爆炸冲击波前流场扬尘特征及其多相破坏效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
_
     煤矿瓦斯爆炸事故是当前大多数采煤国家面临的重大灾害之一,它除了直接造成大量财产损失和人员伤亡外,还会诱发次生灾害的发生。本文研究了瓦斯爆炸冲击波扬尘特征及其诱发的气相冲击波和固相高速粒子耦合作用下的多相破坏效应,综合运用爆炸力学、化学反应动力学、多相流体力学、材料力学、岩石力学等多学科知识,进行了30多组实验、50多组数值模拟和大量理论分析,研究了该类灾害发生、发展的基本规律及其涉及到的关键科学问题。取得的主要创新性成果如下:
     研究分析了煤矿受限网络巷道系统内的瓦斯爆炸的基本物理和化学特征,给出了爆炸动压、反射波压力与爆炸超压之间的定量耦合关系,首次研究了巷道网络特征对瓦斯爆炸传播的影响,发现了爆炸冲击波的叠加会使爆炸超压值增大的现象。采用数值模拟的方法研究了爆炸冲击波的波前流场特征及其他特征参数的变化规律,发现了开口型系统的冲击波前最大流速和超压呈分段线性关系,爆炸前期两者呈反比关系u_(gas)=3573.9-12228.8△P_(max),后期呈线性正比关系u_(gas))=235.6+1510.1△P_(max)。发现了闭口型系统内存在冲击波振荡现象,这种振荡由FCW和FSW的反射波引起,并使得爆炸超压明显变高,根据振荡规律首次做出了爆燃冲击波和流场的振荡频谱图,并提出了闭口型系统内利用首次峰值超压和流速的关系来预测波前流速,以便衡量爆炸扬尘特征。
     采用E-E方法研究了爆炸冲击波的扬尘特征,获得的扬尘过程与国内外实验研究结果得到了很好的吻合。首次研究了对应于不同爆炸强度的流速对冲击波扬尘特征的影响,指出波前流场扬尘并非流速越高效果越好,爆炸发展初期是冲击波扬尘的最佳阶段,本次研究中得到的最佳扬尘流速在100~300m/s区间内(对应的爆炸超压在0.3MPa以内)。同时研究了沉积粉尘密度和粒径对爆炸扬尘的影响,发现沉积粉尘密度(1000~3000kg/m~3)对扬尘特征影响较小,而粒径(20μm~0.3mm)对扬尘特征影响显著,粒径较小时,粉尘可以在巷道空间内得到较好的分散,形成的粉尘团簇的各粉尘层分布均匀。
     首次研究了爆炸冲击波扬尘诱发的冲击波和高速固相粒子耦合下材料的破坏效应,提出了在冲击波作用下材料内部的应力分布状态,以及高速固相粒子产生的附加应力σsolid计算方法。建立了多相破坏试验系统,研究了气相冲击波和高速粒子耦合下材料的破坏特征,并与单一气相冲击波的破坏特征进行了对比,发现在高速粒子的附加应力作用下爆炸破坏出现增强现象。
     研究结果对于煤矿瓦斯爆炸诱发的气相冲击波和高速固相粒子的耦合破坏作用的防治,奠定了理论基础,对今后矿用产品的设计和人员的防护具有重要的理论意义和实践价值。另外,相关研究成果发表论文14篇,其中EI已收录1篇,EI源刊4篇,EI待收录会议论文1篇,SCI投稿2篇。
     该论文有图71幅,表12个,参考文献165篇。
Gas explosion in underground coal mines has been the most significant disaster in most mining countries. It not only directly causes substantial property damage and human casualties, but also can induce secondary disasters. The multi-phase destructive effect coupling gas explosion shock wave and high-speed dust particles which was induced by dust lifting behind shock wave was studied in this paper by more than 30 experiments, 50 numerical simulations and theoretical analysis integrating explosion, chemical reaction kinetics, multiphase fluid mechanics, material mechanics, rock mechanics, and other subjects. The occurrence of this kind of disasters and its key scientific issues were discussed. The main innovative achievements made are as follows:
     Gas explosion Chemistry and Physics in comfined mine network were discussed in detail. The relationship between dynamic pressure, reflected shock wave pressure and explosion overpressure was established. The effect of connetion type of tunnels on explosion propagation was studied for the first time. It was found that peak overpressure in parallel tunnels was higher that in normal ones. The flow field before shock wave and other parameters during explosion propagation were obtained by numerical simulations. The relationship between peak gas velocity and peak overpressure followed linear function. They were fitted well by equation: u_(gas)=3573.9-12228.8△P_(max) in the initial stage of explosion and by equation: u_(gas)=235.6+1510.1△P_(max) in the fininal stage. The shock wave oscillation obviously in confined tunnels was observed, which was induced by the relection of FCW and FSW. Oscillation of shock wave has lead to higer peak overpressure. Oscillation pectrogram plot of reflection wave and its relationship with arrival time was given by us for the first time. The correlation of first peak overpressure and peak gas velocity was suggested for the prediction of dust lifting beford shock wave.
