压电杆结构的弹性动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料由于其优越的力电双向性能被广泛的制成传感器和激励器等智能构件中的敏感元件,以薄层、薄膜、涂层等方式粘附着在基体上形成智能构件。压电复合材料层合杆结构已经是航天工程,智能工程,能源领域,海洋探测甚至生物技术等领域不可缺少的功能器件。压电层既可以埋入基体中也可以覆盖在基体表面上,从而组合成为一个复合层状结构。随着科技的进步和大量工程实践中的需要,对于该领域的研究已经从压电材料本身的研究扩展到考虑综合应用的智能结构的整体性能的研究。随着压电材料被更广泛的应用和在生产实践中面临更多的问题,对于智能结构的动力学性能研究必须不断加以深化。波在压电复合层合杆结构中传播特性的研究是智能结构的动力学性能研究的重要组成部分,有着重要的理论意义和实际应用价值。
     本论文研究的主要工作包括:
     (1)基于Hamilton原理的矩阵形式,并结合局部坐标函数形式,建立了弹性波在覆盖压电层的圆柱形杆(包括变截面圆柱杆)中传播的基本方程式,通过求解特征值得到了波传播的频散关系并对频散特征进行了讨论,通过数值算例讨论了影响频散特征曲线和位移、电势以及应力分布规律的因素。分析了变截面压电杆的截面变化程度对各个力学分量分布的影响。
     (2)在平面正交曲线坐标系和空间正交曲线坐标系中建立了弹性波在平面弯曲压电杆、三维圆形弯曲压电杆和三维任意曲率压电杆中传播时的基本方程式,通过Galerkin积分求解特征方程式并讨论了不同曲率下波传播的频散特性。通过数值算例对比了压电材料曲杆和弹性材料曲杆的频散曲线,讨论了材料参数对频散特性的影响。分析了前三阶频散关系下位移分量和电势分量沿横截面以及沿曲线轴线的分布情况。
     (3)在一维问题简化的基础上,通过Laplace变换和相关的复变函数变换,求得了压电曲杆的频散关系,进而推导了位移和电势的关系,先求出了轴向位移的响应函数,再求出电势响应函数,推导了在杆端受到应力脉冲荷载作用下,压电曲杆的动力响应表达式。通过数值计算得到了瞬态位移、应力和电势的响应曲线,分析了纵向冲击波作用下圆截面层合压电杆的动力响应的特性。
     (4)建立了有限变形下压电层合杆中几何非线性弹性波传播的基本方程式,用逐步近似法假设位移和电势函数及其相互关系,采用摄动法求解了运动方程,得到了位移和电势函数。讨论了非线性波的波形畸变特性,分析了初始频率和初始幅值对波的非线性特征的影响。
     本文对压电层合杆和纯压电杆的弹性动力学问题进行了系统的理论分析。其研究成果丰富了智能结构的弹性动力学理论,并可为压电层合杆的动态力学性能设计和应用提供有意义的理论依据。
Piezoelectric materials have been widely used to manufacture various sensors and actuators in the form of laminar layer, thin membrane and coat as sense organs in the areas of smart or intelligent structures because of its strong electriomechanical coupling effects. Piezoelectric composite layered rods structures have become one of the important functional devices in the application areas as aerospace engineering, smart structures, ocean exploration, energy fields and even biological engineering. Piezoelectric elements can be incorporated into a laminated composite structure, either by embedding it or by mounting it onto the surface of the host structure. With the developing of advanced technical and the growing demand for engineering practice, researches in this area have been further extended from pure piezoelectric properties into the properties of smart structures. By considering of broad application and encountering more problems in manufacture practice, researches of dynamical properties of piezoelectric materials have been further deepened. The study of characteristics of wave propagation in the laminated rods structures becomes one of the most important parts in dynamical property researches of smart structures and is very meaningful in theory and valuable in application.
     The main work in dissertation includes:
     (1)Based on the matrix formulation of Hamilton’s principle and co-ordinated fuctions, the basic equations of wave propagation in laminated piezoelectric cylindrical bars (including section-varying) are derived. The wave dispersion curves are obtained by solving an eigenvalue problem. By the numerical examples, the factors of influence on distributions of dispersion curves, displacements and electric potential are discussed through numerical results. The influence of changes of cross section on the distributions of displacements and electric potential is studied.
