用户名: 密码: 验证码:
激光推进中冲击波传播与衰减机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和数值模拟方面对激光推进中冲击波在固体中传播和衰减特性、激光支持爆轰波的冲量耦合过程及其随环境气压变化对应的不同作用机理进行了研究。
     在对激光等离子体冲击波在固体中传播和衰减的研究中,根据点爆炸的球对称模型,引入了极坐标下等熵非定常流动的球面波质量、动量守恒方程,得到了LSD波(激光支持爆轰波)对固态靶表面的作用压力;就稀疏波追赶冲击波模型提出了压力的梯形模型,得到了冲击波产生的压力随传播距离变化关系,且理论分析和数值模拟结果与实验结果吻合。
     利用悬摆法和光电测速相结合的方法,研制了激光靶冲量耦合测试系统,建立了基于小雷诺数绕流空气阻力模型的靶摆运动方程,得到了激光作用于靶的初始冲量。综合激光靶冲量耦合实验和流体动力学数值模拟的结果,得到了激光吸收区的组分,根据其中等离子体的变化结果可以得到标准大气压下LSD波的点燃阈值。在利用真空箱模拟真空环境的基础上,得到了冲量耦合系数随环境气压的变化情况,进而发现当环境气体的气压变大时LSD波点燃机制的转变。通过对激光吸收区的成分和稀疏波与LSD波相互作用过程的分析,得到了表征等离子体微观过程的位力系数。
     本文的研究结果对激光推进技术和金属表面激光热处理等激光加工技术的研究均有参考价值。
The shock propagation and attenuation in solid in the process of laser propulsionand the impulse coupling process of Laser-Supported Detonation Wave with differentambient pressure are studied in this paper by analyzing the data simulation andtheoretical result.
     In the study of the shock propagation and attenuation in solid, according toconstraint conditions of the point-explosion spherical shock transmission, by adoptingthe polar coordinate for describing the isentropic mass and momentum conservationequation of spherical wave, the pressure on the solid target applied by theLaser-Supported Detonation Wave is determined. Based on the theoretical model ofrarefaction wave overtaking shock, the equicrural trapezoidal pressure profile isdeduced for the relation between shock pressure and time interval. The relationbetween shock pressure and propagation distance can be determined and iscorrespondence with the data simulation and experimental result.
     By the self-developed test system of laser impulse coupling to target based on thependulous method and the light electric tachometry, the experimental result is scaled.The pendulous equation of resistance model of low Reynolds number is founded andadopted for the initial impulse of laser coupling to target and examined by theexperimental method. Considering the experimental and hydrodynamic resultsgenerally, the components in the laser absorption zone can be determined byanalyzing the mechanical effect of Laser Supported Detonation Wave of interactionbetween laser and ambient gas or evaporation applied to the target. The ignitionthreshold of Laser Supported Detonation Wave can be determined by analyzing theplasma component in laser absorption zone under the standard atmosphere. Using thevacuum chamber for simulating the vacuum environment based on upward theoreticalprinciple, the relation between impulse coupling coefficient and ambient pressure. Byanalyzing the relation between experiment and numerical simulation, with theincrement of ambient pressure, the components in the laser absorption zone are fromplasma and target evaporation to plasma and ambient air. The phenomenon indicatesthe ignition mechanical transition of Laser Supported Detonation Wave, that is, LaserSupported Detonation Wave is ignited from target evaporation to ambient air. The experimental results can be divided into three stages based on components in the laserabsorption zone and the interaction between Laser Supported Detonation Wave andthe rarefaction wave, and the virial coefficient which indicates the micro phenomenonof plasma can be determined.
     These research results will provide the theoretical, numerical simulationreferences for laser processing technology, such as laser propulsion and heat treatmentof metal surface.