     The E-E model was used to study the dust lifting process before shock wave. The dust lifting process obtained by this method was fitted well with experimental results by other researchers. The effect of gas velocity on dust lifting process was studied. It was found that the best results didn’t appear at highest gas velocity. The best dust lifting process was at the initial stage of gas explosion, whose gas velocity lies between 100 and 300m/s (corresponding peak overpressure was less than 0.3MPa). A study on the effect of dust density on dust lifting found that dust density contributed less, but the dust diameter play an important role in dust lifting.
     The multi-phase destructive effect coupling gas explosion shock wave and high-speed dust particles which was induced by dust lifting behind shock wave was studied for the first time. The stress distribution in materials under shock wave and method for calculating stress, σsolid, caused by high-speed particals were described. Experimental apparatus was established to study the multiphase destructive effects. The comparision of destroy by gas explosion shock wave and multiphase destructive effects shows that the materials was destroyed more seriously because of the addinitional stress of high-speed particals.
     Present research findings might have important scientific and applicational significance for the prevention of multi-phase destructive effect coupling gas explosion shock wave and high-speed dust particles.
     In addition, 14 papers about research results were and will be published, in which one has been indexed by EI, four will be published in EI source journals, one will be indexed by EI in a conference paper and two have been submitted to SCI journals.
     There are 71 figures, 12 tables and 165 references in this thesis.
引文
[1] http://www.cdc.gov/niosh/mining/statistics/disasters.htm
    [2] Graham M. On explosions in mines[J]. Journal of the Franklin Institute, 33 (1842) 109-110.
    [3] Moore M G. The mine explosion at Johnstown[J]. Journal of the Franklin Institute, 158 (1904), 83-96.
    [4] Rudge W A D. A Possible Cause of Explosions in Coal Mines[J]. Nature, 1914, 92 (2311): 660.
    [5] Gates R A, Phillips R L, Urosek J E, et al. Report of investigation: fatal underground coal mine explosion, January 2, 2006. Sago Mine, Wolf Run Mining Company, Tallmansville, Upshur County, West Virginia, ID No. 46-08791[R]. Arlington, VA: US Department of Labor, Mine Safety and Health Administration; 2007.
    [6] Light T E, Herndon R C, Guley A R., et al. Report of investigation: fatal underground coal mine explosion, May 20, 2006. Darby No. 1 Mine, Kentucky Darby LLC, Holmes Mill, Harlan County, Kentucky. ID No. 15-18185[R]. Arlington, VA: US Department of Labor, Mine Safety and Health Administration; 2007.
    [7]林柏泉,菅从光,张辉.管道壁面散热对瓦斯爆炸传播特性影响的研究[J].中国矿业大学学报, 2009, 38(1): 1-4.
    [8] Dubaniewicz J T H. From Scotia to Brookwood, fatal US underground coal mine explosions ignited in intake air courses[J]. Journal of Loss Prevention in the Process Industries, 22 (2009) 52-58.
    [9] Fairweather M, Hargrave G K, Ibrahim S S. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 116(1999), 504-518.
    [10]Liu Q M, Bai C H, Li X D, et al. Coal dust/air explosions in a large-scale tube[J]. Fuel, 89 (2010), 329-335
    [11]C.K.萨文科等.井下空气冲击波[M].北京:冶金工业出版社, 1979.
    [12]Cortese R A, Weiss E S. Flame-powered trigger device for activating explosion suppression barrier[C]. Proceedings of The 24th Internal Conference of Safety In Mines Research Institutes, 1991.
    [13]第二十一届国际采矿安全会议论文集[M].煤炭工业出版社, 1985.
    [14]第二十二届国际采矿安全会议论文集[M].煤炭工业出版社, 1987.
    [15]Gieras M, Klemens R, Rarata G, et al. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature[J]. Journal of Loss Prevention in the Process Industries, 19 (2006) 263-270.
    [16]Zhai C, Lin B Q, Ye Q, et al. Influence of geometry shape on gas explosion propagation laws in bend roadways[J]. Procedia Earth and Planetary Science, 1 (2009) 193-198.