     (2)The equations of wave propagation in plane bent piezoelectric rods, in 3D circular bent piezoelectric rods, and in 3D bent piezoelectric rods with arbitrary curvature are established in the orthogonal curvilinear coordinate system. The wave dispersion curves in the rods with different curvature are obtained by performing Galerkin integral and solving an eigenvalue problem. The differences of dispersion curves in piezoelectric bent rods and in elastic bent rods are discussed by the results of numerical examples. The influence of material parameters on dispersion relations is also discussed. And distributions of displacements and electric potential of the first three modes in the cross section and along the axes are studied.
     (3) Based on simplified the problem to one dimension, by performing Laplace transform and some relevant transforms in functions of a complex variable, dispersion relations in bent piezoelectric rods are obtained, then the relations between displacements and electric potential, and the dynamical response expressions of displacements and electric potential under stress impulse acting on end of the rod are derived. The dynamical response curves of displacements, stress and electric potential are discussed in the numerical examples, and the dynamical response characteristics under longitudinal impulse wave act on laminated piezoelectric rods are analysed.
     (4) Based finite deformation theory, the equations of geometrical nonlinear elastic wave propagation in the laminated piezoelectric rod are established. The method of successive approximation is used to assume the functions of displacement and electric potential and their relations are also obtained. By using perturbation method, the equations are solved and functions of displacements and electric potential are obtained. Distortion of shapes of nonlinear wave and effects of initial frequency and initial amplitude on nonlinear characteristics of wave propagation are discussed.
引文
[1]杨桂通,张善元.弹性动力学[M].北京:中国铁道出版社,1988
    [2]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002
    [3]贺玲凤,刘军.声弹性技术[M].北京:科学出版社,2002
    [4]熊祝华,郭平.弹性动力学[M].湖南:湖南大学出版社,1988
    [5]王礼立.应力波基础[M].北京:国防工业出版社,2005
    [6]罗斯J L.固体中的超声波[M].何存富,吴斌,王秀彦译.北京:科学出版社,2004
    [7] Stokes G G. Smith’s prize examination[J]. 1876, Cambridge. [Reprinted 1905 in Mathematics and Physics Papers. Vol 5 Cambridge University Press]
    [8] Rayleigh J W S. The theory of sound[M]. New York: Dover, 1945
    [9] Hopkinson B. A method of measuring the pressure in the deformation of high explosives or by the impact of bullets[J]. Mathematical, Physical and Engineering Sciences, 1914, A213: 437-452
    [10] Lamb H, Southwell R V. The vibrations of a spinning disk[J]. Proceedings of the Royal Society of London, 1921, 99: 272-280
    [11] Love A E H. Some problems of geodynamics[M]. Cambridge University Press, 1926
    [12] Love A E H. Mathematical theory of elasticity, 4th ed[M]. New York: Dover, 1944a
    [13] Love A E H. A treatise on the mathematical theory of elasticity, 4th ed[M]. New York: Dover, 1944b
    [14] Davies R M. A critical study of Hopkinson pressure bar[J]. Mathematical, Physical and Engineering Sciences, 1948, A240: 375-457
    [15] Mindlin R D, Medick M A. Extensional vibrations of elastic plates[J]. Journal of Applied Mechanics,1959, 26: 561-569
    [16] Mindlin R D, McNiven H D. Axially symmetric waves in elastic rods[J]. Journal of Applied Mechanics, 1960, 27: 145-151
    [17] Viktorov I A. Rayleigh and lamb waves-physical theory and applications[M]. New York: Plenum, 1967