引文
1. John Anderson, John Blandino, et al. Advanced propulsion concepts, prepared by the Mechanical Propulsion Technology Group, Jet Propulsion Laboratory, California Institute of Technology, 1998
    2. Max M. Michaelis, John D. Hey. Pioneers of laser propulsion: Saenger, Marx, Moeckel and Kantrowitz. Proceedings of SPIE. 2002, Vol. 4760: 1-10
    3. Eugen Saenger Memorial. SPIE. 1998, Vol. 3343: 2-4
    4. A. Kantrowitz. Propulsion to orbit by ground-based lasers. Astroautics and aeroautics, 1972, 10(5):74-76
    5. J. T. Kare. Laser-Powered Heat Exchanger Rocket for Ground-to-Orbit Launch. Journal of Propulsion and Power. 1995, 11(3):535-543
    6. F. B. Mead, L.N.Myrabo, D.G.Messitt. Flight Experiment and Evolutionary Development of a laser propelled Transatomospheric Vehicle. SPIE. 1998,3343: 560-563
    7. N. A. Pirri, Monsler. Propusion by absorptionof laser radiation. AIAA Journal, 1974, 12(9): 1254-1261
    8. L. N. Myrabo, D. G. Messitt, Franklin. Ground and flight tests of a laser propelled vechicle. AIAA, 98-1001: 1-10
    9. C. R. Phipps, J. P. Reilly. Laser launching a 5-kg object into low earth orbit. High-power laser ablation Ⅲ, SPIE, 2000, 4065: 502-510
    10.郑志远,张翼,吴秀文,鲁欣,李玉同,张杰.激光等离子体推进技术研究新进展.物理.2007,36(3):236-240
    11. Dennis keefer, Ahad Sedghinasab. Newton Wright. Laser Propulsion Using Free Electron Lasers. AIAA Journal. 1992, 22 (10): 2478-2482
    12. Pakhomov A V, Gregory D A. Ablative Laser Propulsion: an Advanced Concept for Space Transportation. 2000
    13.陆建,倪晓武,贺安之.激光与材料相互作用物理学.第一版.北京:机械工业出版社,1996
    14. Mead F B, Jr. Myrabo L N., Messitt D G. Flight and Ground Test of a Laser-Boosted Vehicle. AIAA-98-3735
    15. Max. M. Michaelis, Ashokabose Moorgawa, Andrew Forbes, Wouter Klopper, Edric McKenzie, David Boutchiama, Hassan Bencherif. Laser Propulsion Experiments in South Africa. SPIE. 2002, Vol. 4760:691-699
    16. V. Hasson, F. B. Mead, Jr., C. W. Larson, H. P. Chou. Launching of micro-satellites using ground-based high-power pulsed lasers. SPIE. 2004, Vol. 5448: 18-36
    17. Leik N. Myrabo. World Record Flights of Beam-Riding Rocket Lightcraft: Demostration of "Disruptive" Propulsion technology. AIAA 2001-3798
    18. NIINO Masayuki, KMETIK Villam, KUMAGAI Tatsuo, MORO Akio, KIBE Seishiro, IMASAKI Kazuo. Impulse Generated from Laser Targets. SPIE. 2000, Vol. 3885: 370-377
    19. Shigeaki Uchida, Kazuo Imasaki, Xianglin Zhou, Hiroyuki Furukawa, Masatsugu, Ishimoto, Nobuki Kawashima. Enhancement of momentum coupling efficiency using repetitive pulse ablation. SPIE. 2000, Vol. 4065: 495-501
    20. Yuri S. Protasov, Yuri Yu. Protasov, Victor D. Telekh. Laser Propulsion: Radiative Gasdynamic and thermophysical interchamber process of double-stage laser rocket thruster. I. AIAA 36~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000-3485
    21. A. Sasoh. In-Tube Laser Propulsion. 31~(st) AIAA Plasmadynamics and Lasers Conference. AIAA 2000-2344