    [17]Kindracki J, Kobiera A, Rarata G, et al. Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels[J]. Journal of Loss Prevention in the Process Industries 20 (2007) 551-561.
    [18]Park D J, Green A R, Lee Y S, et al. Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement[J]. Combustion and Flame, 150 (2007) 27-39.
    [19]Park D J, Lee Y S, Green A R. Experiments on the effects of multiple obstacles in vented explosion chambers[J]. Journal of Hazardous Materials 153 (2008) 340-350.
    [20]Park D J, Lee Y S, Green A R. Prediction for vented explosions in chambers with multipleobstacles[J]. Journal of Hazardous Materials 155 (2008) 183-192.
    [21] Silvestrini M, Genova B, Parisi G. Flame acceleration and DDT run-up distance for smooth and obstacles filled tubes[J]. Journal of Loss Prevention in the Process Industries, 21 (2008), 555-562.
    [22]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报, 1999, 24(1): 56-59.
    [23]林柏泉,周世宁.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报, 1999, 28(2): 104-107.
    [24]Blanchard R, Arndt D, Gr?tz R, et al. Explosions in closed pipes containing baffles and 90 degree bends[J]. Journal of Loss Prevention in the Process Industries, 23 (2010) 253-259.
    [25]Kosinski P. Numerical analysis of shock wave interaction with a cloud of particles in a channel with bends[J]. International Journal of Heat and Fluid Flow, 28 (2007) 1136-1143.
    [26]Zhou B, Sobiesiak A, Quan P. Flame behavior and flame-induced flow in a closed rectangular duct with a 90°bend[J]. International Journal of Thermal Sciences, 45 (2006), 457-474.
    [27]Frolov S M, Aksenov V S, Shamshin I O. Reactive shock and detonation propagation in U-bend tubes[J]. Journal of Loss Prevention in the Process Industries, 20 (2007) 501-508.
    [28]Frolov S M., Aksenov V S, Shamshin I O. Shock wave and detonation propagation through U-bend tubes[J]. Proceedings of the Combustion Institute, 31 (2007) 2421-2428.
    [29]Zhang Q, Pang L, Liang H M. Effect of scale on the explosion of methane in air and its shockwave[J]. Journal of Loss Prevention in the Process Industries, 24 (2011) 43-48.
    [30]Dag Bjerketvedt, Jan Roar Bakke, Kees van Wingerden. Gas explosion handbook[J]. Journal of Hazardous Materials, 52 ( 1997) 1– 150.
    [31]G. Ciccarellia, S. Dorofeev. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 34 (2008) 499–550.
    [32]Fletcher B. The interaction of a shock with a dust deposit[J]. Journal of Physics D-Applied Physics, 9(1976)197-202.
    [33]Kauffman C, Sichel M, Wolanski P. Research on dust explosions at the University of Michigan[J]. Powder Technology, 71(1992) 119-134.
    [34]Lebecki K, Cybulski K, Sliz J, Dyduch Z, Wolanski P. Large scale grain dust explosions-research in Poland[J]. Shock Waves, 5(1995) 109--114.
    [35]Boiko V M, & Papyrin A N. Dynamics of the formation of a gas suspension behind a shock wave sliding over the surface of a loose material[J]. Combustion Explosion Shock Waves, 1987, 23(2), 231–235.
    [36]Suzuki Tateuki & Adachi Takashi. The effects of particle size on shock wave dust deposit interaction[C]. In Proceedings of the 14th International Symposium on Space Technology and Science, Tokyo, 1984, 483–490.
    [37]Klemens R., Johnston V, Aleksander C, Youchen L, Kauffman C W, & Sichel M,. Flame acceleration in a grain dust–air mixtures in a long horizontal tube[C]. In Proceedings of the fourth international - colloquium on dust explosions, Porabka-Kozubnik, Poland, 1990, 338–354.
    [38]Li Y C, Harbaugh A S, Alexander C G, Kauffman C W, & Sichel M. Deflagration to detonation transition fueled by dust layers[J]. Shock Waves, 5(1995) 249–258.
    [39]Matsui H. Structure and propagation mechanism of the soot layer detonation[C]. In Proceedings of research on the processes of combustions and modelling of fires, Khabarovsk1(1992) 57–62.
    [40] Borisov A, Sumskoi S, Komissarov P. Experimental and numerical modeling of shock wave interaction with a dust layer[C]. In Proceedings of the 17th International Colloquium on the Dynamics of Explosions and Reactive Systems, Heidelberg, Germany, 1999.