    [18] Graff K F. Wave motion in elastic solids[M]. New York: Dover, 1991
    [19] Graff K F. Waves and vibrations in curved ultrasonic transmission lines[J]. Ultrasonics, 1972, 10(2): 77-82
    [20] Graff K F. On dispersion of elastic waves in rings[J]. International Journal of Mechanical Sciences, 1971, 13(2): 107-111
    [21] Graff K F, Yih-Hsing Pao. The effects of couple-stresses on the propagation and reflection of plane waves in an elastic half-space[J]. Journal of Sound and Vibration, 1967, 6(2): 217-229
    [22] Miklowitz J. The theory of elastic waves and waveguides[M]. New York: North-Holland, 1978
    [23] Griffin J H, Miklowitz J. Wave front analysis of a plane compressional pulse scattered by a cylindrical elastic inclusion[J]. International Journal of Solids and Structures, 1974, 10(12): 1333-1356
    [24] Scott R A, Miklowitz J. Transient non-axisymmetric wave propagation in an infinite isotropic elastic plate[J]. International Journal of Solids and Structures, 1969, 5(1): 65-79
    [25] Scott R A, Miklowitz J. Near-field transient waves in anisotropic elastic plates for two and three dimensional problems[J]. International Journal of Solids and Structures, 1969, 5(10): 1059-1075
    [26] Scott R A. Wave propagation in a layered elastic plate[J]. International Journal of Solids and Structures, 1972, 8(6): 833-845
    [27] Scott R A, Kim W Harmonic wave propagation in an infinite rotating composite Timoshenko shaft[J]. Journal of Sound and Vibration, 2001, 243(4): 763-768
    [28] Argento A, Scott R A. Elastic wave propagation in a Timoshenko beam spinning about its longitudinal axis[J]. Wave Motion, 1995, 21(1): 67-74
    [29] Auld B A. Waves and vibrations in periodic piezoelectric composite materials[J]. Materials Science and Engineering A, 1989, 122(1): 65-70
    [30] Auld B A. Acoustic fields and waves in solids. 2nd ed[M]. Malabar, FL:Kreiger, 1990
    [31] Achenbach J D. Wave propagation in elastic solids[M]. New York:North-Holland, 1984
    [32] Achenbach J D, Gautesen A K, McMaken H. Ray methods for waves in elastic solids[M]. Boston: Pitman, 1982
    [33] Achenbach J D, Keshava S P. Free waves in a plate supported by a semi-inifite continuum[J]. Journal of Applied Mechanics, 1967, 34: 397-404
    [34] Timoshenko S P, Goodier J N. Theory of elasticity, 3rd ed[M]. New York: McGraw-Hill, 1969
    [35] Timoshenko S P, Woinowski-Krieger S. Theory of plates and shells 2nd ed[M]. New York: McGraw-Hill, 1959
    [36] Timoshenko S P. Vibration problems in engineering[M]. New York: Nostrand, 1955
    [37] Voigt W. Die Beziehung zwischen den beiden Elastiziatskonstanten Isotroper Korper[J]. Wied Ann, 1889, 38: 573-587
    [38] Hertz H. Die Prinzipien der Mechanik[M]. Gesammelte Werke, Leipzig, 1894
    [39] Mindlin R D. Forced thickness-shear and flexural vibrations of piezoelectric crystal plates[J]. Journal of Apply Physics, 1952, 23: 83-88
    [40] Tiersten H F. Wave Propagation in an Infinite Piezoelectric Plate[J]. Journal of the Acoustical Society of America, 1963, 35(2): 234-239
    [41] Tiersten H F. Thickness Vibrations of Piezoelectric Plates[J]. Journal of the Acoustical Society of America, 1963, 35: 53-58
    [42] Bleistein J L. Some simple modes of wave propagation in an infinite piezoelectric plates[J]. Journal of the Acoustical Society of America, 1969, 45: 614-620
    [43] Bleistein J L. A new surface wave in piezoelectric materials[J]. Applied Physics Letters, 1968, 13: 412-413
    [44] Tseng C C. Piezoelectric surface waves in cubic crystals[J]. Journal of Applied Physics, 1970, 41(6): 2270-2276
