冲击—致密微孔浮动壁火焰筒冷却研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代航空发动机性能的飞速提升,各种新颖的燃烧室火焰筒冷却方法和结构形式不断涌现,冲击-致密微孔浮动壁火焰筒冷却技术就是其中之一。
     本文对该技术开展的研究包括四个方面。首先,对冲击-致密微孔浮动壁复合冷却方式的基础流动与换热特性进行了详细的实验研究,研究了冲击-致密微孔壁当量孔流量特性、致密微孔壁冷侧冲击换热、气膜侧对流换热、孔内对流换热以及气膜绝热冷却效率等。实验中考虑了多个气动和结构参数对流动和换热的影响,分析了该复合冷却方式流动与换热的变化规律,并根据实验数据总结拟合了换热经验准则关系式。
     其次,分别对采用冲击-致密微孔浮动壁冷却方式的单头部燃烧室和全尺寸环形燃烧室的火焰筒壁面冷却效果进行了研究。通过单头部燃烧室实验,分析对比了多种孔配置的冲击-致密微孔浮动壁的冷却效果,为筛选具有最佳综合冷效的浮动壁结构奠定了基础。环形燃烧室的实验完全模拟发动机的工况,验证了冲击-致密微孔浮动壁结构的冷却效果。
     然后,通过数值模拟,采用ANSYS软件的热分析模块,结合本文基础传热实验和相关文献资料的换热准则关系式进行了冲击-致密微孔浮动壁三维壁温计算,并将计算结果与试验结果进行了比对分析。
     最后,本文就如何将冲击-致密微孔浮动壁这一新颖的火焰筒冷却技术可靠有效地运用到高性能航空发动机上进行了简要的展望,提出了一些研究建议。本文的研究表明:
     a.冲击-致密微孔浮动壁火焰筒冷却技术的冷却用气量较少,冷却气量仅为火焰筒总进气量的18%~20%;火焰筒壁温较低,均不高于900℃;壁温梯度较小,在一个瓦块上沿流动方向最大的温差约为200℃左右,远比一段缝槽气膜冷却的壁温差要小。
     b.影响冲击-致密微孔浮动壁综合冷却效果的因素很多,这些因素相互矛盾和制约。所以在实际应用中,冲击-致密微孔浮动壁冷却结构的参数配置应灵活选取和调配,以利于与燃烧室的其它设计性能参数相匹配。
     c.浮动瓦块三维壁温场计算方法具有工程适用性,快捷方便,具有较高的计算精度,可为火焰筒壁的强度和寿命预估提供必需的基础数据,有助于航空发动机主燃烧室设计体系的完整建立。
     总之,冲击-致密微孔浮动壁火焰筒冷却技术是一种高效的冷却技术,对于高性能航空发动机研制具有重大的潜在应用价值。
With the rapid development of modern aeroengine, various novel cooling methods and configurations of combustor flame tube have been developed. The impingement/effusion cooling float-wall (I/ECFW for short) flame tube is one of the most prospective configurations.
     In this thesis four main research works are conducted. Firstly, an experimental investigation of flow and heat transfer process of I/ECFW composite cooling is studied. The discharge coefficient of the equivalent holes, impingement heat transfer coefficient on the cold side of the effusion wall, convective heat transfer on film side of effusion wall and inside effusion holes, and adiabatic wall film cooling effectiveness are studied in details. The empirical formulas of heat transfer are correlated based on the experimental data.
     Secondly, the cooling effectiveness of a single swirler sector combustion chamber and a full size annular combustion chamber are experimentally studied respectively. Both combustion chambers adopt the I/ECFW cooling method. By the former experiment, the cooling effectiveness of several combinations of impingement holes and effusion holes are compared. This study lays the foundation for optimizing the cooling configuration. The latter experiment is carried out under the real engine condition to validate the cooling effectiveness.
     And then, the three dimensional temperature field of the I/ECFW is numerically calculated by using the heat analysis module of ANSYS code. The results show a reasonable agreement with the experimental data.
     At last, the prospect of how to reliably and efficiently use I/ECFW composite cooling technique on high performance aeroengine are discussed. Some suggestions are arisen.
     The main results of the study are as follows,
     1. The I/ECFW flame tube requires less cooling air, which is only about 18%~20% of the total inlet flow rate of the flame tube. The temperature of flame tube is less than 900℃. Temperature gradient is relatively small. For a float-wall tile the maximum temperature difference in the flow direction is about 200℃that is far smaller than the corresponding film slot cooling flame tube.