    22. Akihiro Sasoh, Maxim Kister, Naohide Urabe, Kazuyoshi Takayama. LITA Operation under Elevated Pressures. 37~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA 2001-3666
    23. Akihiro Sasoh, Naohide Urabe, Sukyum Kim. Impulse enhancement by in-tube operation in laser propulsion. SPIE. 2002, Vol. 4760: 879-886
    24. Jonathan E. Jones, Ten-See Wang. Time Dependent Measurement of Electron Temperature and Density in a laser Lightcraft. 37~(th) Propulsion Conference. AIAA 2001-3796
    25. Kouichi Mori, Kimiya Komurasaki, Hiroshi Katsurayama, Yoshihiro Arakawa. A Fae-field repetitive pulse laser thruster. AIAA 2001 -0649
    26. A. V. Pakhomov, M. S. Thompson, D. A. Gregory, W. Swift, Jr. Specific Impulse Study of Ablative Laser Propulsion. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2001-3663
    27. K. Toyoda, K. Komurasaki, Y. Arakawa. Thrust Performance of a CW laser thruster in Vacuum. Vacuum 65 (2002): 383-388
    28. Shigeaki Uchida, Kazuhisa Hashimoto, Kazuhisa Fujita, Masayuki Niino, Takashi Ashizuka, Nobuki Kawasahima. Comparison of Surface and Internal Laser Irradiation of Solid Propellant for Propulsion. 33~(rd) Plasmadynamics and Lasers Conference. AIAA 2002-2155
    29. Akihiro Sasoh, Naohide Urabe, Sukyum Kim. Laser-Driven In-Tube Accelerator Operation Using Monoatomic Gases. 33~(rd) Plasmadynamics and Lasers Conference. AIAA 2002-2201
    30. Koichi Mori, Hiroshi Katsurayama, Yasuro Hirooka, Kimiya Komurasaki, Yoshihiro Arakawa. An experimental study on the energy balance in the repetitive pulsed laser propulsion. 41~(st) Aerospace Sciences Meeting and Exhibit. AIAA 2003-496
    31. M. A. Libeau. Experimental Measurements of the Laser-Induced Reaction on a Lightcraft Engine. 41~(st) Aerospace Sciences Meeting and Exhibit. AIAA 2003-300
    32. W.O. Schall, H. -A. Eckel, W. Riede. Laser propulsion experiments with high-power pulsed CO_2-laser. Proceedings of SPIE. 2003,Vol. 5120:618-622
    33. W. O. Schall, H. -A. Eckel, W. Mayerhofer, W. Riede, E. Zeyfang. Comparative lightcraft impulse measurements. Proceedings of SPIE, 2002, Vol. 4760: 908-917
    34. Akihiro Sasoh, Xilong Yu, Toshiro Ohtani, Toshihiro Ogawa, Takehiro Kawahara. Laser Impulse Generation in Flight. 42~(nd) AIAA Aerospace Sciences Meeting and Exhibit. 2004-650
    35. Andrew V. Pakhomov, Jun Lin. Specific impulse of ablative laser propulsion. 42~(nd) AIAA Aerospace Sciences Meeting and Exhibit. 2004-651
    36. Jun Lin, M. Shane Thompson, Andrew V. Pakhomov. Ablative Laser Propulsion: Determination of Specific Impulse from Plasma Imaging. SPIE. 2004, Vol. 5448
    37. L. N. Myrabo, M. A. Libeau, E. D. Melonely, R. L. Bracken, T. B. Knowles. Pulsed Laser Performance of 11cm Parabolic 'Bell' Engines Within the Atomsphere. SPIE. 2004, Vol. 5448, 450-464
    38. C.R.Phipps, J. Luke, J. Marquis. Diode Laser-Based Microthrusters: A New Departure in High I_(sp), Long-Life Engines. AIAA 2000-3477
    