    [41]Fedorov A V, Gosteev Y. Quantitative description of lifting and ignition of organic fuel dusts in shock waves[J]. Journal of Physics IV, 12(2002), 89-95.
    [42]Fedorov A V, Fedorchenko I A. Computation of dust lifting behind a shock wave sliding along the layer-Verification of the model[J]. Combustion, Explosion and Shock Waves, 41(2005) 336--345.
    [43]Klemens R., Zydak P, Kaluzny M, Litwin D, Wolanski P. Dynamics of dust dispersion from the layer behind the propagating shock wave[J]. Journal of Loss Prevention in the Process Industries, 19(2006) 200--209.
    [44]Thevand N, Daniel E. Numerical study of the lift force influence on twophase shock tube boundary layer characteristics[J]. Shock Waves, 11(2002) 279--288.
    [45]Kosinski P, Hoffmann A C. Modelling of dust lifting using the Lagrangian approach[J]. International Journal of Multiphase Flow, 31(2005) 1097-1115.
    [46]Kosinski P, Hoffmann A C, Klemens R. Dust lifting behind shock waves: comparison of two modelling techniques[J]. Chemical Engineering Science, 60(2005) 5219-5230.
    [47]Thevand N, Daniel E. Numerical study of the lift force influence on twophase shock tube boundary layer characteristics[J]. Shock Waves, 11(2002) 279--288.
    [48]Taniere A, Khalij M, Oesterle B. Focus on the dispersed phase boundary conditions at the wall for irregular particle bouncing[J]. International Journal of Multiphase Flow, 30(2004) 327-345.
    [49]Samuelsberg A, Hjertager B. An experimental and numerical study of flow patterns in a circulating fluidized bed reactor[J]. International Journal of Multiphase Flow, 22(1996) 575-591.
    [50]Chang E, Kailasanath K. Shock wave interactions with particles and liquid fuel droplets[J]. Shock Waves, 12(2003)333-341.
    [51]Lu H, Wang, S., Zhao, Y., Yang, L., Gidaspow, D., Ding, J., 2005. Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model[J]. Chemical Engineering Science 60, 3217-3231.
    [52]Goldschmidt M, Kuipers J, van Swaaij W,. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics[J]. Chemical Engineering Science 56(2001) 571-578.
    [53]Boivin M, Simonin O, Squires D. On the prediction of gas--solid flows with two-way coupling using large eddy simulations[J]. Physics of Fluids, 12(2000) 2080-2090.
    [54]Pascal P, Oesterle B. On the dispersion of discrete particles moving in a turbulent shear flow[J]. International Journal of Multiphase Flow, 2000, 26(2): 293-325.
    [55]Klemens R, Kosinski P, Wolanski P, et al. Numerical modelling of coal mine explosion[J]. Archivum Combustion, 2001, 21(1): 71-79.
    [56]Ilea C G, Kosinski P, Hoffmann A C. The effect of polydispersity on dust lifting behind shock waves[J]. Powder Technology, 196 (2009) 194–201.
    [57]Baker W E, Cox P A, Westine P S, et al. Explosion Hazards and Evaluation[M]. Elsevier, 1983.
    [58]Davies P A. A Guide to the Evaluation of Condensed Phase Explosions[J]. Journal of Hazardous Materials. 1993, 33(1): 1-33.
    [59]李翼祺,马素贞.爆炸力学[M].北京:科学出版社, 1992
    [60]Tang M J, Baker Q A. A new set of blast curves from vapor cloud explosion[J]. Process Safety Progress, 1999, 18(4): 235-240.
    [61]Wiekema B J. Vapour cloud explosion model[J]. Journal of Hazardous Materials, 1980, 3(3):221-232.
    [62]Mercx W P M, Van den Berg A C. The explosion blast prediction model in the revised CPR 14E (yellow book) [J]. Process Safety Progress,1997, 16(3): 152-159.
    [63]Van den Berg A C. The multi-energy method: A framework for vapour cloud explosion blast prediction[J]. Journal of Hazardous Materials, 1985, 12(1): 1-10..
    [64]Van den Berg A C, Lannoy A. Methods for vapour cloud explosion blast modelling[J]. Journal of Hazardous Materials, 1993, 34(2): 151-171.
    [65]Van den Berg A C, Versloot N H A. The multi-energy critical separation distance[J]. Journal of Loss Prevention in the Process Industries, 2003, 16(2): 111-120.
