    [41]STOICA P, ARYE N. MUSIC, maximum likelihood, and Cramer-Rao bound [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(5):720-741.
    [42]SHEINVALD J, Wax M, Weiss A J. On maximum-likelihood localization of coherent signals [J]. IEEE Transactions on Signal Processing,1996,44(10):2475-2482.
    [43]CLERGEOT H, TRESSENS S, OUAMRI A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds [J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(11):1703-1720.
    [44]SWINDLEHURST A L, OTTERSTEN B, Roy R, et al. Multiple invariance ESPRIT [J]. IEEE Transactions on Signal Processing,1992,40(4):867-881.
    [45]FORSTER P, NIKIAS C L. Bearing estimation in the bispectrum domain [J]. IEEE Transactions on Signal Processing,1991,39(9):1994-2006.
    [46]CHIANG H H, NIKIAS C L. The ESPRIT algorithm with higher-order statistics [C] Proceedings Workshop on Higher-Order Spectral, Vail Colorado,1989:163-168.
    [47]TSKAKALIDES P, NIKIAS C L, The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments, IEEE Transactions on Signal Processing,1996,44(7):1623-1633.
    [48]LIU T H, MENDEL T M. A subspace-based direction finding algorithm using fractional lower order statistics [J]. IEEE Transactions on Signal Processing,2001,49(8): 1605-1613.
    [49]兰天,邱天爽,杨娇.脉冲噪声环境下循环ESPRIT新方法[J].通信学报,2010(009):88-93.
    [50]HUANG Y D, BARKAT M. Near-field multiple source localization by passive sensor array [J]. IEEE Transactions on Antennas and Propagation,1991,39(7):968-975.
    [51]WEISS A J, FRIEDLANDER B. Range and bearing estimation using polynomial rooting [J]. IEEE Journal of Oceanic Engineering,1993,18(2):130-137.
    [52]CEKLI E,CLRPAN H A. Unconditional maximum likelihood approach for localization of near-field sources:algorithm and performance analysis [J]. AEU-International Journal of Electronics and Communications,2003,57(1):9-15.
    [53]张瑞娟,廖桂生.非均匀噪声环境下宽带近场源定位的两种改进方法[J].雷达科学与技术,2004,2(5):274-278.
    [54]ABED-MERAIM K, HUA Y, BELOUCHRANI A. Second-order near-field source localization: algorithm and performance analysis[C]. Proceedings of Asilomar Conference, Pacific Grove, CA USA,1996:723-727.
    [55]GROSICKI E, ABED-MERAIM K, HUA Y. A weighted linear prediction method for near-field source localization [J]. IEEE Transactions on Signal Processing,2005, 53(10):3651-3660.
    [56]武华亭,张弓,张余宽.基于十字阵的MIMO雷达的二维DOA估计[J].信息化研究,2011,37(2):13-18.
    [57]吴海浪,张小飞,冯高鹏,等.十字阵的单基地MIMO雷达中低复杂度的二维DOA估计算法[J].数据采集与处理,2012,27(2):156-161.
    [58]段勤业,邹理和,NEWCOMB W R一种高分辨率二维信号参数估计方法一波达方向矩阵法[J].通信学报,1991,12(4):1-7.
    [59]陈建.二维波达方向估计理论研究[D].吉林.吉林大学博士,2007.
    [60]KNAPP C, CARTER G C. The generalized correlation method for estimation of time delay [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1976, 24 (4):320-327.
    [61]CARTER G C. Time delay estimation for passive sonar signal processing [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1981,29(3):463-470.
    [62]HASSAB J C, BOUCHER R E. Performance of the generalized cross correlator in the presence of a strong spectral peak in the signal [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1981,29(3):549-555.
    [63]AZENKOT Y, GERTNER I. The least squares estimation of time delay between two signals with unknown relative phase shift [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1985,33(1):308-309.
    [64]NIKIAS C L, PAN R L. Time delay estimation in unknown Gaussian spatially correlated noise [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1985, 33(1):308-309.
