喷射成形气源振荡雾化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射成形工艺中,雾化熔滴尺寸的大小是衡量沉积坯料质量好坏的一个重要标准,细化熔滴尺寸是气雾化技术领域研究的热点。根据气雾化液流的波动破碎理论,本研究提出以振荡气体雾化金属液,从而细化熔滴这一新思路,利用数值模拟、实验测量、机理分析等手段,展开了对气源振荡雾化技术的研究。
     完成了气源振荡装置实体的设计。此装置可以制备出频率为100Hz的振荡气体,振荡幅度的大小可以通过更换不同尺寸的转子叶片来调节。通过对纯Al的雾化实验,验证了此装置的适用性。
     利用CFD软件,对振荡气体流场结构进行分析。结果表明:振荡气体与无振荡气体的流场结构有相似性,但振荡气体流场中的在一个周期内的速度最大值,要小于无振荡气体流场中的最大速度值;气体振荡对回流区温度的影响不大;振幅对气场结构的影响最为明显,振幅越大,在一个周期内流场的变化越明显;频率越高则气场中实际各参数比理论参数滞后性越明显。
     通过雾化试验观察,发现主压力对雾化质量影响最大,随主压力升高雾化提前终止或失败。对课题所使用的喷射成形设备,在主压力为0.5MPa时,金属液可以得到充分的雾化,在主压力为0.3MPa,振幅为0.1MPa时,频率为100Hz的振荡气体雾化效果要比气源无振荡,压力为0.3MPa时的雾化效果好。
     利用DPM模型,对液滴的尺寸进行了预测,结果表明:在某些压力参数下气源振荡比气源无振荡可以雾化出更细液滴。
     针对液滴尺寸的数值计算结果,对气源振荡雾化机制进行了分析:冲击波作用在液流扰动波的位置和时间上的差异是液滴尺寸不规律变化的主要原因。
In spray forming process, the size of the melt drops aerosol is one of most important standards of measuring deposition blank quality. Fining melt drops of aerosol size is one of hotspots in researching technical field. According to the smog of fluid flow theory, this paper proposes the fluctuation broken with oscillation gas atomization liquid metal, thus refining melt drops Using numerical simulation, experimental measurement, mechanism analysis and other ways, launched in researching air oscillation atomization technology.
     Finished the design of air oscillation device. This device can produce the frequency of l00Hz oscillations gas, which can change oscillation range by the size of the rotor blades. Through the experiments of pure Al atomization verified device applicability.
     Using CFD software, analyzed the oscillation gas flow structure. The results show that the flow field structure of oscillations gas had is similar with ordinary atomization gas, but the maximum speed in one cycle of oscillations gas flow field is less than that of the ordinary atomization flow field. The temperature of backflow zone is not obviously affected by gas oscillation. The most obvious influence in structure is the amplitude of gas, more higher amplitude, much more obvious changes of flow field in a cycle; and more higher frequency, much more obvious hysteresis in actual parameters than theory parameters.
     By atomizing the experimental observation, discovered that the most biggest influence of atomization quality is main pressure. The atomization will be ended or failed with increasing main pressure. For this paper, using injection forming machines, liquid metal can get sufficient atomization when the main pressure is 0.5MPa, The atomization is much better when the main pressure is 0.3MPa, amplitude is O.1MPa, frequency is 100Hz other than non oscillation of source gas, 0.3MPa of main pressure.
     Predicted the size of drop using DPM model, The results show that more finer drop can be got under oscillation source gas other than non oscillation source gas in certain parameters.
     Aiming at droplet size of numerical calculation results, the air source oscillation atomization mechanism is speculated that the position and time diversity which shockwave effect in fluid flow disturbances wave is the main reason of irregular changes of droplet size.
引文
[1]Singer A R E. USA:Iron and Steel Soc of AIME,1985:173-183.
    [2]陈振华.现代粉末冶金技术.北京:化学工业出版社,2007:216-220.
    [3]Matsuo S, Ando T, Grant N J. Grain refinement and stabilization in spray formed AISI 1020 steel. Materials Science and Engineering,2000, A288(1):34-41.
    [4]Ruhr M, Ucok I, Lavernia E Jen al. Metastable phases and microstructure of a rapidly solidified Al-Li-Mn-Zr alloy for high temperature applications. Israel Journal of Technology,1988,24: 157-165.