    [66]CCPS. Guidelines for the evaluation of the characteristics of vapour cloud explosions, flash fires and BLEVES[R]. Centre for Chemical Process Safety, AIChE, New York, USA, 1994.
    [67]Baker Q A, Tang M J, Scheier E A and Silva G J. Vapor cloud explosion analysis[J]. Process Safety Progress, 1996, 15(2): 106-109.
    [68]Baker Q A, Doolittle C M, Fitzgerald G A and Tang M J. Recent Developments in the Baker-Strehlow VCE Analysis Methodology[J]. Process Safety Progress, 1998, 17(4): 297-301.
    [69]Cates A T, B Samuels. A simple assessment methodology for vented explosions[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(5): 287-296.
    [70]Puttock J S. Fuel gas explosion guidelines-the congestion assessment method[C]. 2nd European Conference on Major Hazards On- and Off-shore, Manchester, UK, 24-26 September 1995: 267-276.
    [71]Puttock J S. Improvements in guidelines for prediction of vapour cloud Explosions[C]. International Conference and Workshop on Modeling the Consequence of Accidental Releases of Hazardous Materials, San Francisco, Sept-Oct, 1999: 541-569.
    [72]Cleaver R P, Humphreys C E, Morgan J D and Robinson C G. Development of a model to predict the effects of explosions in compact congested regions[J]. Journal of Hazardous Materials, 1997, 53(1-3): 35-55.
    [73]Bray K N C, Libby P A, Moss J B. Unified modeling approach for premixed turbulent combustion—Part I: General formulation[J]. Combustion and Flame, 1985, 61(1): 87-102.
    [74]Puttock J S, Cresswell T M, Marks P R, et al. HSE Offshore Technology Report[R]. OTO 96 004 (1996).
    [75] Puttock J S, Yardley M R, Cresswell T M. Prediction of vapour cloud explosions using the SCOPE model[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3-5): 419-431.
    [76]Nehzat N. Gas explosion modelling for the complex geometries[D]. University of New South Wales, Sydney, Australia (1998).
    [77]Lea C J and Ledin H S. A Review of the State-of-the-Art in Gas Explosion Modelling[R]. HSL Report, Health and Safety Laboratory, Buxton, UK, 2002:180.
    [78]Hjertager B H. Computer modelling of turbulent gas explosions in complex 2D and 3D geometries[J]. Journal of Hazardous Materials, 1993, 34: 173-197.
    [79]Hjertager B H, S?ter O and Solberg T. A review of computational fluid dynamics (CFD) of gas explosion[C]. 2nd International Specialist Meeting on Fuel-Air Explosions, Christian Michelsen Research a.s., Bergen, Norway, June 26 (1996)
    [80]Hjertager B H. Computer simulation of turbulent reactive gas dynamics[J]. Journal of Modelling Identification and Control, 1985, 5: 211-236.
    [81]Gardner D J, Hulme J. Offshore Technology Report[R]. Health and Safety Executive, UK (1994).
    [82]Naamansen P. Modelling of Gas Explosions using Adaptive Mesh Refinement[D]. Aallborg University, Denmark (2002).
    [83]Naamansen P, Baraldi D, Hjertager B H, et al. Solution adaptive CFD simulation of premixed flame propagation over various solid obstructions[J]. Journal of Loss Prevention in the Process Industries, 2002, 15(3): 189-197.
    [84]Magnussen B F, Hjertage r B H. On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion[C]. 16th Int. Symposium on Combustion, Combustion Institute, Pittsburgh, Pennsylvania, U.S.A, 1976: 719-729.
    [85]Hjertager B H. Numerical simulation of turbulent flame and pressure development in gas explosions in Fuel-air explosions[M]. University of Waterloo Press, Waterloo, Ont., SM study 1982, NO.16: 407-426.
    [86]Moen I O, Lee J H S. Pressure development due to turbulent flame propagation in large-scale methane-air explosions[J]. Combustion and Flame, 1982, 47: 31-52.
    [87]Chan C, Moen I O, Lee J H S. Influence of confinement on flame acceleration due to repeated obstacles[J]. Combustion and Flame, 1983, 49(1-3): 27-39.
    [88]Hjertager B H, Solberg T, Nymoen K O. Computer modelling of gas explosion propagation in offshore modules[J]. Journal of Loss Prevention in the Process Industries, 1992, 5(3): 165-174.
    [89]Arntzen B J. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries[D]. Norwegian University of Science and Technology, Norway (1998).
    [90]Bakke J R, Hjertager B H. The effect of explosion venting in empty vessels[J]. International Journal for Numerical Methods in Engineering, 1987, 24: 129-140.