    [65]CHIANG H H, NIKIAS C L. A new method for adaptive time delay estimation for non-Gaussian signals [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1990,38(2):209-219.
    [66]邱天爽,王宏禹.几种基本时延估计方法及其相互关系[J].大连理工大学学报,1996,36(4):493-498.
    [67]ULMAN R J, GERANIOTIS E. Wideband TDOA/FDOA processing using summation of short time CAF's [J]. IEEE Transactions on Signal Processing,1999,47(12):3193-3200.
    [68]YAO G X, LIU Z W, XU Y G. TDOA/FDOA joint estimation in a correlated noise environment [C].2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, Beijing,2005,831-834.
    [69]FOWLER M L, HU X. Signal models for TDOA/FDOA estimation [J]. IEEE Transactions on Aerospace and Electronic System,2008,44(4):1543-1550.
    [70]YEREDOR A. Joint TDOA and FDOA estimation:A conditional bound and its use for optimally weighted localization [J]. IEEE Transactions on Signal Processing,2011, 59 (4):1612-1623.
    [71]TAO R, ZHANG W Q, CHEN E Q. Two-stage method for joint time delay and Doppler shift estimation [J]. IET Radar, Sonar, and Navigation,2008,2(1):71-77.
    [72]Gardner W A, Chen C K. Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environments, part I:Theory and method [J]. IEEE Transactions on Signal Processing,1992, 40(5):1168-1183.
    [73]CHEN C K, GARDNER W A. Signal-selective time-difference-of-arrival estimation for passive location of man-made signal sources in highly corruptive environments, partⅡ:Algorithms and performance [J]. IEEE Transactions on Signal Processing, 1992,40(5):1185-1197.
    [74]HUANG Z T, ZHOU Y Y, JIANG W L. TDOA and Doppler estimation for cyclostationary signals based on multi-cycle frequencies [J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(4):1251-1264.
    [75]LIU H, XU G, TONF L, et al. Recent developments in blind channel equalization: from cyclostationarity to subspaces [J]. Signal Processing,1996,50(1-2):83-99.
    [76]MA X Y, NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics [J].IEEE Transactions on Signal Processing,1996,44(11):2669-2687.
    [77]徐友根,刘志文.电磁矢量传感器阵列相干信号源波达方向和极化参数的同时估计,空间平滑方法[J].通信学报,2004,25(5):29-38.
    [78]田孝华,廖桂生,吴德伟.一种测量参数有限时的联合定位方法[J].系统工程与电子技术,2003,25(1):1321-1323
    [79]邓平,李莉,范平志.一种TDOA/AOA混合定位算法及其性能分析[J].电波科学学报,2002,17(6):633-636.
    [80]刘兆霆,何劲,刘中.线性电磁矢量阵列的空时极化平滑算法及相干源多参数估计[J].电子与信息学报,2010,32(12):3032-3036.
    [81]Liu Y, Qiu T, Sheng H. Time-difference-of-arrival estimation algorithms for cyclostationary signals in impulsive noise [J]. Signal Processing,2012,92(9): 2238-2247.
    [82]SHAO M, NIKIAS C L. Signal processing with fractional lower order moments:stable processes and their applications [J]. Proceedings of The IEEE,1993, 81(7):986-1010.
    [83]CAMBANIS S, MILLER G. Linear problems in pth order and stable processes [J]. SIAM Journal on Applied Mathematics,1981,41 (1):43-69.
    [84]NIKIAS C L, SHAO M. Signal Processing with Alpha-stable Distributions and Applications [M]. New York:Wiley,1995.
    [85]吕泽均,肖先赐.基于分数阶矩的测向算法研究[J].电波科学学报,2002,17(6):561-568.
    [86]吕泽均,肖先赐.基于时延分数阶相关函数时空处理的子空间测向算法[J].信号处理,2003,19(1):51-54.
    [87]周炜,冯大政,刘建强等.一种对称α稳定噪声中的DOA估计新方法[J].信号处理,2007,23(2):200-203.
