用户名: 密码: 验证码:
HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子探针层析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以含有Cu和Ni的低合金高强度(HSLA)钢为材料,设计了奥氏体连续冷却(SCC)、马氏体回火(SQCT)和奥氏体-铁素体两相区淬火(SQIT)等三种热处理工艺,结合光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析表征手段和方法,利用原子探针层析技术(APT),在原子尺度上研究了Cu析出和回转奥氏体(RA)的大小、形貌、数量等析出特点和形成过程,探讨了Cu析出强化和回转奥氏体韧化的机制,以及热处理工艺对Cu-Ni钢的室温拉伸、低温冲击和焊接性能的影响,得到以下结论:
     在奥氏体连续冷却过程中,冷却速率通过影响合金元素在奥氏体和铁素体之间的动态扩散分配,决定了室温组织中多边形铁素体、针状铁素体、粒状铁素体、贝氏体、马氏体和残余奥氏体的组成比例,以及相变过程中Cu的析出过程和分布状态。在较慢冷速下,室温组织主要为多边形铁素体,并有少量贝氏体和残余奥氏体或马氏体。随着冷速的增加,多边形铁素体的形核和长大被抑制,体积分数逐渐减少,而粒状铁素体和针状铁素体不断增加,并存有少量未转变的残余奥氏体。在此过程中,Cu析出主要在多边形铁素体内通过相间沉淀的方式形成,分布不均匀,在一定程度上限制了其强化效果。
     奥氏体相变产物中的微观结构(位错、碳化物(渗碳体)和奥氏体/铁素体界面)对Cu析出的形核、长大和粗化有不同的影响。APT研究表明,Cu析出和P偏聚的位错线没有明显的交互作用。在奥氏体-铁素体相变过程中,相对位错,奥氏体/铁素体界面更容易诱发Cu原子以相间沉淀的方式形核。在较慢的冷速下,渗碳体/基体界面成为Cu析出优先形核的部位,并促进其长大和粗化。溶质原子在铁素体和奥氏体之间的扩散、再分配和界面偏聚,促使Cu析出在奥氏体/铁素体界面形成。另外,Cu析出过程受到铁素体/奥氏体界面迁移速率的影响,即与奥氏体连续冷却速率有关。
     经900℃固溶+淬火处理后,Cu-Ni钢为Cu原子过饱和固溶的板条马氏体组织。不同温度回火时,硬度曲线反映了马氏体组织软化,Cu析出强化和回转奥氏体的二次淬火等因素的共同作用效果。APT分析表明,随着回火温度的增加或时间的延长,Cu析出的数量密度逐渐减少,尺寸不断增加,同时形态从球型不断向椭球过渡。在形成早期,Cu析出中含有大量的Fe,以及一定量的Ni和Mn。随着Cu析出的长大和粗化,Ni和Mn倾向偏聚在Cu析出/基体界面处,而且Fe含量逐渐降低。高温(650℃)回火时,APT没有探测出Cu析出存在。
     通过奥氏体-铁素体两相区回火,可以得到回转奥氏体弥散分布的板条状回火马氏体组织。Ni、Mn和Cu等奥氏体稳定性元素富集在回转奥氏体中,增加了回转奥氏体的热稳定性和力学稳定性,具有很强的低温韧化作用。APT分析表明,回转奥氏体附近存在有尺寸较大的Cu析出,证实了Cu原子向回转奥氏体中富集的倾向,而且在低温时伴随奥氏体的部分分解而析出。在铁素体基体中,存在大量细小的Cu析出,为后续常规回火时形成的,具有析出强化作用。
     SCC反映了传统控轧、控冷工艺所涉及的物理冶金规律,此时Cu-Ni钢具有良好的室温拉伸性能,但在低温时普遍存在脆化倾向。SQCT反映了热处理工艺所涉及的物理冶金规律,此时Cu-Ni钢具有良好的拉伸性能,但屈强比较高,可靠性降低。SQIT工艺中,屈强比较低,拉伸性能优越,在-80℃时仍具有较高的冲击功,具有最佳的综合力学性能。SCC、SQCT和SQIT所获得的显观组织各异,拉伸和低温冲击等力学性能依次提高,但实际生产成本也逐渐增加。
     Cu析出尺寸较小且与基体呈非共格时,位错切过机制起主导作用,其强化效应主要来源于化学强化、共格强化和模量强化等作用,三者的强化增量分别为3-6MPa,86MPa和139MPa,其中模量强化起主导作用;对于尺寸较大的非共格的FCC结构Cu析出,Orowan绕过机制起主导作用,强化增量约为18MPa。切过向绕过机制转变的临界半径约为2.9nm。
The copper precipitation and the formation of reverse austenite in Cu-andNi-containing high-strength low-alloy steelsare comprehensively studied by atomprobe tomography (APT) companying with optical microscopy (OM), scanningelectronic microscopy (SEM) and transmission electronic microscopy (TEM). Threedifferent heat treatment procedures including solution pluscontrolled cooling (SCC),solution and quenching plus conventional tempering (SQCT), and solution andquenching plus interstitial tempering plus conventional tempering (SQIT) aredesigned. The nature of Cu precipitation,and the effects of heat treatment on themicrostructural evolution and the final mechanical strength are discussed.
