提高贯通式潜孔锤反循环连续取心长度的钻进方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球能源危机已经越来越突出。在我国41种主要非能源固体矿产中,近一半矿种查明资源储量不能保证至2020年的需求,特别是铁、锰、铜、钾盐等大宗矿产供需缺口近年持续扩大,后备储量严重不足,对外依存度居高不下。找到新的、更多的储备矿藏已成为当前之主要工作,为此国家相继出台多个政策、规划。矿产形势步入全面复苏阶段,近几年为勘查找矿、评矿的岩心钻探任务量猛增,并毫无疑问可以预见未来很长一段时间岩心钻探取心任务仍会保持很高工作量,而浅部、易找寻探明的矿藏已经很少,大多数矿藏处于地质复杂地层中,钻探进尺难、取心难。贯通式潜孔锤反循环连续取心(样)钻进技术是集潜孔锤碎岩、流体介质反循环、钻进中连续获取岩心(样)三项先进技术于一体的钻进技术,经多年使用已经证明在硬、脆、碎等复杂地层钻进效率高,是正在推广的技术之一;但是目前取心长度只在10-20mm,在一定程度上影响了对地层岩性和储层特性等数据资料的准确评价,难以准确地提供地层剖面的原始标本,也就不能完全满足我国地质人员的分析要求,使得这一技术美中不足,本文主要结合项目对这一技术问题加以研究,以求获得成功,弥补缺憾。
     吉林大学建设工程学院已经顺利完成了地质调查局项目“西部复杂条件下高效钻探技术研究与开发”,其工作内容为:“贯通式取心(样)潜孔锤钻探技术在固体矿产勘探中的应用研究”,本论文为该项目的后续研究。
     本论文首先系统总结了动静载联合作用碎岩机理的研究现状,贯通式潜孔锤反循环连续取心这项技术的现状;接下来借助波动理论,凿岩理论等理论,系统分析了冲击能量以应力波的形式在岩石中的传播机制以及岩石在动静载荷下的凿入特性;结合岩石断裂力学和岩石损伤力学等固体力学理论对冲击载荷下岩石动力学特性进行分析;综合岩石力学分析结论,阐述了潜孔锤冲击回转钻进钻头上柱齿的碎岩机理,系统总结了影响岩心长度的因素,包括:冲击功、冲击频率、钻压、转速、钻头结构、齿形和柱齿镶焊角度等对碎岩效果及获取岩心长度的影响;对适合潜孔锤反循环连续取心钻进的数学模型进行了全新探讨;运用模拟冲击回转碎岩的试验装置,在多岩样、不同钻进参数情况下的碎岩情况进行了试验研究;试验结合理论分析得出一些结论,认为适当加大取心直径和减小钻头齿特别是内圈齿的规格或者选用小尺寸片状合金做内圈齿的钻头可以取得满意的岩心长度,对现有钻头结构进行3轮优化设计,共设计了8个新钻头;第3轮设计的钻头通过试验获得成功,两类不同钻头在两类不同岩性试件上分别获得长度为81.6mm和55mm左右岩心,成功实现了本论文的研究目标;同时,又提出一些展望,期望大家共同努力将贯通式反循环连续取心技术进一步完善并用于生产,为社会创造更大效益。
With the social development,energy crisis and shortage of mineral resourcesappears.The mineral situation steps into the recovery period in the world.The marketsbecoming avtive.In recent years,Tasks of coring drilling are increasing quickly.Toinvestigate and appraise mineral,The work loads of coring drilling are growthingsuddently.Without adoubt,we may foresight they will maintain for a longperiod.Appearing and shallow mineral become more and more few.Drilling will bedifficult,coring dilling will be more difficult.With the depth increasing,we willconstruct in a more complex geological condition:more in hardly,crisp,garrulous,leaks,caving in and so on.Former drilling methods have many shortcomings,forexample:low efficiency,bad quality,short life of the bits,many accidents,highcost.Hollow DTH reverse circulation continuous coring drilling may solve thequestions all above very well.
     The coring efficiency can achieve above 98%,but the coring length is only about10mm.At present,the geological departments request they are about 50mm atleast,which has limited the using scope of this technology.Realizating this goal is keypoint of this paper.