    [91]Van den Berg A C, The H G, Mercx W P M, Mouillea Y u, Hayhurst C J. Evaluation of Consequence Models for Gas Explosions and Blast Propagation[C]. 8th Int. Symposium, Loss Prevention and Safety Promotion in the Process Industries, Antwerp, Belgium, 6-9 June (1995).
    [92]Tam V, Moros T, Webb S, Allinson J, Lee R and Bilimoria E. Application of ALARP to the design of the BP Andrew platform against smoke and gas ingress and gas explosion[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(5): 317-322.
    [93]Van Wingerden K, Hansen O R and Foisselon P. Predicting blast overpressures caused by vapor cloud explosions in the vicinity of control rooms[J]. Process Safety Progress, 1999, 18(1): 17-24.
    [94]Bray K N C. Studies of the turbulent burning velocity[C]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1990, A431: 315-335.
    [95]Mercx W P M. Large scale experiments investigation into vapor cloud explosions, comparison with the small scale DISCOE tests[C]. 7th International Symposium on Loss Prevention andSafety Promotion in the Process Industries, Italy, May 1992.
    [96]Selby C A, Burgan B A. Blast and Fire Engineering for Topside Structures[M]. SCI-253, Steel Construction Institute, Ascot, UK, 1998.
    [97]Hayhurst C J, Robertson N J, Moran K C, Clegg R A and Fairlie G E. Gas Explosion and Blast Modelling of an Offshore Platform Complex[C]. 7th Annual Conference on Offshore Installations, London, December ,1998.
    [98]Rogers M C, Barnes T, Fairlie G E and Littlebury K. Safety on Offshore Installations[M]. London, November, 1999.
    [99]Windhorst J C A, Benefits of Plant Layout Based on Realistic Explosion Modeling[C]. International Conference & Workshop on Risk Analysis in Process Safety, Atlanta, 21 October (1997).
    [100]Windhorst J C A. Deriving Engineering Specifications from Release Dispersion and CFD Explosion[C]. International Conference and Workshop on Modeling the Consequences of Accidental Releases of Hazardous Materials, San Francisco, California, 28 September-1 October (1999).
    [101]Fairweather M, Hargrave G K, Ibrahim S Sand Walker D G. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, 116(4): 504-518.
    [102]Catlin C. A., Fairweather M. and Ibrahim S. S.. Predictions of turbulent, premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1995, 102(1-2):115-128.
    [103]Fried L, Glaesemann K, Souers P C, Howard W M, Vitello P[M]. A thermochemicalkinetics code. Cheetah 3.0. Livermore, CA: Lawrence Livermore National Laboratory, 2002.
    [104]McBride B J, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications. II. Users manual and program description[M]. Cleveland, OH: National Aeronautics and Space Administration, Lewis Research Center, NASA Reference Publication 1311, 1996.
    [105]Razus D, Movileanu C, Brinzea V, Oancea D. Explosion pressures of hydrocarbon-air mixtures in closed vessels[J]. Journal of Hazardous Materials, 2006, 135(1–3): 58–65.
    [106]Glasstone S, Dolan P J. The effects of nuclear weapons. 3rd ed[M]. U.S. Department of Defense and the Energy Research and Development Administration, 1997.
    [107]Kinney G F. Explosive shocks in air[M]. New York: Macmillan, 1962.
    [108]Landau L D, Lifshitz E M. Fluid mechanics, 2nd ed[M]. Oxford, U.K.: Butterwork-Heinemann, 1987.
    [109]Zucrow M J, Hoffman J D. Gas dynamics, Vol. 1[M]. New York: John Wiley and Sons, Inc., 1976.
    [110]Gexcon. FLACS. [http://www.gexcon.com/index.php?src=flacs/flacs.html]. Date accessed: June 2007.
    [111]Shepherd J E. Structural response of piping to internal gas detonation[C]. In: Proceedings of the ASME Pressure Vessels and Piping Division Conference. American Society of Mechanical Engineers, Vancouver, British Columbia, Canada, July 23–27, 2006.
    [112]Peraldi O, Knystautas R, Lee J H. Criteria for transition to detonation in tubes[C]. In: Proceedings of the 21st International Symposium on Combustion (University of Munich, Germany). Pittsburgh, PA: Combustion Institute, 1986, 1629–1637.
    [113]Dorofeev S B, Sidorov V P, Kuznetsov M S, et al. Effect of scale on the onset of detonations[J]. Shock Waves, 2000, 10(2): 137-149.