     During continuously cooling of austenite, the solute elements of C, Ni, Mn andCu etc.are prone to diffuse into the untransformed austeniteand change the austenitedecomposition kinetics, leading to the formation of a variety of structural componentsof ferrite, bainite, martensite and/or retained austenite in the ambient microstructure.Besides, the Cu precipitation also greatly correlates with the austenite decomposition.The actual volume fractions of the final phases are as function of the cooling rates.The Cu phases are mostly formed by interphase precipitation in the polygonalferrite.But the Cu precipitation can also occur in polygonal ferrite after theaustenite-ferrite transformation is finished.The micro-constituents such as dislocations,carbides (cementite) and migrating austenite/ferrite heterophase interfaces duringaustenite decompositionhave an effect on the nucleation, growth and coarsening ofcopper precipitates. APT studies indicate that not all Cu precipitates are formed on thedislocations with P segregation, because the austenite/ferrite heterophase interfacesare more likely to induce the Cu nucleation compared to dislocation. The carbide/matrix interfaces are the preferential sites for Cu nucleation, and the formation ofcarbides will contribute to the growth and coarsening of Cu precipitates. Theinterphase precipitation of Cu phases is significantly impacted by migration rate ofaustenite/ferrite interfaces and the actual cooling rate. The structural andcompositional evolution is the same as that for the isothermal aging.
     Thesolution-quench microstructure of the Cu-Ni steels mainly consists of lathmartensite with Cu in solution. Duringtempering, the micro-hardness evolution wellreflects the microstructuralevolutionresulting from the softening of martensite, Cuprecipitation strengthening and reverse austenite toughening. The number density ofCu precipitates decrease whereas the sizes increase with increasing of temperingintensity. At the same time, the morphology evolve form sphere to ellipse. At theinitial nucleation stage, the Cu precipitates contains considerable high Fe content aswell as a small amount of Ni and Mn, which are prone to segregate at the matrix/Cuprecipitate interface at the later growth and coarsening stages.
     By additional interstitial tempering in QT procedure, a microstructure of lath-likemartensite with dispersed reverse austenite at lath boundary and prior austenite grainboundary is obtained.The mechanical and thermal stability of the reverseaustenitewhich is in direct proportion to the content of alloying elements especially Niplays an important role in toughening at low temperature. Copper can diffuse into andstabilize the reverse austenite and precipitate out companying with the partialdecomposition of reverse austenite during tempering. Copper still in solution duringinterstitial temperingis the contributor for the strengthening Cu precipitates formed insubsequent tempering.
     There are great difference in the final microstructure and thereby mechanicalproperties of the Cu-Ni steels. The disadvantages of SCC and SQCT processed steelsare lower temperature toughness and yield/tensile ratio, respectively, which can beoptimized by SQIT procedure. As to the shearable BCC coherent Cu precipitates, thestrength increments by the effects of chemical hardening, the coherency strain and themodulus strengthening are3-6,86and139MPa, respectively. For the incoherent,impenetrable FCC Cu precipitates, the strength increments by classical Orowanmechanism is18MPa. The critical transition size of Cu precipitates with differentstrengthening mechanism is calculated to be about2.9nm.
引文
1. Montemarano T.W., Sack B.P., Vassilaros M.G. and Vanderveldt H.H.. Highstrength low alloy steels in naval construction [J]. J Ship Prod.,1986; Vol.2,pp.145-162.
    2. Czyrycka E.J., Link R.E., Wong R.J., Aylor D.A., MontemaranoT.W. andGudasJ.P..Developement and Certification of HSLA-100Steel for Naval ShipConstruction [J]. Nav. Eng. J,1990; Vol.102, pp.63-82.
    3. Fine M.E., Ramanathan R., Vaynman S. and Bhat S.P.. Mechanical properties andmicrostructure of weldable high performance low carbon steel containing copper[M]. In International Symposium on Low-Carbon Steels for the90's, Asfahani R.I. and Tither G.(Eds.), Pittsburgh, Pennsylvania: TMS.1993, pp.511-514.
    4. MohrT.C.. A Study of the Microstructural Basis for the Strengch and ToughnessProperties of Water Quenched and Air Cooled HSLA-100, HSLA-100withIncreased Copper and a ULCB Steel, Master’s Thesis, Naval Postgraduate School,Monterey, California, September1991.