     2. There are many factors that influence cooling effectiveness of the I/ECFW configuration. These factors often have conflict effect and act against each other. So the I/ECFW configuration should be designed and adjusted carefully. 3. The calculation method for 3D temperature field of float-wall tile is feasible for engineering use, which has reasonable accuracy and can provide the required data for estimating the intensity and life span of flame tube.
引文
[1] IHPTET Ten Years of Progress, NASA, 1998
    [2] Smith, R., Advanced Low Emissions Subsonic Combustor Study, NASA No. 19990024925, 1998
    [3] Plencner, R.M., Engine Technology Challenges for the High-Speed Civil Transport Plane, AIAA-98-2505, 1998
    [4] Colladay, R.S., Importance of Combining Convection With Film Cooling, AIAA-72-8,1972
    [5] Wassell, A.B. and Bhanga, J.K., The Development and Application of Improved Combustion Wall Cooling Techniques, ASME 80-GT-66, 1980 
    [6] Mellor, A.M., Design of Modern Turbine Combustor, Academic Press, 1990
    [7] Nealy, D.A. and Reider, S.B., Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling, ASME 79-GT-100, 1979 
    [8] Meyers, V.D., Geest, J., Sanborn, J. and Davis, F., Comparison of Advanced Cooling Concepts Using Color Thermography, AIAA-85-1289
    [9] Bazdidi-Tehrani, F. and Andrews, G. E., Full Coverage Discrete Hole Film Cooling, Investigation of the Effect of Variable Density Ratio, Journal of Engineering for Gas Turbines and Power, Vol.116, pp587-596, 1994
    [10] Champion, J.L. and Deshaies, B., Experimental Investigation of the Wall Flow and Cooling of Combustion Chamber Walls, AIAA-95-2498, 1995
    [11]刘高恩,林宇震,多斜孔壁冷却方式研究及评估,北京航空航天大学,1998年11月
    [12] Grore, J.M., The Leading Edge—GE90 Story, 1992
    [13] Mongia, H.C. and Reider, S.B., Allison Combustion Research and Development Activties, AIAA-85-1402, 1985
    [14] Peter, H., David, T. , James, W. G. and Jobn N. B. , Experimental Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate, NASA TN D-5690, 1970
    [15] James, W. G., Jobn, N. B. and Peter, H., Survey of Literature on Flow Characteristics a Single Turbulent Jet Impinging on a Flat Plate, Lewis Research Center Cleveland, NASA TN D-5652, 1970
    [16] Andrews, G. E., Al Dabagh, A. M. and Asere, A. A., Impingement/Effusion Cooling, AGARD CP 527,“Heat Transfer and Cooling in Gas Turbine”, pp30.1–pp 30.10, 1992
    [17] Al Dabagh, A. M., Andrews, G. E., Abdul Husain, R. A. A. and Husain, C. I.,Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient, ASME Paper No.89-GT-188, 1989
    [18] Cho, H. H. and Rhee, D. H., Local Heat/Mass Transfer Measurements on the Effusion Plate in Impingement/Effusion Cooling System, ASME 2000-GT-0252, 2000
    [19] Yamawaki, S. and Nakamata, C., Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration, ASME GT2003-38215, 2003
    [20] Funazaki, K. and Hachiya, K., Systematic Numerical Studies on Heat Transfer and Aerodynamic Characteristics of Impingement Cooling Devices Combined With Pins, ASME GT2003-38256, 2003
    [21] Cho, H.H., Rhee, D. H. and Goldstein, R. J., Effect of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing, ASME GT2004-53685, 2004
    [22] Rhee, D.H., Choi, J. H. and Cho, H. H., Flow and Heat (Mass) Transfer Characteristics in an Impingement/Effusion Cooling System With Crossflow, ASME GT2002-30474, 2002
    [23] Andrews, G. E. and Mkpadi, M. C., Full Coverage Discrete Hole Wall Cooling: Discharge Coefficients, ASME 83-GT-79, 1983
    [24] Hay, N., Lampard, D. and Benmansour, S., Effect of Crossflow on the Discharge Coefficient of Film Cooling Holes, [R], ASME 82-GT-2147, 1982
    [25] Powel IV, S.F., On the Leading Edge: Combining Maturity and Advanced Technology on the F404 Turbofan Engine, ASME 90-GT-149, 1990