    [114]Bartknecht W. Explosionsschutz: Grundlagen und Anwendung[M]. Berlin, Germany: Springer-Verlag, 1993.
    [115]Kuznetsov M, Ciccarelli G, Dorofeev, et al. DDT in methane-air mixtures[J]. Shock Waves, 2002, 12(3): 215-220.
    [116]Cybulski W B. Coal Dust Explosion and Their Suppression[M]. Warsaw: Foreign Scientific Publication Depart ment, 1975
    [117]Zeldovich Y B, Barenblatt G I, Librovich V B, Makhviladze G M. The mathematical theory of combustion and explosions[M]. New York: Plenum Publishing, 1985.
    [118]Lewis B, Von Elbe G. Combustion, flames and explosions of gases. 3rd ed[M]. Orlando: Academic Press, Inc, 1987.
    [119]Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gasphase combustion[J]. Combust Flame, 2007, 148(1): 4-47.
    [120]Zeldovich Y B, Barenblatt G I, Librovich V B, Makhviladze G M. The mathematical theory of combustion and explosions[M]. New York: Plenum Publishing, 1985.
    [121]Fickett W, Davis W C. Detonation[M]. Berkeley: University of California Press, 1975.
    [122]Landau L D, Lifshitz E M. Fluid mechanics. Course of theoretical physics, volume 6[M]. Oxford: Butterwork-Heinemann, 1959.
    [123]Schultze-Rhonhof H. Major experimental firedamp explosions at an abandoned mine[C]. In: Proceedings of the Seventh International Conference of Directors of Safety in Mines Research (Buxton, U.K., July 7–12, 1952). Vol. 3, paper No. 25.
    [124]Cybulski W B. Coal dust explosions and their suppression[M]. Translated from Polish, 1975.
    [125]Genthe M. Untersuchungen und Versuche zur Frage der Explosionssicherheit von Vord?mmen bei der Grubenbrandbek?mpfung (Research on explosion-proof bulkheads for mine fire control) (in German) [D]. Essen, Germany: Verlag Glückauf GmbH, 1968.
    [126] KEE R J, MILLER J A, EVANS G H, et al. A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flame[C]. Symposium (International) on Combustion, 1989, 22(1): 1479-1494.
    [127]Popat N R, Catlin C A, Arntzen B J, et al. Investigations to Improve and Assess the Accuracy of Computational Fluid Dynamic Based Explosion Models[J]. Journal of Hazardous Materials, 1996, 45(1): 1-25
    [128]Launder B E, Spalding D B. Mathematical models of turbulence[M]. Academic Press, London, 1972
    [129]Favre A. Statistical equations of turbulent gases[M]. Problems of Hydrodynamics and Continuum Mechanics, SIAM, Philadelphia, 1969
    [130]Bray K N C. Studies of the turbulent burning velocity[J]. Proceedings of the Royal Society of London, 431(1990), 315-335
    [131]Lea C J, Ledin H S. A review of the state of the art in gas explosion modeling[R]. Buxton, U.K.: Health & Safety Laboratory , 2002.
    [132]Catlin C A, Lindstedt R P. Premixed turbulent burning velocities derived from mixing controlled reaction models with cold ront quenching[J]. Combustion and Flame, 85 (1991): 427-439
    [133]林柏泉.矿井瓦斯防治技术优选——通风和应急救援[M].徐州:中国矿业大学出版社, 2008.
    [134]Sand I O, Amtzen B J. Simulation of turbulent reactive flow[R]. Report No. CMI-90-25071,Chr. Michelsen Institute, Bergen, Norway, 1991.
    [135]Kuznetsov M, Alekseev V, Matsukov I, Dorofeev S. DDT in a smooth tube filled with a hydrogen–oxygen mixture[J]. Shock Waves, 2005, 14(3): 205–215.
    [136]Ilbas M, Crayford A P, Y?lmaz I, Bowenb P J, Syred N. Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study[J]. International Journal of Hydrogen Energy, 31 (2006) 1768– 1779.
    [137]Bone W A, Fraser R P. A photograhpic investigation of flame movements in carbonic oxide-oxygen explosions[J]. Philosophical Transactions of the Royal Society, 228 (1929) 197-234.
    [138]Bone W A, Fraser R P. A photograhpic investigation of flame movements in gaseous explosions. VI. The phenomenon of spin indetonations[J]. Philosophical Transactions of the Royal Society, 230 (1931) 363-385.