    5. Garcia C.I. and DeArdo A.J.. Proc. World Materials Congress1988: MicroalloyedHSLA Steels [C]. ASM International,1988; pp.291-300
    6. Anderson T.L., Hyatt J.A. and West J.C.. The Benefits of New High StrengthLow-Alloy (HSLA) Steels [J]. Weld. J,1987; Vol.66, pp.21-29.
    7. Wilson A.D.. High Strength Weldable A710Type Steels, Lukens Steel Co.,Coatesville, PA, June1986.
    8. Vaynman S., Isheim D., Kolli R.P., Bhat S.P., Seidman D.N. and Fine M.E..High-strength low-carbon ferritic steel containing Cu-Ni-Al-Mn precipitates [J].Metall. Mater. Trans. A,2007; Vol.39, pp.363-373.
    9. Vaynman S., Fine M.E., Ghosh G. and Bhat S.P.. Copper precipitation hardened,high-strength, weldable steel [M]. In Materials for The New Millennium, K. P.Chong (Ed.), Washington D.C.: ASCE.1996, pp.1551-1560.
    10. Vaynman S., Uslander I.J. and Fine M.E.. High-strength, weldable, air-cooled,copper-precipitation-hardened steel [M]. In39th Mechanical Working and SteelProcessing Conference Proceedings, Indianapolis, Indiana: ISS.1997, pp.1183-1190.
    11. Vaynman S. and Fine, M.E.. High-performance, weatherable, copper precipitationhardened steel. In International Symposium on Steel for Fabricated Structures, R.I. Asfahani and R. L. Bodnar (Eds.), Cincinnati, Ohio: AISI and ASMInternational.1999, pp.59-66.
    12. Vaynman S., Fine M.E., Asfahani R.I., Bormet D.M. and Hahin C.. Highperformance copper-precipitation-hardened steel [M]. In Microalloyed Steel, R. I.Asfahani, R. L. Bodnar and M. J. Merwin (Eds.), Columbus, Ohio: ASM.2002.
    13. Vaynman S., Fine M.E. and Bhat S.P.. High-strength, low-carbon, ferritic,copper-precipitation-strengthened steels for tank car applications. In MaterialsScience and Technology, New Orleans, Louisiana: AIST and TMS.2004, p.417.
    14. Bucher J.H., HamburgE.G. and WilsonA.D.. Symposium on ToughnessCharacterization and Specifications for HSLA and Structural Steels [J]. TheMetallurgical Society of AIME, March1977, p.183.
    15. Lorig C.H. and AdamR.R.. Copper as an Alloying Element in Steel and Cast Iron[M]. New York: McGraw-Hill Book Company, Inc.1948.
    16. Linnert G.E..Welding Metallurgy[M]. Miami Florida: American WeldingSociety.1994.
    17. Gregg J.L. and Daniloff B.N.(Eds.). The Alloys of Iron and Copper [M]. NewYork: McGraw-Hill Book Company.1934.
    18. Sundman B., Jansson B. and Andersson J.O.. The Thermo-Calc databank system[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry,1985; Vol.9, pp.153-190.
    19. R s nen E.. Decomposition of Austenite in Fe-Cu Alloys [J]. Scand. J Metall.,1973; Vol.2,pp.257-263.
    20. KimuraY. and Takaki S.. PhaseTransformation Mechanismof Fe-Cu Alloys [J].ISIJ Int.,1997; Vol.37,pp.290-295.
    21. OhtsukaH., GhoshG. and NagaiK.. Effects of Cu on Diffusional TransformationBehavior and Microstructure in Fe-Mn-Si-C Steels [J].ISIJ Int.,1997;Vol.37,pp.296-301.
    22. Enomoto M., Nojiri N.and SatoY.. Effects of vanadium and niobium on thenucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-Cand Fe-C-Mn alloys [J]. Mater. Trans. JIM,1994; Vol.35, pp.859-867.
    23.李闯,王学敏,尚成嘉,郑长安,贺信莱.连续冷却过程中含Cu相在钢中析出行为的研究[J].金属学报.,2010;Vol.46,pp.1488-1494.
    24. AbeT., KuriharaM., TagawaH. and TsukadaK..Effect of Thermo-mechanicalProcessing on Mechanical Properties of Copper Bearing Age Hardenable SteelPlates[J].Trans. ISIJ,1987; Vol.27, pp.478-484.
    25. Fujii A., MinoruN., HajimeS. and KaizoM..Precipitation hardening of iron-copperalloys [J]. Trans. Japan Inst. Met.,1968; Vol.9, pp.374-380.
    26. Thompson S.W., Colvin D.J. and Krauss G.. Austenite decomposition duringcontinuous cooling of an HSLA-80plate steel [J]. Metall. Mater. Trans. A,1996;Vol.27, pp.1557-1571.