    [88]周炜,刘建强,冯大政.基于预处理提高角度频率联合估计的稳健性[J].数据采集与处理,2006,21(4):375-379.
    [89]TSAKALIDES P, NIKIAS C L. Robust adaptive beamforming in alpha-stable noise environments [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA,1996,2884-2887.
    [90]TSAKALIDES P, NIKIAS C L. Angle/Doppler estimation in heavy-tailed clutter backgrounds [J]. IEEE Transactions on Aerospace and Electronic Systems,1999, 35(2):419-436.
    [91]吕泽均,肖先赐.一种新的自适应波束形成技术[J].系统工程与电子技术,2003,5(5):542-545.
    [92]查代奉,邱天爽.一种基于分数低阶协方差矩阵的波束形成新方法[J].通信学报,2005,26(7):16-20.
    [93]何劲,刘中.冲击噪声环境中最小“几何功率”误差波束形成算法[J].电子学报,2008,36(3):510-515.
    [94]POLYDORS A, NIKIAS C L. Detection of unknown-frequency sinusoids in noise:spectral versus correlation domain [J]. IEEE Transactions on Acoustic, Speech, and Signal Processing,1987,35(6):897-900.
    [95]Tsihrintzis G A, Nikias C L. Data-adaptive algorithms for signal detection in sub-Gaussian impulsive interference [J]. IEEE Transactions on Signal Processing, 1997,45(7):1873-1878.
    [96]SHEN J, NIKIAS C L. Estimation/detection in impulsive noise/multiuser interference environment [C].1995 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California,1995,21-24.
    [97]ZHAO Z J, DONG K H, XU C Y. Data block adaptive filtering algorithms for α-stable random processes [J]. Digital Signal Processing,2007,17 (4):836-847.
    [98]冯大政,常冬霞,袁莉.一种自适应全局最小平均P范数算法[J].电子学报,2001,29(12A):1848-1851.
    [99]常冬霞,冯大政.脉冲噪声环境的种递归全局最小平均P范数算法[J].电子学报,2002,31(3):416-428.
    [100]段雪梅,冯大政.一种改进的用于11R滤波器的递归全局最小P范数算法[J].制导与引信,2006,28(1):48-52.
    [101]邱天爽,杨志春,李小兵.α稳定分布下加权平均最小p范数算法[J].电子与信息学报,2007,29(2):410-413.
    [102]查代奉,邱天爽.基于滑动窗与韧性函数的递归最小p范数滤波方法[J].电子与信息学报,2007,29(1):54-58.
    [103]RUPI M, TSAKALIDES P, NIKIAS C L et al. Robust constant modulus array based on fractional lower order statistics [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Phoenix, AZ, USA,1999,5:2945-2948.
    [104]RUPI M, TSAKALIDES P, NIKIAS C L. Constant modulus blind equalization based on fractional lower-order statistics[J]. Signal Processing,2004,84 (5):881-894.
    [105]GEORGIADIS A T, MULGREW B. Adaptive baysian decision feedback equalizer for alpha-stable noise environment [J]. Signal Processing,2001,81 (8):1603-1623.
    [106]BHATIA V, MULGREW B and GEORGIADIA A T. Stochastic gradient algorithms for equalization in α-stable noise [J]. Signal Processing,2006,86(4):835-845.
    [107]MA X, NIKIAS C L. On blind channel identification for impulsive signal environments [C].1995 International Conference on Acoustics, Speech and Signal Processing,1995,3:21992-1995.
    [108]MA X, NIKIAS C L. Blind identification in non-Gaussian impulsive environments[C]. IEEE International Symposium on Information Theory, Whistler, BC,1995,9:17-22.
    [109]VISURI S, OJA H, KOIVUNEN V. Blind channel identification using robust subspace estimation[C]. Proceeding of the 11th IEEE Signal Processing Workshop on Statistical Processing, Singapore,2001,8:281-284.