    [26] Acosta, W.A. and Norgren, C.T., Small Gas Turbine Combustor Experimental Study-Compliant Metal/Ceramic Liner and Performance Evaluation, AIAA-86-1452, 1986 
    [27] Paskin, M.D., Ross, P.T., Mongia, H.C. and Acosta, W.A., Composite Martrix Cooling Scheme for Small Gas Turbine Combustor. AIAA 90-2158, 1990 
    [28]刘高恩,吴文东编译,《高效节能发动机文集》,第四分册,航空工业出版社,1991
    [29] Tanrikut, S., Marshall, R.L. and Sokolowski, D.E., Improved Combustor Durability-Segmented Approach with Advanced Cooling Techniques, AIAA-81-1354, 1981
    [30] Sokolowski, D.E. and Rohde, J.E., The E3 Combustor Status and Challenges, NASA-TM-82684, 1981
    [31] Du Bell, T.L., Le Tourneau, J.J. and Kaplam, R.M., Advanced FloatwallTM Combustor Liner Technology Eliminates TF30-P-100 Transition Duct Fatigue Cracking, AIAA-85-1288, 1985
    [32]刘高恩,CJ2000燃烧室气动设计,1993
    [33] Wilfert, G., The Aerodynamic Mixing Effect of Discrete Cooling Jets with Mainstream Flow on a Highly Loaded Turbine Blade, ASME Paper 94-GT-174, 1996
    [34] Vogel, D.T., Numerical Investigation of the Influence of Specific Vortex Generation on the Mixing Process of Film Cooling Jets, ASME Paper 98-GT-210, 1998
    [35] Thole, K.A., Flowfield Measurements for Film Cooling with Expanded Exits, ASME Paper 96-GT-174, 1996
    [36] Gritsch, M., Heat Transfer Coefficient Measurement of Film-Cooling Holes with Expanded Exits, ASME Paper 98-GT-28, 1998
    [37] Burd, S.W., The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness, ASME Paper 97-GT-25, 1997
    [38] Wilfert, G., Influence of Internal Flow on Film Cooling Effectiveness, ASME Paper 99-GT-258, 1999
    [39]金如山,航空燃气轮机燃烧室,宇航出版社,1985
    [40] Dittrich, R.T., Discharge Coefficients for Combustor Liner Air Entry Holes, Part I, Circular Holes with Parallel Flow, NACA-TN-3663, 1956
    [41] Dittrich,R.T., Discharge Coefficients for Combustor Liner Air Entry Holes PartⅡ,Flush Rectangular Holes,Step Louvers and Scoops, NACA TN-3924, 1958
    [42] Andrews, G.E. and Mkpadi, M.C., Full Coverage Discrete Hole Wall Cooling: Discharge Coefficients, ASME 83-GT-79, 1983
    [43] Hay, N., Lampard, D. and Benmansour, S., Effect of Crossflow on the Discharge Coefficient of Film Cooling Holes, ASME 82-GT-147, 1982
    [44] Hay, N., Henshall, E. S. and Manning, A., Discharge Coefficient of Holes Angled to the Flow Direction, ASME 92-GT-132, 1992
    [45]高峰,多斜孔流量系数研究及冷却技术分析,硕士论文,北京航空航天大学,1995
    [46]方韧,燃烧室多斜孔壁流量系数研究,航空动力学报,1998,第1期
    [47] Chu, T., Discharge Coefficients of Impingement and Film Cooling Holes, ASME 85-GT-81, 1985
    [48] Gardon, R., The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets, Int. J. Heat Transfer, Nol.8, pp1261-1272, 1965
    [49] Byerley, A.R., Heat Transfer Near the Entrance To a Film Cooling Hole In a gas Turbine Blade, AD-A217396, 1989
    [50] Kumada, M., Hirata, M. and Kasagi, N., Studies of Full-Coverage Film Cooling Part 2:Measurement of Local Heat Transfer Coefficient, ASME 81-GT-38, 1981
    [51] Hrycak, P., Experimental Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate, NASA TN D-5690, 1970
    [52] Sparrow, E.M., Effect of Nozzle-Surface Separation Distance on Impingement HeatTransfer for a Jet in a Crossflow, Trans. of ASME, J. of Heat Transfer, pp528-533, 1975
    [53] Behbahani, A.I. and Goldstein, R.J., Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets, Trans. of ASME, J. of Engineering for Power, Vol.105, pp354-360, 1983
    [54] Florschuetz, L.W., Effects of Crossflow Temperature on Heat Transfer within an Array of Impinging Jets, ASME 86-GT-55, 1986
    [55] Hollworth, B.R., Heat Transfer to Arrays of Impinging Jets in a Crossflow, ASME 87-GT-198, 1987
    [56]邱绪光,气冷叶片典型内冷结构的流动与换热研究技术总结报告,北京航空航天大学,1992.11
    [57] Lytle, D., Webb, B.W., Air Jet Impingement Heat Transfer at Low Nozzle to Plate Spacings, Int. J. Heat Mass Transfer 37 (1994) pp1687-pp1697.