    39. Andrey V. Gulevich, Peter P. Dyachenko, Oleg F. Kukharchuk, Anatoly V. Zrodnikov. Space rocket engine on the base of the reactor-pumped laser for space application. SPIE. 2002, Vol. 4760:929-934
    40. S.T. Surzhikov. Radiative Gas Dynamics of Laser Propulsion Thruster Nozzles. 30th Plasma Dynamics and Lasers Conference. AIAA 99-3550
    41. Jun-Sik Pang, In-Seuck Jeung, Jeong-Yeoi Choi. A Numerical Study on Laser-Driven Ram Accelerator. 36~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA 2000-3491
    42. Ten-See Wang, Yen-Sen Chen, Jiwen Liu, Leik N. Myrabo, Franklin B. Mead, Jr. Performance Modeling of Experimental Laser Lightcrafts. 31~(st) AIAA Plasmadynamics and Lasers Conference. AIAA 2000-2347
    43. Ten-See Wang, Yen-Sen Chen, Jiwen Liu, Leik N. Myrabo, Franklin B. Mead, Jr. Advanced Performance Modeling of Experimental Laser Lightcrafts. 39~(th) AIAA Aerospace Sciences Meeting &Exhibit. AIAA 2001-0648
    44. Ten-See Wang, Yen-Sen Chen, Jiwen Liu, Leik N. Myrabo, Analysis of the Effect of Pulse Width on Laser Lightcraft Performance. 37~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 2001-3664
    45. P.Molina-Morales, K. Toyoda, K. Komurasaki, Y. Arakawa. CFD Simulation of a 2-KW Class Thruster. AIAA 2001-0650
    46. Jeong-Yeol Choi, Akihiro Sasoh, In-Seuck Jeung, Su-Kyum Kim, Hyuk-Jin Cho. Numerical and experimental stusies of Laser-Driven Ram Accelerator. AIAA 2001-3924
    47. Hiroshi Katsurayama, Kimiya Komurasaki, Yoshihiro Arakawa. Numerical Analyses on Pressure Wave Propagation in Repetitive Pulse Laser Propulsion. 37~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA 2001-3665
    48. Hiroshi Katsurayama, Kimiya Komurasaki, Yoshihiro Arakawa. Computational Performance Estimation of Laser Ramjet Vehicle. 38~(th) AIAA/ASME/SAE/ASEE joint Propulsion Conference & Exhibit. AIAA 2002-3778
    49. Hiroshi Katsurayama, Yasuro Hirooka,Kimiya Komurasaki, Yoshibiro Arakawa. Feasibility study of a laser ramjet single-stage-to-orbit vehicle. 41~(st) Aerospace Sciences Meeting & exhibit. AIAA 2003-497
    50. Kimiya Komurasaki, Yoshihiro Arakawa, Satoshi Hosoda, Hirodhi Katsurayama, Koichi Mori. Fundamental Researches on Laser Powered Propulsion. 33~(rd) Plasmadynamics and Lasers Conference. AIAA 2002-2200
    51. Jeong-Yeol Choi, Akihiro Sasoh, In-Seuck Jeung, Naohire Urabe, Harald Kleine, Kazuyoshi Takayama. Numerical Study of Laser-Induced Pulsed Airbreathing Propulsion. 33~(rd) Plasmadynamics and Lasers Conference. AIAA 2002-2202
    52. Iain D. Boyd, Michael Keidar. Simulation of the plume generated by a micro laser-ablation plasma thruster. SPIE. 2002 Vol. 4760: 852-866
    53. Y. Hirooka, H. Katsurayama, K. Mori, K. Komurasaki, Y. Arakawa. Computational Analysis on Nozzle Performance of a RP Laser Thruster. 42~(nd) AIAA Aerospace Sciences Meeting and Exhibit. 2004-653
    54. C. W. Larson, F. B. Mead, Jr. Energy Conversion in Laser Propulsion. 39~(th) AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2001-0646