    [110]ABDELHAK M Z, RAMON F B. Multiuser detection in heavy tailed noise [J]. Digital Signal Processing,2002,12(2-3):262-273.
    [111]TEONG C C, BAYAN S S, OLIVER R H. Robust decorrelating decision-feedback multiuser detection in non-Gaussian channels [J]. Signal Processing,2001,81(9):1997-2004.
    [112]ZHA D F. Robust multiuser detection method based on least lp-norm state space criterion [J]. Wireless Personal Communications,2007,40(2):191-204.
    [113]GIFFITH D, GONZALEZ J, ARCE G. Robust time frequency representations for signals in alpha-stable noise using fractional lower-order statistics [C].IEEE Signal Processing Workshop on High-Order Statistics. Banff, Alta,1997,2:1233-1236.
    [114]HUANG T, ZHOU Y, JIANG W L. Joint estimation of Doppler and time-difference-of-arrival exploiting cyclostationary property[J]. IEE Proceedings on Radar, Sonar and Navigation,2002,149(8):161-165.
    [115]KONG X, QIU T S. Adaptive estimation of latency change in evoke potentials by direct least mean p-normal time delay estimations [J]. IEEE Transactions on Biomedical Engineering,1999,46(8):994-1003.
    [116]邱天爽,鲍海平,李小兵,等.一种基于脑电信号分析的中枢神经系统损伤检测的韧性自适应方法[J].中国生物医学工程学报,2003,22(1):23-29.
    [117]CARRILLO R E, BARNER K E, AYSAL T C. Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise [J]. IEEE Journal of Selected Topics in Signal processing,2010,4(2):392-408.
    [118]SIMMROSS W F, ASENSIO P J I, CASSASECA H p, et al. Anomaly detection in network traffic based on statistical interference and alpha-stable modeling [J]. IEEE Transactions on Dependable and Secure Computing,2011,8(4):494-509.
    [119]GARDNER W A. Signal interception:a unifying theoretical frame work for feature detection [J]. IEEE Transactions on Communications,1988,36(8):897-906.
    [120]SPOONER C M, GARDENR W A. Signal interception:performance advantages of cyclic feature detection [J]. IEEE Transactions on Communications,1992,40(1):149-159.
    [121]IZZO L, NAPOLITANO A, PAURA L. Modified cyclic methods for signal selective TDOA estimation [J]. IEEE Transactions on Signal Processing,1994,42(11):3294-3298.
    [122]GARDNER W A. Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity [J]. Proceedings of the IEEE,1988,76(7):845-847.
    [123]XU G, KAILATH T. Direction-of-arrival estimation via exploitation of cyclostationary-a combination of temporal and spatial processing [J]. IEEE Transactions on Signal Processing [see also IEEE Transactions on Acoustics, Speech, and Signal Processing],1992,40 (7):1775-1786.
    [124]YANG Y G, HUANG X T, A new method of direction find forcyclostationary signal sources with uniform circular array [C],2004 7th International Conference on Signal Processing (ICOSP 2004), Beijing, China,2004:431-434.
    [125]GARDNER W A, SPOONER C M. Comparison of autocorrelation and cross-correlation methods for signal-selective TDOA estimation [J]. IEEE Transactions on Signal Processing,1992,40(10):2606-2608.
    [126]LIANG Y C, LEYMAN A R, SOONG B H. Blind source separation using second-order cyclic-statistics [C]. IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.1997,363-367.
    [127]BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second-order statistics [J]. Signal Processing, IEEE Transactions on,1997,45(2):434-444.
    [128]ABED-MERAIM K, XIANG Y, MANTON J H, et al. Blind source-separation using second-order cyclostationary statistics [J]. IEEE Transactions on Signal Processing,2001,49(4):694-701.
    [129]BOUGUERIOU N, HARITOPOULOS M, CAPDESSUS C, et al. Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: Theory and application to the bearing defect diagnosis [J]. Mechanical Systems and Signal Processing,2005,19(6):1260-1281.