     Now the construction engineering College of JiLin University has successfullyaccomplished the CGS’s project“the research and development of high effectivedrilling technology under complex strata condition in the west of our country”. Itsworking content is the applying research of hollow DTH coring drilling technology inprospecting for solid mine. This paper is the extended research of the project and weare applying for initiating a project.
     The contents of research are as follows:
     1.Under the static load,the impact load,the rotation load and three couplingfunctions,I have researched the mechanism of staving rock systematically.
     2.The existing models of stave rock by impact and rotation load are notreasonable,the new one has been discussed.
     3. The mechanism about the teeth of bits of hollow DTH reverse circulationcontinuous coring drilling stave rock has been analyzed.
     4. the factors which influence the coring length is analyzed,for example:impactpower, frequency,pressure, rotation speed,bit structure,tooth type,and so on.
     5. I designed a test device and 8 bits,a lot of experimentation has been made.Some conclusions are got:
     1. DTH impact turn broken rock can be seen as a dynamic load, static load, cutting and the cumulative effect of superposition, the rock drilling process can be broken asa continuous cycle of damage and fracture process. This means that the impact of theprocess of crushing load of rocks is the essence of rock in the internal energydissipation, resulting in the accumulation of rock micro-structural damage, localproduce macro-crack, until the whole process of breaking broken. Is the type of leap.
     2. The ball-teeth, wedge-shaped teeth and tooth-breaking mechanism of thecontrast drawn: 1) the rock-crushing process leap forward. 2) No matter how theshape of the tooth bit, in terms of static and dynamic load or load broken rock, rockcrushing process to form the main pressure on the nuclear area and powder. 3) thenature of rock broken angle changed little in between to change. 4) the ball than thetooth of the total power consumption than the wedge-shaped teeth low. Spherical forma broken tooth broken the pit need to be greater than that of wedge-shaped teeth,broken by an even greater volume, the impact of large, high-efficiency; wedge-shapedteeth broken small pit, a small sphere of influence. Conical teeth in between. In orderto reduce the length of the core columns on the impact of teeth, tooth inner ringshould be as much as possible the use of non-small spherical ball or button.
     3. To impact on DTH the turn into broken rock analysis of the model used in thepast, different weaknesses, remains the main areas in Newton's mechanics; wavedynamics research results despite a more truly reflect the impact of the rotary drillingsystem dynamics characteristics, However, the system model of the mechanicalelements of the model over-simplification, the need to be further refined andimproved, the author of the cutting bit + load the impact of broken rock under themechanism of the drill bit and rock interaction study, the more accurate method toestablish model Discussed.
     4. produce the core ofΦ89 reverse circulation drill coring test with skirts is toshow the impact of using test-bed to turn a real simulation of the impact turn intoactual situation.
     5. Core columns would have an impact on teeth, great size, the impact, the samesize range of different effects of different profile, spherical cone is greater than toothscope of the impact of the ball teeth.
     6. The pilot study targeted the impact energy, to the number of parameters suchas core, they found that the impact is far from the structure of the drill bit.High-impact, and the bit for the structure of the trial were as follows: Drill impact oftooth profile of the core is far from the perspective of welding set of teeth and toothsize specifications of the high-impact.
     7. With testing ofΦ89 reverse circulation drill core, inner cone ball set teeth protruding center of the drill, mixing diamond-studded film in the first column,double-cone drill column gear-type gear teeth of the ball coring drill have found thatthe core columns The edge because of damage resulting from the impact caused bythe radial cracks,Φ89 reverse circulation drill core as well as an inner circle of indentsettings set the ball oblique teeth caused by the role. 4 single-row roller bit basic typesof gear that no damage is produced by small and short radial cracks.
     8.Φ89 reverse circulation drill core, inner cone ball set teeth protruding center ofthe drill witch tested access to the core of about 10mm in length, it is because we arebeginning to have impact on lateral crack, crack side is the core cause of the breakThe main factor in the depth of the lateral cracks in the vicinity of 0.8a, two bits areinclined to adopt a set (if there will be very different straight set), a similar, thefracture occurred in almost the same 0.8a is 10mm About broken.