    55. C. W. Larson, F. B. Mead, Jr. Energy Conversion in Laser Propulsion Ⅱ. 40th AIAA Aerospace Sciences Meeting & Exhibit. AIAA 2002-0632
    56. C. William Larson, Franklin B. Mead, Jr., Wayne M. Kallionmaa. Energy Conversion in laser propulsion Ⅲ. SPIE. 2002, Vol. 4760:887-898
    57. M.A.ibeau,. L. N. Myrabo, M. Filippelli, Joe Mcinemey. Combined theoretical and experimental flight dynamics investigation of a laser-propelled vehicle. 38th AIAA/AS.ME/SAE/ASEE joint Propulsion Conference & Exhibit: AIAA 2002-3781
    58. C. W. Larson, Franklin B. Mead, Jr., Sean D. Knecht. Benefit of Constant Momentum Propulsion for Larger ΔV Mission-Application in Laser Propulsion. 42nd Aerospace Sciences Meeting and Exhibit. AIAA 2004-0649
    59. Koji Takahashi, Kohai Maeda, Tatsuya Ikuta, Sachiko Hatano, Yasuhito Mori, Kunihito Nagayama. Transient structure of ionized atmosphere in pulsed laser propulsion system. SPIE. 2001, Vol. 4183: 907-916
    60.辜建辉,徐启阳,李再光,陈殊殊.激光推进原理与技术.推进技术.1995,16(2):80-84
    61.许德胜,郭振华,S.Messaoud,辜建辉.论光动力飞行器.激光技术.1999,23(2):86-90
    62.郑立铭,朱定强,徐旭,蔡国飙.激光推进火箭发动机吸收室的数值模拟.推进技术.2002.23(5):387-390
    63.龚平,唐志平.大气呼吸模式激光推进的机理分析和数值模拟.爆炸与冲击.2003.23(6):501-508
    64.王海兴,陈熙.激光推进的初步数值模拟研究.工程热物理学报.2004.25:83-86
    65.童慧峰,唐志平,胡晓军,龚平,李静,蔡建,王声波,林丽耘.“烧蚀模式”激光推进的实验研究.强激光与粒子束.2004.16(1 1):1380-1384
    66.唐志平,龚平,胡晓军,蔡健,谭荣清,吕岩.大气吸气模式激光推进的实验研究.航空学报.2005.26(1):13-17
    67.翟冰洁,左都罗,卢宏,程祖海.空气呼吸模式激光推进实验研究.光学与光电技术.2005.3(1):14-17
    68.郑义军,龚平,谭荣清,唐志平,柯常军,蔡建等.TEA CO_2激光推进耦合系数的实验研究.光电子激光.2005.16(5):624-628
    69.郑义军,龚平,谭荣清,唐志平,柯常军,蔡建等.大气模式激光推进耦合系数的实验研究.中国激光.2005.32(7):889-893
    70.郑义军,谭荣清,张阔海,郑光,柯常军,万重怡等.激光推进自由飞行实验.中国激光.2006.33(2):171-174
    71.郑义军,谭荣清,王东蕾,郑光,柯常军,张阔海等.激光脉冲重复频率对冲量耦合系数的影响.强激光与粒子束.2005.17(7):979-982
    72.伍贤欣,程谋森,廖育荣.微型卫星激光推进发射概念与影响因素研究.装备指挥技术学院学报.2006.17(3):59-63
    73.姚宏林,窦志国,王军,文明,王鹏等.重复脉冲激光推进工质推进性能与入射激光参数关系.装备指挥技术学院学报.2006.17(6):104-108
    74.李俊美,洪延姬,文明,姚宏林.激光推进中一种光船结构的设计.装备指挥技术学院学报.2002,13(6):97-100
    75.洪延姬,崔村燕,王鹏,李俊美.吸气式激光推进环聚焦光船设计方法.装备指挥技术学院学报.2003,14(2):102-104
    76.李修乾,洪延姬,陈景鹏,崔村燕,何国强.激光推力器液体工质注入系统设计.军械工程学院学报.2006,18(1):1-4,8
    77.文明,洪延姬,金星,王军.三次反射激光聚焦系统的设计与实现.激光与光电子学进展.2006,43(11):49-52
    78. Gregg D W, Thomas S J. Momentum transfer and plasma formation above a surface with a high-power CO_2 laser. J. Appl. Phys. 1966, 37(7): 2787-2789
    79. Pirri A Net al. Momentum transfer and plasma formation above a surface with a high-power CO_2 laser. Appl. Phys. Lett. 1972, 21(3): 79-81
    80. L. R. Hettche, J. T. Schriempf, R. L. stegman. Impulse reaction resulting from the in-air irradiation of aluminum by a pulsed CO_2 laser. J. Appl. Phys. 1973, 44 (9): 4079-4085
    81. S. Marcus, J. E. Lowder. Impulse loading of targets by HF laser pulses. J. Appl. Phys. 1975, 46 (5): 2293-2294
    82. S. A. Metz et al. Effect of beam intensity on target response to high-intensity pulsed CO_2 laser radiation. J. Appl. Phys. 1975, 46 (4): 1634-1642