    [130]YEUNG G K, GARDNER W A. Search-efficient methods of detection of cyclostationary signals [J]. IEEE Transactions on Signal Processing,1996,44(5):1214-1223.
    [131]GARDNER W A. Cyclic wiener filtering:theory and method [J]. IEEE Transactions on Communications,1993,41(1):151-163.
    [132]魏安全,沈连丰.CFE下FRESH滤波器性能分析及CFE校正[J].电子与信息学报,2008,30(4):853-858.
    [133]黄知涛,周一宇,姜文利.循环相关匹配滤波器设计[J].电子学报,2003,31(1):98-102.
    [134]ZHANG Y, WANG C M, WANG S X. A cyclic statistics-based parametric approach to time-delay estimation [J]. Circuits Systems Signal Processing,2002, 21(6):535-545.
    [135]XU Z, SHI P. TDOA estimation algorithm for cyclostationary signals in multipath environments [J]. Electronic Letters,2003,39(5):474-475.
    [136]OHM D R. Kinematic and cyclostationary parameter estimation for co-channel emitter location applications [D]. Monterey:Oregon State University,2007.
    [137]FERREOL A, CHEVALIER P, ALBERA L. Second-order blind separation of first-and second-order cyclostationary sources-applications to AM, and deterministic sources [J]. IEEE Transactions on Signal Processing,2004,52(4):845-861.
    [138]黄旭红,沈连丰,胡亚锟,等.基于循环平稳算法的频谱重叠信号分离实验平台的设计与实现[J].电子测量技术,2009,32(8):41-44.
    [139]苏中元,贾民平.周期平稳信号盲源分离算法及其应用水[J].机械工程学报,2007,43(10).
    [140]ALTUNA J. Cyclostationary blind equalization in mobile communications [D]. Edinburg:University of Edinburg,1999.
    [141]BOLCSKEI H, HEALTH R W, PAULRAJ A J. Blind channel identification and equalization in OFDM-based multi antenna syetems [J]. IEEE Transactions on Signal Processing, 2002,50(1):96-109.
    [142]BRADARIC I, PETROPULU A P, DIAMANTARAS K I. Blind MIMO FIR channel identification based on second-order spectra correlations [J]. IEEE Transactions on Signal Processing,2003,51 (6):1668-1674.
    [143]GARDNER W A. Spectral characterization of n-th order cyclostationarity [C].5th Acoustics, Speech, and Signal Processing Workshop on Spectrum Estimation and Modeling, New York,1990,251-255.
    [144]DANDAWATE A V, GIANNAKIS G B. Nonparametric cyclic polyspectral estimators for kth-order (almost) cyclostationary processes [J]. IEEE Transactions on Information Theory,1994,40(1):67-84.
    [145]FERREOL A, CHEVALIER P. Higher order blind source separation using the cyclostationarity property of the signals[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing. Munich, Germany,1997,5:4061-4064.
    [146]GARDNER W A. Spectral correlation of modulated signals:Part Ⅰ--analog modulation [J]. IEEE Transactions on Communications,1987,35(6):584-594.
    [147]GARDNER W A, Brown W, Chen C K. Spectral correlation of modulated signals:Part Ⅱ--digital modulation [J].IEEE Transactions on Communications,1987,35(6): 595-601.
    [148]SAMORODNITSKY G, TAQQU M S, LINDE R W. Stable non-Gaussian random processes: stochastic models with infinite variance [J]. Bulletin of the London Mathematical Society,1996,28(134):554-555.
    [149]NIKIAS C L, SHAO M. Signal Processing with Alpha-Stable Distribution and Applications. New York:John Wiley & Sons, Inc.,1995
    [150]MILLWE G. Properties of certain symmetric stable distributions [J]. Jouranl of Multivariate Analysis,1978,8:346-360.
    [151]MA X, NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics [J]. IEEE Transactions on Signal Processing,1996,44 (11):2669-2687.