    [5]Zambon A. Production and evaluation of spray formed MMCs. Internationnal Journal of Materials and Product Technology,2004,20(5/6):403-419.
    [6]Grant P S, Chang T H, Cantor B. Spray forming of Al/SiC metal matrix composites. Journal of Microsopy,1995,177:337-346.
    [7]张济山,熊柏青,崔华.喷射成形快速凝固技术—原理与应用.北京:科学出版社,2008.
    [8]陈仕奇,黄伯云.金属粉末气体雾化制备技术的研究现状与进展.粉末冶金技术,2004,22(5):297.
    [9]陈振华.金属液体的雾化问题.粉末冶金技术,1998,16(4):282.
    [10]张璟,周哲玮.喷射成形中的喷射雾化机理研究.粉末冶金技术,1999,17(3):163.
    [11]Markus S, Fritsching U, Bauckhage K. Jet break up ofliquid metal in twin fluid atomization. Mater. Sci. Eng. A,2002,326:122-133.
    [12]李会平,何伟,气体雾化与喷射成形中雾化过程的数学模型.材料导报,2008,22(3):107-110.
    [13]高胜东.哈尔滨工业大学博士论文,2008.
    [14]Leatham A G, Ogilvy A, Elias L. The Osprey process current status and future possibilities. P/M in Aerospace, Defense and Demanding Applications Conf,1993,7(10):165-175.
    [15]Leatham A G. Spray forming: alloys, products, and markets. Metal Powder Report,1999,51(4): 28-37.
    [16]曹福洋.哈尔滨工业大学博士论文,2008.
    [17]Malini K A. Magnetic and processability studies on rubber ferrite composites based on natural rubber and mixed ferrite. Journal of Materials science,2001,36:5551-5557.
    [18]李清泉,欧阳通.气雾化微细金属粉末的生产工艺研究.粉末冶金技术,1996,14(3):181-188.
    [19]李清泉,紧耦合气体雾化制粉原理.粉末冶金工业,1999,9(5):3-16.
    [20]刘允中,陈振华,黄培云.多级雾化制粉及其单级过程原理综述.材料导报,1997,11(5):11.
    [21]Liu Y Z, Chen Z H, Wang J. Numerical simulation of the thermal history of droplets during multi-stage atomization. Science and Technology of Advanced Material,2001,2:177-180.
    [22]吕海波,母育锋,李新军等.熔体过热度对雾化过程的影响.中南工业大学学报,1997,28(2):149.
    [23]沈军,崔成松,蒋祖龄等.雾化过程中气体射流与金属液流作用区的压力特征.金属学报,1993,29(1):32-35.
    [24]孙剑飞,沈军,李振宇等.高温合金雾化熔滴的热传输与凝固行为.粉末冶金技术,2000,18(2):92-97.
    [25]Rayleigh, Lord. On the instability of jets. Proceedings of the london mathematical society,1878, 10:4-13.
    [26]Weber C. Zum zerfall eines Flussigkeitsstrahles Angew. Zeitschrift fur Angewandte Mathematik undMechanik,1931,11(2):136-154.
    [27]Ohnesorge W v. Die Bildung von Tropfen an Dusen und die Auflosung Flussiger Strahlen. Zeitschrift fur Angewandte Mathematik und Mechanik,1936,16(6):355-358.
    [28]Castleman R A. The mechanism of atomization of liquids. Bur. Stand. J. Res.1931,6:369-376.
    [29]Squire H B.Investigation of the instability of a moving liquid film. Appicd Physics.1953,4: 167-169.
    [30]Hagerty W W, Shear J F, A study of the stability of plane fluid sheets. Appl Mechanics,1955,22: 509-514.
    [31]Dombrowski N, Hooper P C. The effect of ambient density on drop formation in sprays. Chem. Eng.Sci.,1962,17:291-305.
    [32]贺文智,陈宇峰,孟庆,液休雾化机理的研究进展.内蒙古石油化工,1999,22:16.
    [33]栾文琪,佛明义.压力喷雾分散模型初探.化学工程,1990,18(5):56-60.
    [34]Cerda E, Tave-Chandar K, Mahadevan L. Wrinkling of an elastic sheet under tension. Nature, 2002,419: 579-580.
    [35]Shron E, Roman B, Marder M, et H. Buckling cascades in free sheets. Nature,2002,419:579.