    83. L. R. Hettche et al. Mechanical response and thermal coupling of metallic targets to high-intensity 1.06μtm laser radiation. J. Appl. Phys. 1976, 47 (4): 1415-1421
    84. B. S. Holmes, D. C. Ehich. Surface pressures from laser-supported detonations. J. Appl. Phys. 1977, 48 (6): 2396-2403
    85. C. Duzy, J. A. Woodroffe, J. C. Hsia, A. Ballantyne. Interaction of a pulsed XeF laser with an aluminum surface. Appl. Phys. Lett., 1980, 37(6): 542-544
    86. D. I. Rosen, J. Mitteldorf, G. Kothandaraman, A. N. Pirri, E. R. Pugh. Coupling of pulsed 0.35μm laser radiation to aluminum alloys. J. Appl. Phys., 1982, 53(4): 3190-3200
    87. M. Bass, M. A. Nassar, R. T. Swimm. Impulse coupling to aluminum resulting from Nd: glass laser irradiation induced material removal. J. Appl. Phys., 1987, 61(3): 1137-1144
    88. C. R. Phipps, T. P. Turner, R. F. Harrison, et al. Impulse coupling to targets in vacuum by KrF, HF and CO_2 single-pulse lasers. J. Appl. Phys., 1988, 64(3): 1083-1096
    89. P. Bickel, H. Arenz, J. Christiansen, E. Eberl, M. Kauf. Spatially and temporally resolved study of laser induced absorption waves produced by a 5μs/1J TE-CO_2 laser. SPIE, 1994, Vol 2207: 501-512
    90. M. F. Kanevskii, M. A. Stepanova. Multidimensional phenomena in laser produced plasma. SPIE, 1994, Vol. 2119: 92-103
    91. Vladimir D. Zvorykin. Comparative analysis of gasdynamic regimes of high-power UV and IR gas lasers interactions with solids in atmosphere. SPIE, 2000, Vol. 4065: 128-139
    92. O. A. Bukin, A. A. Il'in, S. S. Golik, V. I. Tsarev. Investigation of stark shift and shock waves parameters relationships in laser plasmas generated on the surfaces of solid targets. SPIE, 2002, Vol. 4748: 184-190
    93.徐建波,林俊德,刘晋.气压对脉冲激光冲量耦合系数的影响.爆炸与冲击,2002,22(3):285-288
    94. F. Cottet, J. P. Romain. Formation and Decay of. Laser-generated shock Waves. Physics Review A. 1982, 25 (1): 576-579
    95. A. Leob, S. Elizer. An analytical model for creation and decay of strong shock waves caused by a trapezoidal laser pulse. Phys. Fluids. 1985, 28 (4): 1196-1201
    96. M. Boustie, F. Cottet. Experimental and Numerical study of laser induced spallation into aluminum and copper targets. J. Appl. Phys. 1991, 69 (11): 7533-7538
    97.袁钢,周光泉,唐志平,李欣增.高压短脉冲激波的传播及衰减.爆炸与冲击.1992,12(4):307-312
    98.蔡宗良,张建泉,刘峰,强希文.脉冲激光产生的激波在靶材中的传播过程.计算物理,1997,14(4-5):426-428
    99.强希文,张建泉,李邦固,刘峰.高功率脉冲激光产生的激波在靶材中的传播.红外与激光工程.2000,29(2):41-45,50
    100. Yo Fan, Y, Wang, S. Vukelic, Y. L. Yao. Wave-solid interactions in laser-shock-induced deformation process. J. Appl. Phys.2005, 98 (10): 104904-1-014904-11
    101. Yong-kang Zhang Yongyu Gu, Xingquan Zhang, Jianguo Shi, Jun Zhou. Study of the mechanism of overlays acting on laser shock waves.
    102.李维新.一维不定常流与冲击波.第一版.北京:国防工业出版社,2003
    103.孙承纬.激光辐照效应.第一版.北京:国防工业出版社,2002
    104.梁智权.流体力学.重庆:重庆大学出版社,2002.
    105.泽尔道维奇,莱依捷尔著,激波和高温流体动力学现象物理学(上册),张树材译,北京:科学出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700