    [152]SUN Y M, QIU T S. New HB-weighted time delay estimation algorithm under impulsive noise environment [J]. Journal of Systems Engineering and Electronics,2008,19(6): 1102-1108.
    [153]GARDNER W A. The spectral correlation theory of cyclostationary time-series [J]. Signal Processing,1986,11(1):13-36.
    [154]GARDNER W, FRANKS L. Characterization of cyclostationary random signal processes [J]. IEEE Transactions on Information Theory,1975,21(1):4-14.
    [155]S V SCHELL, R A CALABRETTA, W A GARDNER, B G AGEE. Cyclic MUSIC algorithms for signal-selective direction estimation [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989, vol.4:2278-2281.
    [156]INAGAKI Y, KIKUMA N. DOA estimation of desired signals by cyclic ESPRIT based on noise subspace and its performance improvement [J]. Electronic and Communications in Japan,2007,90 (11):95-104.
    [157]郑春弟,解春维,李有才.基于实值特征值分解的求根MUSIC算法[J].数据采集与处理,2010,25(2):154-159.
    [158]陈志菲,孙进才,候宏.基于奇异值分解的的方向估计改进方法[J].数据采集与处理,2011,26(5):499-502.
    [159]CHARG P, WANG Y D, Sail lard J. An extended cyclic MUSIC algorithm [J]. IEEE Transactions on Signal Processing,2003,51(7):1695-1701.
    [160]刘志刚,汪晋宽,王福利.实值循环ESPRIT算法[J].通信学报,2006,27(5):47-51.
    [161]LEE Y T, LEE J H. Direction-finding methods for cyclostationary signals in the presence of coherent sources [J]. IEEE Transactions on antennas and propagation, 2001,49(12):1821-1826.
    [162]Yan H, Fan H H. Improved cyclic and conjugate cyclic MUSIC[C]. Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop, Barcelona, Spain, 2004:289-293.
    [163]ZHANG J, LIAO G S, WANG J, Robust direction finding for cyclostationary signals with cycle frequency error [J], Signal Processing,2005,85(12):2386-2393.
    [164]HAO X O, LI L, JING X J, A fast direction-of-arrival estimation based on the fractional lower order cyclic correlation, Proceedings of AIAI2010,255-258.
    [165]ZHANG Q T, Probability of resolution of the MUSIC algorithm, IEEE Transactions on Signal Process,1995,43:978-987.
    [166]KAHAEI M H, DERICHE M, BOASHASH B. Performance analysis of adaptive lattice filters for impulsive signals[C]. Speech and Image Technologies for computing and Telecommunications, Brisbane, Qld,1997:77-80.
    [167]GERSHMAN A B, MESSER H, Robust mixed-order root-MUSIC, Circuits System Signal Process [J].2000,19(5):451-466;
    [168]LOMBARDI M, GODSILL S, On-line Bayesian estimation of signals in symmetric alpha-stable noise [J], IEEE Transactions on Signal Process,2006,54(2):775-779.
    [169]WAN F, ZHU W P, SWARMY M N S. Spacial extrapolation-based blind DOA estimation approach for closely spaced sources [J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(2):569-582
    [170]罗蓬,刘开华,于洁潇等.相干宽带线性调频信号的波达方向估计新方法[J].通信学报,2012,33(3):122-129.
    [171]FUCHS J J. On the application of global matched filter to DOA estimation with uniform circular array [J]. IEEE Transactions on Signal Processing,2001, 49(4):702-709.
    [172]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究[J].通信学报,2006,27(9):89-95.
    [173]赵益民,王琦,路宏敏.一种新的DOA估计方法[J].电子学报,2011,39(6):1428-1430.
    [174]WANG B H, HUI H T. Decoupled 2D Direction of Arrival Estimation Using Compact Uniform Circular Arrays in the Presence of Elevation-Dependent Mutual Coupling [J]. IEEE Transactions on Antennas and Propagation.2010,58(3):747-755.
    [175]陶建武,石要武,常文秀.基于均匀圆阵的扩展信号二维方向角估计[J].通信学报,2003,24(11):10-17.