    [45] Li S F. The electromagneto-acoustic surface wave in a piezoelectric medium: The Bleustein–Gulyaev mode[J]. Journal of Applied Physics, 1996, 80: 5264-5269
    [46] Babich V M, Lukyanov V V. Wave propagation along a curved piezoelectriclayer[J]. Wave Motion, 1998, 28:1-11
    [47] Cheng N C, Sun C T. Wave propagation in two-layered piezoelectric plates[J]. Journal of the Acoustical Society of America, 1975, 57(3): 632-638
    [48] Liu H, Wang T J, Wang Z K, et al. Effect of biasing electric field on the propagation of antisymmetric Lamb waves in piezoelectric plates[J]. International Journal of Solids and Structures, 2002, 39: 1777-1790
    [49] Liu H, Wang T J, Wang Z K, et al. Effect of biasing electric field on the propagation of symmetric Lamb waves in piezoelectric plates[J]. International Journal of Solids and Structures, 2002, 39: 2031-2049
    [50] Du J K, Wang J, Zhou Y Y. Thickness vibrations of piezoelectric plate under biasing fields[J]. Ultrasonics, 2006, 44: 853-857
    [51] Ma C C, Chen X H, Ing Y S. Theoretical transient analysis and wave propagation of piezoelectric bi-materials[J]. International Journal of Solids and Structures, 2007, 44: 7110-7142
    [52]魏建萍,苏先樾.压电空心圆柱中波的传播[J].力学学报, 2004, 36(4): 484-490
    [53]魏建萍,苏先樾.用积分平均方法求解压电圆柱壳内波的轴向传播[J].北京大学学报, 2005, 41(1): 76-81
    [54]王子昆,王铁军,刘华.偏压电场对压电板中Lamb波相速度的影响[J].力学季刊, 2002, 23(1): 23-30
    [55]刘华,王铁军,王子昆.初应力对压电层状结构声表面波传播性能的影响[J].力学学报,2000, 32(4): 491-496
    [56]王子昆,刘华,刘永超等.层状压电介质中一种奇特的电声波[J].力学学报,2000, 32(1): 25-33
    [57] Lu P, Lee K H, Lim S P. Dynamical analysis of a cylindrical piezoelectric transducer[J]. Journal of Sound and Vibration, 2003, 259(2): 427-443
    [58] Liu Y J, Fan H. Analysis of thin piezoelectric solids by the boundary element method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 2297-2315
    [59] Berg M, Hagedorn P, Gutschmidt S. On the dynamics of piezoelectric cylindrical shells[J]. Journal of Sound and Vibration, 2004, 274: 91-109
    [60] Romos R R, Otero J A. Wave propagation in a piezoelectric layer[J]. Journal of Applied Physics, 1997, 81: 7242-7247
    [61] Bailey T, Hubbards J E Jr. Distributed piezoelectric polymer active vibration control of a cantilever beam[J]. Journal of Guidance Control and Dynamics, 1985, 8: 605-611
    [62] Varadan V V, Jeng J H, Varadan V K. Form invariant constitutive relations for transversely isotropic piezoelectric materials[J]. Journal of the Acoustical Society of America, 1987, 82: 337-341
    [63] Crawley E F, Luis J de. Use of piezoelectric actuators as elements of intelligent structures[J]. American Institute of Aeronautics and Astronautics Journal, 1987, 25: 1373-1385
    [64] Wang B T, Rogers C A. Laminate plate theory for spatially distributed induced strain actuators[J]. Journal of Composite Materials, 1991, 25: 433-452
    [65] Minagawa S. Propagation of harmonic waves in a layered elasto-piezoelectric composite[J]. Mechanics of Materials, 1995, 19: 165-170
    [66] Zakharenko A A. Love-type waves in layered systems consisting of two cubic piezoelectric crystals[J]. Journal of Sound and Vibration, 2005, 285: 877-886
    [67] Ossadzow-David C, Touratier M. A multilayered piezoelectric shell theory[J]. Composites Science and Technology, 2004, 64: 2121-2137
    [68] Mesquida A A, Otero J A, Romos R R et al. Wave propagation in a layered piezoelectric structures[J]. Journal of Applied Physics, 1998, 83: 4652-4659
    [69] Wang Q. Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer[J]. International Journal of Solids and Structures, 2002, 39: 3023-3037