    [58] Huber, A.M., Viskanta, R., Convective Heat Transfer to a Confined Impinging Array of Air Jets with Spent Air Exits, ASME J. Heat Transfer 116 (1994) 570-576.
    [59] Huang, C.L., Local Thermal Characteristics of a Confined Round Jet Imping onto a Heated Disk, 1997 IEEE/CPMT Electronic Packaging Technology Conference.
    [60] Son, C., Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System, ASME Paper No.2000-GT-219,2000
    [61]李立国,朱芸,单股冲击射流的传热特性显示,中国航空学会第八届燃烧及传热传质学术讨论会,CSAAPC-92-038,1992
    [62]张士欣,基础物理实验,北京科学技术出版社,1993
    [63] Andrews, G.E, Alikhanpadeh, M., Small Diameter Film Cooling Holes: Wall convection Heat Transfer, ASME 86-GT-225, 1986
    [64] Rohsenow, W.M., Handbook of Heat Transfer Fundamentals. (Second Edition) Mc Graw-Hill, 1985
    [65]林宇震,燃烧室多斜孔壁气膜冷却研究,北京航空航天大学博士学位论文,1997
    [66]葛绍岩,刘登瀛,徐靖中,李静,气膜冷却,科学出版社,1985
    [67] Goldstein, R.J.,“薄膜冷却”,国外航空技术,发动机类第39号,1975
    [68] Metzger, D.E., Takeuchi, D.I. and Kuenstler, P.A., Effectiveness and Heat Transfer with Full Coverage Film Cooling, ASME Paper 73-GT-18, 1973
    [69] Eriksen, V.L., Goldstein, R.J., Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes, Journal of Heat Transfer or ASME Paper 74-HT-v, 1974
    [70] Pedersen, D.R., Eckert, E.R.G. and Goldstein, R.J., Film Cooling with Large Density Differences between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy, Journal of heat transfer, 1977
    [71] Mayle, R.E., Camarata, F.J., Multihole Cooling Film Effectiveness and Heat Transfer, J.HeatTransfer, Trans ASME, Vol.97, sec.No.4, 1975 or ASME Paper 74-HT-9, 1975
    [72] Sellers, J. P., Gaseous Film Cooling with Multiple Injection Stations, AIAA. Journal, vol.1, No.9, pp2154~2156, 1963
    [73] Sasaki, M.K., Takahara, T. and Kumagai, M.H., Film Cooling Effectiveness for Injection from Multirow Holes,Trans. Of the ASME, Journal of Engineering for Power Vol.101, pp101-108.1979
    [74]宋波,燃烧室多斜孔壁冷却方式研究,北京航空航天大学硕士学位论文,1995
    [75]李彬,燃烧室火焰筒多斜孔壁冷却方式的实验研究和理论分析,北京航空航天大学硕士学位论文,1997
    [76] Wittig, S., Transonic Film-Cooling Investigations: Effects of Hole Shapes and Orientations, ASME Paper 96-GT-222, 1996
    [77] Thole, K.A., Flowfield Measurements for Film Cooling with Expanded Exits, ASME Paper 96-GT-174, 1996
    [78] Thole, K.A., Effect of a Crossflow at the Entrance to a Film-Cooling Hole, ASME J. of Fluids Engineering, Vol.119, pp.535-540, 1997
    [79] Gritsch, M., Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits, ASME Paper 97-GT-164, 1997
    [80] Lutum E., Influence of the Hole Length-to-diameter Ratio on Film Cooling with Cylindrical Holes, ASME Paper 98-GT-10, 1998
    [81] Hale, C. A., Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum, ASME 99-GT-36, 1999