    [139]Bone W A, Fraser R P, Wheeler W H. A photograhpic investigation of flame movements in gaseous explosions. VII. The phenomenon of spin indetonations[J]. Philosophical Transactions of the Royal Society, 235 (1936) 29-68.
    [140]杨书召,景国勋,贾智伟.矿井瓦斯爆炸冲击气流伤害研究[J].煤炭学报, 2009, 34(10): 1354-1358.
    [141]Karl Zipf R. Explosion Pressure Design Criteria for New Seals in U.S. Coal Mines[R]. Department of health and human services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, Pittsburgh, PA, July 2007.
    [142]Denison R M, Hookham A. Modeling of dust entrainment by high-speed airflow[J]. AIAA Journal, 34(7), 1996.
    [143]Ilea C G, Kosinski P, Hoffmann A C. Simulation of a dust lifting process with roughwalls[J]. Chemical Engineering Science 63 (2008) 3864– 3876.
    [144]Saffman, P. G. (1965). The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 22(2), 385–400.
    [145]Drew D A, Lahey R T. The virtual mass and lift force on a sphere in rotating and straining inviscid flow[J]. International Journal of Multiphase Flow, 13(1987)112–113.
    [146]Ilea C G, Kosinski P, Hoffmann A C. Three-dimensional simulation of a dust lifting process with varying parameters[J]. International Journal of Multiphase Flow, 34 (2008) 869–878.
    [147]王青海,沈军辉,卫宏.爆炸冲击波对地下巷道破坏效应分析[J].中国地质灾害与防治学报, 2000, 11(3): 67-69.
    [148]魏殿志.爆炸冲击波对煤体的变形和破坏作用分析[J].中国煤炭, 2004, 30 (5): 41-42.
    [149]张玉周,姚斌,何宏舟等.瓦斯爆炸冲击波传播规律及破坏效应的计算机模拟[J].能源与环境, 2008, 1: 12-13.
    [150]李晓军,郑全平,杨益.钢纤维钢筋混凝土板爆炸局部破坏效应[J].爆炸与冲击, 2009, 29(4): 385-389.
    [151]Rajendran R, Narasimhan K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion-a review[J]. International Journal of Impact Engineering, 32 (2006) 1945–1963.
    [152]Geffroy A G, Longère P, LebléB. Fracture analysis and constitutive modelling of ship structure steel behaviour regarding explosion[J]. Engineering Failure Analysis, 18 (2011) 670–681.
    [153]Mébarki A, Mercier F, Nguyen Q B, Ami Saada R. Structural fragments and explosions in industrial facilities, Part I: Probabilistic description of the source terms[J]. Journal of Loss Prevention in the Process Industries, 22 (2009) 408–416
    [154]杨金保.图像处理技术的岩石块度分析法在岩体爆破生产中的应用[D].北京:中国地质大学(北京), 2009.
    [155]Gurney G W. The Initial Velocities of Fragments from Bombs, Shells and Grenades. Ballistics Research Laboratories Report 405; 1943.
    [156]Crowley A B. The effect of munition casings on reducing blast over-pressures[C]. Insensitive munitions and energetic materials technical symposium (IMEMTS), Bristol, April, 2006.
    [157]Taylor G I. The fragmentation of tubular bombs[M]. Scientific papers of G. I. Taylor, vol. 3. Cambridge University Press, 1963.
    [158]张守中,孙业斌.爆炸载荷作用下刚一塑性圆柱壳体的变形和破裂[J].兵工学报, 1985(2): 59-65
    [159]史可顺,叶玲.石墨受高速粒子碰撞的侵蚀破坏[J].炭素技术, 6(1985): 9-12.
    [160]Baum M R. Disruptive failure of pressure vessels: Preliminary design guidelines for fragment velocity and the extent of the hazard zone[J]. Journal of Pressure Vessel Technology, 1988, 110(2), 168–176.
    [161]Baum M R. Rupture of a gas-pressurized cylindrical vessel: the velocity of a detached end-cap[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(3), 149–161.
    [162]Baum M R. Rocket missiles generated by failure of a high pressure liquid storage vessel[J]. Journal of Loss Prevention in the Process Industries, 1998, 11(1), 11–24.
    [163]Baum M R. The velocity of end-cap and rocket missiles generated by failure of a gas pressurised vessel containing particulate material[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(4), 259–268.
    [164]Baum M R. Failure of a horizontal pressure vessel containing a high temperature liquid: the velocity of end-cap and rocket missiles[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(2), 137–145.
    [165]Baum M R. The velocity of large missiles resulting from axial rupture of gas pressurised cylindrical vessels[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3), 199–203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700