    [70] Wang Q. Wave propagation in a piezoelectric coupled cylindrical membrane shell[J]. International Journal of Solids and Structures, 2001, 38: 8207-8218
    [71] Wang Q, Quek S T. On dispersion relations in piezoelectric coupled beams[J]. American Institute of Aeronautics and Astronautics Journal, 2001, 38: 2357-2361
    [72] Quek S T, Wang Q. On dispersion relations in piezoelectric coupled plate structures[J]. Smart Materials and Structures, 2001, 9: 859-867
    [73] Wang Q, Liew K M. Analysis of wave propagation in piezoelectric coupled cylinder affected by transverse shear and rotary inertia[J]. International Journal of Solids and Structures, 2003, 40: 6653-6667
    [74] Wang Q, Quek S T, Varadan V K. Love waves in piezoelectric coupled solid media[J]. Smart Materials and Structures, 2001, 10: 380-388
    [75] Jin J, Wang Q, Quek S T. Lamb wave propagation in a metallic semi-infinite medium covered with piezoelectric layer[J]. International Journal of Solids and Structures, 2002, 39: 2547-2556
    [76] Li X Y, Wang Z K, Huang S H. Love waves in functionally graded piezoelectric materials[J]. International Journal of Solids and Structures, 2004, 41: 7309-7328
    [77] Liu G R, Dai K Y, Han X, Ohyoshi T. Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates[J]. Journal of Sound and Vibration, 2003, 268: 131-147
    [78] Liu G R, Han X, Lam K Y. Stress waves in functionally gradient materials and its use for material characterization[J]. Composites Part B, 1999, 30: 383-394
    [79] Liu G R, Tani J. Surface waves in functionally gradient piezoelectric plates[J]. Transactions of the American Society of Mechanical Engineers, 1994, 116: 440-448
    [80] Han X, Liu G R, Xi Z C, Lam K Y. Transient waves in a functionally graded cylinder[J]. International Journal of Solids and Structures, 2001, 38: 3021-3037
    [81] Han X, Liu G R, Xi Z C, Lam K Y. Characteristic of waves in a functionally graded cylinder[J]. International Journal of Numerical Methods in Engineering, 2002, 53: 653-676
    [82] Chen W Q, Bian Z G, Lv C F et al. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid[J]. International Journal of Solids and Structures, 2004, 41: 947-964
    [83] Chen W Q, Ding H J, On free vibration of a functionally graded piezoelectric rectangular plate[J]. Acta Mechanica, 2002, 153: 207-216
    [84] Chen W Q, Ding H J, Xu R Q. Three dimensional free vibration analysis of a fluid-filled piezoceramic hollow sphere[J]. Computers & Structures, 2001, 79:653-663
    [85] Ding H J, Chen W Q, Guo Y M et al. Free vibrations of piezoelectric cylindrical shells filled with compressible fluid[J]. International Journal of Solids and Structures, 1997a, 34: 2025-2034
    [86] Wang H M, Ding H J, Ge W. Transient responses in a two-layered elasto-piezoelectric composite hollow cylinder[J]. Composite Structures, 2007, 79: 192-201
    [87] Wang H M, Ding H J, Chen Y M. Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems[J]. International Journal of Solids and Structures, 2005, 42: 85-102
    [88]刘华,匡震邦,蔡正敏.非均匀压电层状结构中Love波的传播[J].力学学报, 2003, 35(2): 485-488
    [89] Danoyan Z N, Piliposian G T. Surface electro-elastic Love waves in a layered structure with a piezoelectric substrate and a dielectric layer[J]. International Journal of Solids and Structures, 2007, 44: 5829-5847
    [90] Danoyan Z N, Piliposian G T. Surface electro-elastic shear horizontal waves in a layered structure with a piezoelectric substrate and a hard dielectric layer[J]. International Journal of Solids and Structures, 2008, 45: 431-441