    [36]闫琨,何陵辉,刘人怀.表面应力引起的弹性薄膜形状分叉.应用数学和力学,2003,24(10):1012-1016.
    [37]Wolfram S. What kind of science is this Natrue,2002,417(5):216-218
    [38]沈巧珍,杜建明.冶金传输原理.北京:冶金工业出版社.2008:64.
    [39]王保国,刘淑艳,黄伟光.气体动力学.北京:北京理工大学出版社.2008.
    [40]McGuinness P, Drenckhan W, Weaire D. The optimal tap: three-dimensional nozzle design. Journal of Physics D:Applied Physics,2005, 38:3382-3386.
    [41]赵麦群.非限制式雾化器的气体动力学分析.粉末冶金技术,1997,15(2):99-103.
    [42]Markus S, Cui C, Fritsching U. Analysis of deposit growth in spray forming with multiple atomizers. Materials Science and Engineering,2004:166-174.
    [43]Mi J, Figliola R S, Anderson I E. A numerical investigation of gas flow effects on high-pressure gas atomization due to melt tip geometry variation.1997:935-941.
    [44]陈欣.紧耦合气雾化流场结构和雾化机理研究:(硕士学位论文).长沙:中南大学,2007.
    [45]孙剑飞,曹福洋,崔成松等.金属雾化过程中气体流场动力学行为.粉末冶金技术,2002,20(4):79-81.
    [46]刘霞,葛新锋.FLUENT软件及其在我国的应用.能源研究与利用,2003,2:26-38.
    [47]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社.2004.
    [48]郭鸿志.传输过程数值模拟.北京:清华大学出版社,1998.
    [49]王福军.计算流体动力学分析——CFD软件原理与应用.北京,清华大学出版社,2004.
    [50]江帆,黄鹏.FLUENT高级应用与实例分析.北京:清华大学出版社,2008.
    [51]Strauss J T, Dunkley J J. An expenrimental and empirical study of close-coupled gas atomization. In:Kishida H, eds. Proceedings of P/M. Kyoto:Japan Society of P/M Association,2000:347-350.
    [52]Ting J, Connor J, Ridder S. High-speed cinematography of gas-metal atomization. Materials Science and Engineering A,2005,390:452-460.
    [53]Obika M, Hamaogi K, Fukuda T. Influence of gas velocity distributions on particle size distrbutions for gas atomized powder. In:Kishida H, eds. Proceedings of P. M. Kyoto:Japan Society of P/M Association,2000:343-346.
    [54]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics:The finite volume method. Wiley, New York,1995.
    [55]黄培云.粉末冶金原理.北京:冶金工业出版社.1988:91-105.
    [56]樊文军,张胤,王爱敏.喷射成形沉积坯与过喷粉末的比较分析.炼钢,2009,25(3):65-68.
    [57]李鑫,王永祥.气雾化工艺参数对金属粉末粒度影响的研究.江西有色金属.2002,9(3):27-28.
    [58]Unal A. Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders. Mater. Sci. Technol.,1987,3:1029-1039.
    [59]滕杰,傅定发,袁武华.喷射沉积雾化机理的研究进展.湖南冶金.2003,31(7):3-6.
    [60]陈品任.金属喷雾在冲击气流作用下之雾化特性.(硕士学位论文).国立成功大学.2005.
    [61]阎昌琪.气液两相流.哈尔滨:哈尔滨工程大学出版社.2007.
    [62]See J B,Johnston G H. Interactions between nitrogen jets and liquid lead and tin streams. Powder Technology ,1978,21(5): 119-126.
    [63]Bradley D. On the atomization of a liquid by high-velocity gases. J Phays D:Appl Phys,1973,6: 1724.
    [64]Reitz R D, Bracco F Ⅴ. Mechanism of atomization of aliquid jet. Phy Fluids,1982,25(10): 1732-1733.
    [65]Reitz R D. Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Spray Technnoligy.1987,3:209-337.
    [66]张曙光,杨必成,杨博等.新型超声雾化技术制备球形金属粉末.金属学报.2002,38(8):888-892.
    [67]O'Rourke P J, Amsden A A. The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Technical Paper 872089, SAE,1987.
    [68]Lee C H, Reitz R D. An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream. International Journal of Multiphase Flow, 2000,26:229-244.
    [69]Liu A B, Mather D, Reiz R D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Technical Paper 930072, SAE,1993.
    [70]粒度分析基本原理.http://www.rheology.cn/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700