    [82] Mulugeta, K., Investigation of Discrete-hole Film Cooling Parameters Using Curved-Plate Models, ASME Paper 98-GT-374, 1998
    [83] Ames, F.E., Aspects of Vane Film Cooling with High Turbulence: Part II– Adiabatic Effectiveness, ASME Paper 97-GT-240, 1997
    [84] Eriksen, V.L., Film Cooling Effectiveness and Heat Transfer with Injection through Holes, NASA-CR-72911, 1971 
    [85] Eriksen, V.L. and Goldstein, R.J., Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes, Trans. of the ASME, Journal of Heat Transfer, pp239-245, 1974
    [86] Mayle, R.E. and Camarata, F.J., Mutihole Cooling Film Effectiveness and Heat Transfer Trans.of the ASME, Journal of Heat Transfer, pp534-538, 1975
    [87] Yu, Y., Yen, C.H., Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes, ASME, 99-GT-34, 1999
    [88] Chen, P. H., Film Cooling over a Concave Surface through a Row of Expanded Holes, ASME 99-GT-33, 1999
    [89] Crawford, M.E., Kays, W.M. and Moffat, R.J., Full-Coverage Film Cooling Part I: Comparison of Heat Transfer Data for Three Injection Angles, ASME 80-GT-43, 1980
    [90]李继保,高温升燃烧室设计报告,YGY-0313-W23,中国燃气涡轮研究院,1997.04
    [91]李彬,高温升燃烧室浮动壁方案论证报告,YGY-0313-W43,中国燃气涡轮研究院,1997.12
    [92]李彬,浮动壁火焰筒单头部试验件设计及试验分析,YGY-0313-W125,中国燃气涡轮研究院,2000.10
    [93]李彬,高温升燃烧室浮动壁火焰筒结构说明书,YGY-0313-W61,中国燃气涡轮研究院,1998.07
    [94]许全宏,冲击/发散双层壁冷却方式研究,北京航空航天大学博士学位论文,2001
    [95] Andrews, G.E., Bazdidi-Tehrani, F., Small Diameter Film Cooling Hole Heat Transfer: The Influence of the Number of Holes, ASME 89-GT-7, 1989
    [96] Andrews, G.E., Sere, A.A. , Transpiration and Impingement/effusion Cooling of Gas Turbine Combustion Chambers, ISABE 85-7005, 1985
    [97] Aldabagh, A.M., Andrews, G.E., Abdul Husain, R.A.A., et al., Impingement/effusion Cooling-The Influence of The Number of Impingement Holes and Pressure Loss on The Heat Transfer Coefficient[R]. AGARD.heat transfer and cooling in gas turbines, N93-29926 11-07, 1993
    [98]钟华贵,高温升双层壁燃烧室性能试验报告,YGY-0313-W076,中国燃气涡轮研究院,2001.03
    [99]冯大强,高温升浮动壁燃烧室性能试验报告,YGY-0313-W090,中国燃气涡轮研究院,2001.11
    [100]冯大强,高温升双层壁燃烧室补充性能试验报告,YGY-0313-W088,中国燃气涡轮研究院,2001.11
    [101]钟华贵,高温升单层壁燃烧室冷态流阻特性试验报告,YGY-0313-W068,中国燃气涡轮研究院,2000.12
    [102]方昌德,综合高性能涡轮发动机技术(IHPTET)计划文集[M],北京:航空科学技术情报所,2000
    [103] Lefebvre, A. H., Gas turbine combustion [M]. London:McGraw-Hill, 1983.
    [104]韩振兴,朱谷君,冀守礼等.气膜冷却燃烧室火焰筒二维壁温分布计算[J].航空动力学报,1995,10(1):83-86
    [105]董志锐,周四平,王舟山等.复杂边界条件下的多层多孔壁温度场的计算模型[J].航空学报,1999,20(5):405-408
    [106]李彬,浮动瓦块三维壁温计算模型研究报告(第1版),APTD-0301-W81,中国燃气涡轮研究院,2003.9
    [107]黄志豪,航空发动机设计用材料数据手册,中国航空发动机总公司,1990.5
    [108] ANSYS Release 5.7.1-Thermal Analysis Guide, ANSYS.Inc, 1998
    [109] Holman, J.P., Heat Tranfer, McGraw-Hill Book Company, 1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700