    [91] Jin F, Wang Z K, Wang T J. The Bleustein-Gulyaev (B-G) wave in a piezoelectric layered half-space[J]. International Journal of Engineering Science, 2001, 39: 1271-1285
    [92] Qian Z G, Jin F, Wang Z K, Kishimoto K. Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures[J]. International Journal of Engineering Science, 2004, 42: 673-689
    [93] Qian Z, Jin F, Kishmoto K, Wang Z. Effect of initial stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structures[J]. Sensors and Actuators A: Physical, 2004, 112: 368-375
    [94] Qian Z H, Jin F, Wang Z K et al. Transverse surface waves on a piezoelectric materials carrying a functionally graded layer of finite thickness[J]. International Journal of Engineering Science, 2007, 45: 455-466
    [95] Liu H, Wang Z K, Wang T J. Effect of initial stress on the propagation behaviorof Love waves in a layered piezoelectric structure[J]. International Journal of Solids and Structures, 2001, 38: 37-51
    [96] Liu H, Kuang Z B, Cai Z M. Propagation of Bleustein-Gulyaev waves in a prestressed layered piezoelectric structure[J]. Ultrasonics, 2003, 41: 397-405
    [97] Collet B. Recursive surface impedance matrix methods for ultrasonic wave propagation in piezoelectric multilayers[J]. Ultrasonics, 2004, 42: 189-197
    [98] Du J K, Jin X Y, Wang J et al. Love wave propagation in functionally graded piezoelectric material layer[J]. Ultrasonics, 2007, 46: 13-22
    [99] Krommer M, Irschik H. On the influence of the electric field on free transverse vibrations of smart beams[J]. Smart Materials and Structures, 1999, 8: 401-410
    [100] Nayfeh A H, Chien H T. Wave propagation interaction with free and fluid-loaded piezoelectric substrates[J]. Journal of the Acoustical Society of America, 1992, 91(6): 3126-3135
    [101] Nayfeh A H. Wave propagation in layered anisotropic media with application to composites[M]. Amsterdam: North-Holland, 1995
    [102] Joshi S G, Zaitsev B D, Kuznetsova I E et al. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates[J]. Ultrasonics, 2006, 44: e787-e791
    [103] Joshi S G, Jin Y. Propagation of ultrasonic Lamb waves in piezoelectric plates[J]. Journal of Applied Physics, 1991, 70: 4113-4120
    [104] Joshi S G, Jin Y. Excitation of ultrasonic Lamb waves in Piezoelectric plates[J]. Journal of Applied Physics, 1991, 69: 8018-8024
    [105] Kusculuoglu Z K, Fallahi B, Royston T J. Finite element model of a beam with a piezoelectric patch actuator[J]. Journal of Sound and Vibration, 2004, 276: 27-44
    [106]王建国.层状压电介质空间轴对称问题的状态空间解[J].力学学报, 2001, 33(1): 115-120
    [107]林启荣,刘正兴,李红云.受谐激励的带压电层充液圆柱容器稳态解[J].固体力学学报, 2001, 22(2): 209-213
    [108] Martin P A. On flexural waves in cylindrically anisotropic elastic rods[J]. International Journal of Solids and Structures, 2005, 42: 2161-2179
    [109] Anderson S P. Higher-order rod approximations for the propagation of longitudinal stress waves in elastic rods[J]. Journal of Sound and Vibration, 2006, 290: 290-308
    [110] Hayashi T, Tamayama C, Murase M. Wave structure analysis of guided waves in a bar with an arbitrary cross-section[J]. Ultrasonics, 2006, 44: 17-24
    [111] Kudela P, Krawczuk M, Ostachowicz W. Wave propagation modeling in 1D structures using spectral finite element[J]. Journal of Sound and Vibration, 2007, 300: 88-100
    [112] Bishop T C, Cortez R, Zhmudsky O O. Investigation of bend and shear waves in a geometrically exact elastic rod model[J]. Journal of Computational Physics, 2004, 193: 642-665
    [113] Kumar B M, Sujith R I. Exact solutions for the longitudinal vibrations of non-uniform rods[J]. Journal of Sound and Vibration, 1997, 207(5): 721-729