     9.Φ89 reverse circulation drill core, inner cone ball set teeth protrudingcenter of the drill core tests have skirts, which are due to side-effect of crack locationis not a core diameter, but a nuclear compaction land.
     10. Diamond-studded film mixed in the first column, the column-type rock bit ofgear teeth ball coring drill cores have not achieved because of columns skirt close tothe film is a core part of a three-pyramid apex, the category of small-size alloy conebit, both pressure Is the nuclear core are small and close to the outer edge of the formof short lateral cracks, the core of a broken bit different from the first two, is notcaused by lateral cracks.
     11. Column mixed diamond-studded film in the first test of the core chip isdue to a broken tooth shear large area, turning resistance, cut the damage caused by aneven greater when the rotary drill bit cut before the rock edge, the edge because ofpre-rock core attached Site, so in the role of torque, the core has been broken.
     12 Oblique set inside the tooth row core columns would have caused sideeffects squeeze is not conducive to the formation of core length.
     13. Conical bit column-type gear teeth of the ball coring bit in particular, only 4of the symmetrical arrangement of single tooth drill tests made for a cylindrical coreand core of very good quality, especially in the upper part of the core is verystructured, The writer believes that the core columns because of a broken toothloosening, in turn under the horizontal force, stirring, resulting in a broken columncore, broken. This bit more appropriate size, the need for a reasonable fabric of thetooth, in addition to the exclusion of other core of the tooth row almost no impact onthe provision of adequate space bit design, if there is no welding set off the problemcan be loose alloy access to the integrity of a good long core.
     14. Based on plenty of experienced and theories,I have designed third 3 bits.2 kindsof themhave got 2 cores(81.6 mm and 55 mm)in 2 kinds of test-rocks.all of these showed that the bitswere right,Successfully achievd the target of my research in this paper。
     The theoretical study on action mechanics between rock and bit under thecondition of percussive-rotary here is elementary, more questions need to be discussedand researched more deeply. the study on how drilling regulation parameters influencethe length of coring is elementary too, we should combine with test to process moredeep research. In a word,if we want to build precise mathematic model to realize thenumerical calculation. More precise studies need to be made deeply,and morescientists need persevere to put their efforts.
引文
[1]李伟涛,殷琨,张德龙.贯通式潜孔锤反循环连续取心技术的试验研究[J].西部探矿工程,2004,(6):115-117.
    [2]蒋荣庆,殷琨,王茂森等.潜孔锤钻进理论与实践的新进展[J].探矿工程(岩土钻掘工程),2001增刊:179-183.
    [3]殷琨,蒋荣庆.潜孔锤反循环钻进技术及应用[J].探矿工程,1996,(5):13-15.
    [4]张勇,蒋荣庆.多工艺冲击回转钻进技术的新拓展[J].世界地质,2000,19(3):291-294.
    [5]谢含华.贯通式潜孔锤反循环连续取心钻进提高岩心长度技术研究[D].硕士论文.2007.
    [6]陈家旺,殷琨,彭枧明.贯通式风动潜孔锤反循环钻头结构流场的分析与结构优化[J].探矿工程(岩土钻掘工程),2004,(4):35-37.
    [6]武环,王德平,郭福盛.反循环中心取样钻进技术在第三系砾岩金勘探中的应用[J].探矿工程(岩土钻掘工程),2006,(10):49-51
    [7]孟英峰,练章华等.反循环钻头井底流场研究及其新产品开发[J].天然气工程,2004,(9):51-53
    [8]郝树青,殷琨,王清岩,任红.反循环钻头引射孔倾角的仿真分析[J].煤田地质与勘探,2006(4):77-79.
    [9]殷琨.深化反循环工艺研究,促进钻进科技快速发展[J].探矿工程(岩土钻掘工程),2006,(3):2.
    [10]殷琨,蒋荣庆,赖振宇.气动潜孔锤钻进技术[J].世界地质,1999,(6):101-104.
    [11] RoweR.K. Applieation of the Initial Stress Method to Soil StructureInteraction[J].International Journal for Numerical Methods in Engineering,1978,12(5):873-880.