    [176]MATHEWS C P, ZOLTOWSKI M D, Eigenstructure techniques for 2-D angle estimation with uniform circular arrays, IEEE Transactions on Signal Processing, 1994,42 (9):2395-2407.
    [177]GARDNER W A, Measurement of spectral correlation [J], IEEE Transactions on Acoust, Speech, Signal P
    [178]rocessing,1986,34(5):1111-1123.
    [179]LEE J H, LEE Y J, A novel direction-finding method for cyclostationary signals [J], Signal Processing,2001,81(6):1317-1323.
    [180]王江,杨景曙.频差存在时广义相关时延估计方法研究[J].信号处理,2008,24(1):112-114.
    [181]PIERSOL A G. Time delay esitmation using phase data [J]. IEEE Transactions on Acoustics, Speech, and Processing,1981,29(3):471-477.
    [182]VIOLA F, WALKER W F. A comparison between spline-based and phase-domain time-delay estimators [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2006,53(3):515-517.
    [183]王宏禹,邱天爽.自适应噪声抵消与时间延迟估计[M].大连:大连理工大学出版社,1999:170-285.
    [184]SHARMA K K, JOSHI S D. Time delay estimation using fractional fourier transform. Signal Processing [J],2007,87(5):853-865.
    [185]郭莹,邱天爽,张艳丽等.脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法[J].通信学报,2007,28(3):8-14.
    [186]CABOT R. A Note on the application of the hilbert transform to time delay estimation [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981,29(3):607-609.
    [187]郭莹,邱天爽,张艳丽.基于共变谱的CZT多源时延估计新方法.大连理工大学学报[J],2007,47(5):746-750.
    [188]KALMAN R E. A new approach to linear filtering and prediction problems [J]. Transactions of the ASME-Journal of Basic Engineering,1960,82(D):35-45.
    [189]SHAW S R, LAUGHMAN C R. A Kalman-Filter Spectral Envelope Preprocessor [J]. IEEE Transactions on Instrumentation and Measurement.2007,56(5):2010-2017.
    [190]VANDERVEEN M C, Vanderveen A J, PAULRAJ A. Estimation of multipath parameters in wireless communications [J]. IEEE Transactions on Signal Processing,1991, 46 (3):682-690.
    [191]SKOLNIK M I, Introduction to Radar Systems (third edition) [M], McGraw-Hill, New York,2002:342-360.
    [192]QUAZI A H. An overview on the time delay estimate in active and passive systems for target localization [J]. IEEE Transactions on Acoustics, speech and signal processing.1981,29(3):527-533.
    [193]SCHIMIIDT R 0. Multiple emitter location and signal parameter estimation [J]. IEEE Transaction on antennas and propagation.1986,34(3):276-280.
    [194]BRUCKSTEIN A M, SHAN T J. The resolution of over-lapping echoes [J]. IEEE Transactions on Acoustics, speech and signal processing.1985,33(6):1357-1367.
    [195]HOU Z Q, WU Z D. A new method for high resolution estimation of time delay [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Paris, France,1982:420-423.
    [196]PALLAS M, JOURDAIN G. Active high resolution time delay estimation for large BT signals [J]. IEEE Transactions on Signal Processing,1991,39(4):781-787.
    [197]HASAN M A, AZIMI-SADJADI M R, DOBECK G J. Separation of multiple time delays using new spectral estimation schemes [J]. IEEE Transactions on Signal Processing,1998, 46(6):1580-1590.
    [198]CHING P C, CHAN Y T. Adaptive time delay esitmation with constraints [J]. IEEE Transactions on Acoustics, speech and signal processing,1988,36(4):599-602.
    [199]GE F X, SHEN D X, PENG Y N. Super-resolution time delay estimation in multipath environments [J] IEEE Transactions on Circuits and Systems,2007,54(9): 1977-1985.
    [200]沙岚,无线电无源定位中窄带信号时延估计方法研究[D].大连:大连理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700