    [114] Widehammer S, Gradin P A. Approximate determination of dispersion relations and displacement fields associated with elastic waves in bars[J]. Journal of Sound and Vibration, 2001, 246(5): 853-876
    [115] Wu C M, Lundberg B. Reflection and transmission of the energy of harmonic elastic waves in a bent bars[J]. Journal of Sound and Vibration, 1996, 190(4): 645-659
    [116] Beccu R, Wu C M, Lundberg B. Reflection and transmission of the energy of transient elastic extensional waves in a bent bars[J]. Journal of Sound and Vibration, 1996, 191(2): 261-272
    [117] Tiersten H F, Ballato A. Nonlinear extensional vibrations of quartz rods[J]. Journal of the Acoustical Society of America, 1983, 73(6): 2022-2033
    [118] Wei J P, Su X Y. Wave propagation in a piezoelectric rod of 6 mm symmetry[J]. International Journal of Solids and Structures, 2005, 42: 3644-3654
    [119] Bai H, Taciroglu E, Dong S B et al. Elastodynamic Green’s functions for a laminated piezoelectric cylinder[J]. International Journal of Solids and Structures, 2004, 41: 6335-6350
    [120] Nayfeh A H, Abdelrahman W G, Nagy P B. Analyses of axisymmetric waves in layered piezoelectric rods and their composites[J]. Journal of the AcousticalSociety of America, 2000, 108: 1496-1504
    [121] Rogacheva N N. The dynamic behaviour of piezoelectric laminated bars[J]. Journal of Applied Mathematics and Mechanics, 2007, 71: 494-510
    [122] Botta F, Cerri G. Wave propagation in Reissner-Mindlin piezoelectric coupled cylinder with non-constant electric field through the thickness[J]. International Journal of Solids and Structures, 2007, 44: 6201-6219
    [123] Paul H S, Venkatesan M. Wave propagation in a piezoelectric solid cylinder of arbitrary cross section[J]. Journal of Acoustical Society of America, 1987, 82: 2013-2020
    [124] Paul H S, Venkatesan M. The torsional vibration of a piezoelectric solid cylinder of arbitrary cross section of (622) class[J]. International Journal of Engineering Science, 1988, 26: 437-443
    [125] Paul H S, Venkatesan M. Wave propagation in a piezoelectric solid cylinder of arbitrary cross section of class 6 (bone)[J]. International Journal of Engineering Science, 1989, 27: 847-853
    [126] Wislon L O, Morrison J A. Wave propagation in piezoelectric rods of hexagonal crystal symmetry[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1977, 30: 387-395
    [127]陈立群.求匀质杆纵向振动的行波法[J].力学与实践, 1996, 18(4): 63-64
    [128]刘志芳,张善元.有限变形弹性圆杆中的孤波[J].应用数学和力学, 2006, 27(10): 1255-1260
    [129]刘志芳,张善元.有限变形弹性杆中的非线性波及周期解[J].固体力学学报, 2006, 27(1): 1-5
    [130]刘志芳,张善元.非线性弹性杆中的应变孤波[J].太原理工大学学报, 2005, 36(6): 651-653
    [131]郭建刚,周丽军,张善元.有限变形弹性杆中的几何非线性波[J].应用数学和力学, 2005, 26(5): 614-620
    [132]郭建刚,周丽军,张善元.有限变形粘弹性杆的波动行为研究[J].太原理工大学学报, 2002, 33(5): 558-560
    [133]郑海山,张中杰,杨宝俊.固体中非线性纵波一维数值模拟[J].地震学报, 2004,24(1): 77-83
    [134]韩强,郑向峰.非线性弹性杆中的孤波解及其数值模拟[J].华南理工大学学报, 2004, 32(4): 92-96
    [135] Baumhauer J C, Tiersten H F, Nonlinear electroelastic equations for small fields superposed on a bias[J]. Journal of the Acoustical Society of America, 1973, 54(4): 1017-1033
    [136] Tiersten H F. Analysis of nonlinear resonance in thickness-shear and trapped energy resonators[J]. Journal of the Acoustical Society of America, 1976, 59: 866-878
    [137] Yang J S. A nonlinear theory for thin piezoelectric plates in moderately large extensional deformation[J]. Mechanics Research Communications, 1999, 26(4): 421-426
    [138] Utz von Wager. Non-linear longitudinal vibrations of non-slender piezoceramic rods[J]. International Journal of Non-linear Mechanics, 2004, 39: 673-688