    [12] Danziger F.A.Danziger B.R and Paeheeo M.P.The Simultaneous Use ofPiles and Prestressed Anchors in Foundation Design[J].Engineering Geology,2006,87(3-4):163-177.
    [13] Rosenboom O.and Rizkalla S.Behavior of Prestressed ConcreteStrengthened with Various CFRP Systems SubJected to Fatigue Loading[J].Journal ofComposites for Construction,2006,10(2):492-502.
    [14] Ghallab A.and Beeby A.W. Factors Affecting the External PrestressingStress in ExternallyStrengthened Prestressed Concrete Beams[J].Cement and ConcreteComposites,2005,27(9-10):945-957.
    [15]刘晓阳.地浸砂岩型铀矿松散岩层取心钻进技术研究[D].中国地质大学博士论文,2006,(10):4-5.
    [16]周子龙.岩石动静组合加载实验与力学特性研究[D].中南大学博士论文,2006,(1):17-20.
    [17]陈宽德.行星钻头转向滚刀碎岩机理及裂纹汇交碎岩理论的研究[D].中国矿业大学博士学位论文.1991.
    [18] Li Xi-bing,Summers DA,Rupert G.. Experimenial Investigation on theBreakage of Hard Rock by the PDC Cutters with Combined ActionModels[J].Tunnelling and Underground Space Technology 2001,16:107-114.
    [19] Li Xi-bing,ZHAO Fu-Jun,Summers DA,Rupert G.. Cutting Capacity of PDCCutters in very Hard Rock[J].Trans Nonferrous Met soc China.2002,12(2):305-309.
    [20] Li Xi-bing,Summers DA,Rupert G.. Investigation into the Penetration andImpact Resistance of PDC Cutters Inclined to Different Attack Angels[J]. TransNonferrous Met soc China.2000,12:232-236.
    [21]赵静野,孙厚钧,高军.引射器基本工作原理及其应用[J].北京建筑工程学院学报, 2000,16(4):12-15.
    [22]王福军.计算流动动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:185-209.
    [23]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005:19-26.
    [24]张永勤,刘辉,陈修星.复杂地层钻进技术的研究与应用[J].探矿工程(岩土钻掘工程),2001增刊:159.
    [25]李元章.灰岩及纤维混凝土的动态压缩力学性能实验研究[D].武汉理工大学硕士学位论文,2006.4:1
    [26]李伟涛,殷琨,张德龙.贯通式潜孔锤反循环连续取心技术的试验研究[J].探矿工程,2004.6.
    [27]张祖培,殷琨等.岩土钻掘工程新技术[M].北京:地质出版社.2003:17-57.
    [28]郝树青,殷琨,王清岩,任红.引射孔倾角与孔径对钻头体反循环形成影响的仿真分析与实验研究[J].探矿工程,2006(5).
    [29]阎冠欣.潜孔锤反循环钻进内管堵塞的解决办法[J].煤田地质与勘探,1995.2.
    [30]卢春华.节水型回转冲击钻具结构设计与钻进机理研究[D].中国地质大学博士学位论文,2007.04,8-12
    [31]赵伏军.动静载荷耦合作用下岩石破碎理论及试验研究[D].中南大学博士学位论文,2004.11,12-13
    [32]瞿叶高,卜长根,刘宝林.网格对潜孔锤钻头球形齿冲击过程数值模拟的影响[J].探矿工程(岩土钻掘工程),2007.06,10-13
    [33] Akihiko Kumano. An Analytical and Experimental Investigation of theEffect of Impact on Coarse Granular Rocks[J].Rock Mechanics and Rock Engineering,1982, 1.
    [34] F.E. Heuzu. An Overview of Projectile Penetration into Geological Materialswith Emphasis on Rocks[J]. Internal Journal of Rock Mechanics and Mining Science,1990, 1.
    [35] BeHzad M H, Rohani R S. Analysis of Projectile Penetration into Concreteand Rock Targets[R]. AD/A, 016909,1994.
    [36] Johnson G R, Cook W H.A Constitutive Model and Data for MetalsSubjected to Large Strains, High Strain Rates and High Temperatures [Z]. DefenseSystems Division, Hopkins, Mimescta 55343, USA, 1985.
    [37]张红霞,韩福忠,王文先. YG8C硬质合金钎头的焊接工艺及质量改进措施[J].太原理工大学学报.2003,34(4):455-458.
    [38]刘富安,余玉江.混合刃钎头的开发及应用[J].矿山机械,1996(8):7-9.
    [39]刘晓阳,杨爱军,孙建华.混镶式硬质合金钻头在卵砾岩层中的应用[J].西部探矿工程,2005,116(12):188-189.
    [40]李海波,赵坚,李俊如,周青春,刘亚群.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683-1688.
    [41]张国榉,张汉斌.钎头的制造工艺与装备[J].凿岩机械气动工具,2000(3):50-60.
    [42]张国榉.钎头和片齿[J].凿岩机械气动工具,2000(4):30-33.
    [43]周晔.硬质合金复合片齿钎头碎岩机理探讨[J].矿山机械,2003(3):11-12.
    [44]王晨,李琦.柱齿潜孔钻头制造工艺试验研究[J].甘肃冶金,2007,29(4):114-116.
    [45]丁京滨,高光生,曹士锐.钻头切削齿与胎体连接技术探讨[J].科技情报开发与经济,2005,15(11):278-279.
    [46]卢春华:节水型回转冲击钻具结构设计与钻进机理研究[D].中国地质大学博士学位论文2007.4.
    [47]蒋荣庆,殷琨,王茂森.气动贯通式潜孔锤反循环连续取心(样)钻具系统的研制及使用效果[J].地质与勘探,1996,(5):55-60.
    [48]郑治川.潜孔锤反循环跟管钻进技术的研究[D].吉林大学博士学位论文.2007.12:116-118.
    [49]练章华等.反循环空气钻井钻头结构设计及其流场分析[J].石油机械,2003增刊:15-17.
    [50]金鑫.物探潜孔钻头碎岩机理动力学研究及结构改进[D].西南石油学院硕士论文.2005.5
    [51]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [52]胡柳青.冲击载荷作用下岩石动态断裂过程机理研究[D].中南大学博士论文.2004.5
    [53]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [54] ANSYS/LS-DYNA中国技术支持中心.ANSYS/LS-DYNA算法基础和使用方法[M].北京理工大学,1999.
    [55] ANSYS/LS-DYNA中国技术支持中心. ANSYS/LS-DYNA用户使用手册[M].北京理工大学,1998.
    [56] C.P.CHUGH. Manual of Drilling Technology[M].A.A.BALKMA,ROTTERDAM, 1985.
    [57] William C.lyous. Air and Gas Drilling Manual[M].U.S.A,1984.
    [58]赵统武.冲击钻进动力学[M].冶金工业出版社,1996.
    [59]张祖培,刘宝昌.碎岩工程学[M].北京:地质出版社,2004.
    [60]张祖培,殷琨,蒋荣庆,孙友宏等.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [61]鞍山矿山研究所.国外潜孔风动冲击器[M].冶金工业出版社,1980.5.
    [62]张国忠.气动冲击设备及其设计[M].机械工业出版社,1991.
    [63]刘宗平.冲击凿岩工具及理论基础[M].地质出版社,1985.
    [64]励美恒.探矿工程学概论[M].地质出版社,1990.
    [65]高磊.矿山岩石力学[M].北京:机械工业出版社,1987.
    [66]周维垣等.高等岩石力学[M].北京:水利电力出版社,1990.
    [67]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.
    [68]王学清.潜孔冲击器凿岩系统的波动理论分析[J].凿岩机械与风动工具,2000(4):44-49.
    [69]郑磊(译).瑞典冲击凿岩研究进展[J].凿岩机械气动工具,1996(2):34-38.
    [70]东兆星,单仁亮.岩石在动载作用下破坏模式与强度特性研究[J].爆破器材,2000,29(1):1-5.
    [80]贺红亮,Thomas J.Ahren等.冲击载荷下岩石的损伤特性分析[J].爆炸与冲击,1995,15(3):241-246.
    [81]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1777-1780.
    [82]李夕兵.冲击凿岩机具设计与岩石动力破碎特性[J].湘潭矿业学院学报,1994,9(3):7-10.