    [139] U.von Wager, Hagedorn P. Piezo-beam system subjected to weak electric field: experiments and modeling of non-linearities[J]. Journal of Sound and Vibration, 2002, 256(5): 861-872
    [140] Sandeep Kumar Parashar, Utz von Wager, Peter Hagedorn. Nonlinear shear-induced flexural vibrations of piezoceramic actuators: experiments and modeling[J]. Journal of Sound and Vibration, 2005, 285: 989-1014
    [141] Sandeep Kumar Parashar, Anirvan DasGupta, Utz von Wager et al. Non-linear shear vibrations of piezoceramic actuators[J]. International Journal of Non-linear Mechanics, 2005, 40: 429-443
    [142] Samal M K, Seshu P, Parashar S K et al. Nonlinear behaviour of piezoceramics under weak electric fields PartⅠ: 3D finite element formulation[J]. International Journal of Solids and Structures, 2006, 43: 1422-1436
    [143] Samal M K, Seshu P, Dutta B K. An analytical formulation in 3D domain for the nonlinear response of piezoelectric slabs under weak electric fields[J]. International Journal of Solids and Structures, 2007, 44: 4656-4672
    [144] Ray M C, Bhattacharya R, Samanta B. Exact solutions for dynamic analysis of composite plates with distributed piezoelectric layers[J]. Computers and Structures, 1998, 66: 737-743
    [145] Mukherjee A, Chaudhuri A Saha. Piezolaminated beams with large deformations[J]. International Journal of Solids and Structures, 2002, 39: 4567-4582
    [146] Mukherjee A, Chaudhuri A Saha. Nonlinear dynamic response of piezoelectric smart beams[J]. Computers & Structures, 2005, 83: 1298-1304
    [147] Dong K, Wang X. Wave propagation characteristics in piezoelectric cylindrical laminated shells under large deformation[J]. Composite Structures, 2007, 77: 171-181
    [148]董科,王熙,王虹.波在考虑热荷载和转动惯量效应的非线性大变形多层压电层合壳内的传播研究[J].工程力学, 2007, 24(1): 157-161
    [149] Berlincourt D A, Curran D R, Jaffe H. Physical acoustics. Vol.1, Part A[M]. New York, London: Academic Press, 1964
    [150] Nayfeh A H, Tsai M -S. Finite amplitude waves in two-dimensional lined ducts[J]. Journal of Sound and Vibration, 1974, 37(8): 27-38
    [151] Nayfeh A H. Finite-amplitude longitudinal waves in non-uniform bars[J]. Journal of Sound and Vibration, 1975, 42(3): 357-361
    [152] Engelbrecht J, Berezovski A, Salupere A. Nonlinear deformation waves in solids and dispersion[J]. Wave Motion, 2007, 44(6): 493-500
    [153] Haddow J B, Jiang L. Finite amplitude elastic waves due to non-uniform traction at the surface of a cylindrical cavity[J]. International Journal of Non-Linear Mechanics, 2006, 41(2): 231-241
    [154] Haddow J B, Jiang L. Finite amplitude spherically symmetric wave propagation in a prestressed hyperelastic shell[J]. International Journal of Solids and Structures, 1999, 36(1): 2793-2805
    [155] Sia Nemat-Nasser, Amirkhizi A V. Finite-amplitude shear wave in pre-stressed thin elastomers[J]. Wave Motion, 2005, 43(1): 20-28
    [156] Salvatori M C, Sanchini G. Finite amplitude transverse waves in materials with memory[J]. International Journal of Engineering Science, 2005, 43(3-4): 290-303
    [157] de Lima W J N, Hamilton M F. Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area[J]. Wave Motion, 2005,41(1): 1-11
    [158] Destrade M, Saccomandi G. Finite-amplitude inhomogeneous waves in Mooney–Rivlin viscoelastic solids[J]. Wave Motion, 2004, 40(3): 251-262
    [159] Wegner J L. Some aspects of thermodynamic effects in finite amplitude wave propagation in rubber-like solids[J]. Wave Motion, 2004, 39(1): 21-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700