    [83]高文学,刘运通等.脆性岩石冲击损伤模型研究[J].岩石力学与工程学报,2000,19(2):153-156.
    [84]谢兴华,速宝玉等.基于应变的脆性岩石破坏强度研究[J].岩石力学与工程学报,2004,23(7):1087-1090.
    [85] Hagan J T. Cone Cracks around Vickers Indentations in Fused SilicaGlass[J].J.Mater.Sci.1979,14:462-466.
    [86] Marshall D B. Geometrical Effects in Elastic/Plastic Indentation [J].Amer.Ceram.Soc.1983,66(8):57-60.
    [87] Marshall D B. Measurement of Dynamic Hardness by ControlledSharp-projectile Impact Effects in Elastic/Plastic Indentation [J]. Amer. Ceram.Soc.1984,67(1):580-585.
    [88] Marshall D B, Lawn BR, Evans AG. Elastic/Plastic Indentation Damage inCeramics: the Lateral Crack System[J].Amer. Ceram.Soc. 1982, 65(11).
    [89]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [90]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [91]张宗贤,寇绍全.固体力学中侵入问题的若干新进展[J].力学进展,1992,22(2):183-193.
    [92] Marshall D B.Geometrical Effects in Elastic/Plastic in Dentation [J].Amer.Ceram.Soc.1983,66(8):57-60.
    [93]切列帕诺夫(著),黄克智等译.脆性断裂力学[M].北京:科学出版社,1990.
    [94] Steverding B, Lehnigk S H. Response of Cracks to Impact[J]. J. Appl.Phys.,1970,41(5):2096-2099.
    [95] SteverDing B, Lehnigk S H. Collision of Stress Pulses with Obstacles andDynamic of Fracture[J]. J. Appl. Phys.,1971,42(8): 3231-3238.
    [96] Rubin A M, Ahrens T J. Dynamic Tensile Failure Induced Velocity Deficitsin Rock[J]. Geophys Res Lett.1991(2):219-223.
    [97]王军.损伤力学的理论及应用[M].北京:科学出版社,1997.
    [98]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社.1990.
    [99]虞岩贵.冲击载荷作用下含裂纹构件强度计算的试探[J].福州大学学报,1994,22(4):133-138.
    [100]夏宏南. PDC钻头不同齿形碎岩过程受力分析的研究[D].石油大学博士学位论文.1998.
    [101]李世平.岩石力学简明教程[M].中国矿业大学出版社,1986.
    [102]刘德顺.滚刀碎岩拉槽间距研究[J].焦作矿业学院学报.1993(3):86-91.
    [103]钱伟长.侵彻与穿甲力学[M].国防工业出版社,1984
    [104]尚嘉兰,沈乐天,赵宇辉等.Bukit Timah花岗岩的动态本构关系[J].岩石力学与工程学报,1998,17(6):634-641
    [105]楼伪涛.花岗岩体中应力波传播计算的动态本构关系[J].爆炸与冲击,1989,9(3):220-227
    [106]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术出版社,1996.
    [107] Ju J. W. On Energy Based Coup1ed E1astc/P1astic Damage TheoriesConstitutive Modeling and Computational Aspects[J].International Journalof SolidsStructures,1989,25(7),803-833.
    [108] Wang Zhiliang,Li Yongchi and Wang J. G. A Damage Softening StasticalConstitutive Model considering Rock Residual Strength[J]. Computers andGeosciences. 2007,33(l):1-9.
    [109] Dragon A et al.Loca1ize D. Fai1ure Ana1ysis Using Damage Models[M].In:Chambon R,Desrues J,Vardoulakis I,editors,Localisation and BifureationTheory for Soils and Rocks,Balkema,1994,127-167.
    [110] Shao J. F,Hoxha D. and Bart M. et al. Modeling of Induced AnisotropicDamage Iingranites [J].Int. J. Rock Mech.& Min. Sci.1999,36(8):1001-1012.
    [111] Nemat-Nasser,S and Hori M,Micromechanics.Overall Properties of Hetergeneous Materials[M].Elsevier,The Netherlands,1993.
    [112].Mark Kachanov,Effective Elastic Properties of Cracked Solids.CriticalReview of some Basic Concepts[J].Appl.Mech.Rev,1992,45(8):304-335.
    [113]陆晓霞,张培源.在围压冲击条件下岩石损伤粘塑性本构关系[J].重庆大学学报(自然科学版),2002,25(l):6-8.
    [114]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J].河海大学学报,1997,25(2):114-116.
    [115]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].力学与工程学报,2003,22(11):1771-1776
    [116]俞茂宏,咎月稳,范文等.20世纪岩石强度理论的发展——纪念Mohr-Coulomb强度理论100周年[J].岩石力学与工程学报,2000,19(5):545-550.
    [117]谢和平.分形几何及其在岩石力学中的应用[J].岩土工程学报,1992,14(l):14-24.
    [118]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [119] Tuler F. R. and Butcher B. M. Criterion for Time Dependence of DynamicFracture[J].International Journal of Fracture Mechanics.1968,4(4):431-437
    [120] Davison L and stevens,A. T. Continuum Measures of Spall Damage [J].Journal of Applied Physies.1972,43(3):988-994
    [121]朱兆祥,立永池,王肖钧.爆炸作用下钢板层裂的数值计算[J].应用数学和力学,1981,2(4):353-368.
    [122] Tyutin M. R., Botvina L. R. and Zharkova N. A. et al. Evolution ofDamage Accumulation in Low-carbon Steel Intension Condition[J]. Streng Fractureand Complexity.2005,3(2):73-80.
    [123] Eliezer S. and Gilath I. Laser-induced Spall in Metals-experiment andSimulation[J]J. Appl. Phys. 1990,67(2):715-724.
    [124] Shockey D.A ,Curran D. and Seaman L.et al.Fragmentation of Rock underDynamic Loads[J].International Journal of Rock Mechanics and Mining Sciences &Geomeehanics Abstracts.1974,11(8):303-317.
    [125] Batdorf S.B. and Chang D.J. On the Relation between the FractureStatistics of Volume Distributed and Surface Distributed Cracks[J].InternationalJournal of Fractrue.1979,15(2):191-199.
    [126] McClintock F.A. and Zaverl F.J. Analysis of the Mechanics and Statisticsof Brittle Crack Initiation [J]. International Journal of Fracture.1979.15(2):107-118.
    [127] McClintock F.A. and Ritchie R.O. Modelling Low Cycle Torsional FatigueCrack Growth under Variable Loadings[J〕.American Society of MechanicalEngineers,Applied Mechanics Division.1981,47:1-9.
    [128] Seaman L.Curren D.R.and Murri W.J. A Continuum Model for DynamicTensile Micro-fracture and Fragmentation[J].Journal of Applied Mechanics(Transactions of theASME),1985,52(3):593-600.
    [129] Taylor L.N., Chen E.P.and Kusamaul J.S. Microcrack-induced DamageAccumulation in Brittle Rock under Dynamic Loading[J].Computer Methods inApplied Mechanics and Engineering,1986,55(3):301-320.
    [130] Grady D.E. and Kipp M.E. Mechanisms of Dynamic FragmentationFactors Governing Fragmentsize[J].Mechanics of Materials.1984,4(3-4):311-320.
    [131] RaJendran A.M. and Kroupa J.L. Impact Damage Model for CeramicMaterials[J].J.Appl.Phys.,1989,66(8):3560-3565.
    [132] Johnson G.R. and Holmquist T.J. A Computational Constitutive Model forBrittle Materials Subjected Large Strains,High Strain Rate and High Pressures[C].Proceedings of the ECPLOMET Conference. San Diego,CA,1990.
    [133] Johnson G.R. and Cook W.H. Fracture Characteristics of Three MetalsSubJected to Various Strains,Strain Rate,Temperatures and Pressures[J]Engen. Fract.Mech.1985,21(l):31-48.
    [134].RaJendran A.M. ,Dictenberger M.A. and Grove D.J. A Void Growth-basedFailure Model toDescribe Spallation[J].J.Appl.Phys,1989,65(4):1521-1527.
    [135]楼一珊,金业权.岩石力学与石油工程[M].石油工业出版社2007.04:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700