    27. Speich G.R. and Scoonover T.M.. in Processing, Microstructure and Properties ofHSLA Steels [M]. DeArdo A.J., ed., TMS, Warrendale, PA,1988; pp.263-86.
    28. Zhao J.C. and Notis M.R.. Continuous cooling transformation kinetics versusisothermal transformation kinetics of steels: a phenomenological rationalizationof experimental observations [J]. Mater. Sci. Eng. R,1995;Vol.15, pp.135-208.
    29. Thompson S.W, Colvin D.J and Krauss G.. Continuous Cooling Transformationsand Microstructures in a Low-Carbon, High-Strength Low-Alloy Plate Steel [J].Metall. Trans. A1990;Vol.21, pp.1493-1507.
    30. Thompson S.W., Colvin D.J. and Krauss G.. On the bainitic structure formed in amodified A710steel [J]. Scripta Metall.,1988; Vol.22, pp.1069-1074.
    31. Thompson S.W. and Krauss G.. Copper precipitation during continuous coolingand isothermal aging of A710-type steels[J]. Metall. Mater. Trans. A,1996; Vol.27,pp.1573-1588.
    32. Ricks R.A., Howell P.R. and HoneycombeR.W.K.. Formation of supersaturatedferrite during decomposition of austenite in iron–copper and iron-copper-nickelalloys [J]. Metal Sci.,1980; Vol.14, pp.562-568.
    33. Grovenor C.R.M.. On the measurement of interfacial diffusion coefficients duringdiffusion induced boundary migration [J]. Scripta Metall.,1982; Vol.16,pp.317-320.
    34. Ricks R.A. and Howell P.R.. The formation of discrete precipitate dispersions onmobile interphase boundaries in iron-base alloys [J]. Acta Metall.,1983; Vol.31,pp.853-861.
    35. Ricks R.A.. A comparative study of precipitation at interphase boundaries inFe-Cu-Ni and Fe-Au-Ni alloys [J]. J Mater. Sci.,1981; Vol.16, pp.3006-3012.
    36. Porter D.A.and EasterlingK.E..Phase Transformations in Metals and Alloys [M].Van Nostrand Reinhold, New York, NY,1981, pp.265-78.
    37. Howell P.R. and Honeycombe R.W.K.: inSolid-Solid Phase Transformations [M].Aaronson H.I., Laughlin D.E., Sekerka R.F. and Wayman C.M., eds., TMS-AIME,Warrendale, PA,1982; pp.399-425.
    38. Aaronson H.I.: in Decomposition of Austenite by Diffusional Processes [M],Zackay V.F. and Aaronson H.I., eds., Interscience Publishers, New York, NY,1962; pp.387-548.
    39. Coates D.E.. Diffusion-controlled precipitate growth in ternary systems I [J],Metall. Mater. Trans. B,1972; Vol.3, pp.1203-1212
    40. Chilton J.M. and KellyP.M.. The Strength of Ferrous Martensite [J]. Acta Metall.,1968; Vol.16,pp.637-656
    41. Krauss G.. In: Principles of Heat Treatment of Steel [M]. ASM, Metals Park,Ohio,1978; pp.200-201
    42. Reed-Hill R.E.. Physical Metallurgy Principles [M]. P.W.S. Engineering, Boston,Massachusetts,1973;pp.745-746.
    43. Mujahid M., Lis A.K., Garcia C.I. and DeArdo A.J.. HSLA-100Steels: Influenceof Aging Heat Treatment on Microstructure and Properties [J]. J Mate. Eng.Perform.,1998; Vol.7, pp.247-257.
    44. ErhardH., Glenn R.C.. Metallographic study of precipitation of copper fromalpha.-iron[J]. Transactions of the American Institute of Mining, Metallurgicaland Petroleum Engineers,1960; Vol.218, pp.1064-1070.
    45. Morris Jr. J.W., Kim J.I. and Syn C.K..Advances in the heat treatment of steel [C].the Sagamore Conference, Lake George, NY,1978, July, pp.17-21.
    46. HaraT., MaruyamaN., ShinoharaY., AsahiH., ShigesatoG., SugiyamaM. andKosekiT.. Abnormal α to γTransformation Behavior of Steels with a Martensiteand Bainite Microstructure at a Slow Reheating Rate [J]. ISIJ Inter.,2009; Vol.49,pp.1792-1800.
    47. CalcagnottoM., PongeD. and RaabeD.. Ultrafine Grained Ferrite/Martensite DualPhase Steel Fabricated by Large Strain Warm Deformation and SubsequentIntercritical Annealing [J]. ISIJ Inter.,2008; Vol.48,pp.1096-1101.
    48. CalcagnottoM., PongeD., RaabeD.. Effect of grain refinement to1mon strengthand toughness of dual-phase steels [J]. Mater. Sci. Eng. A,2010;Vol.527,pp.7832-7840.
    49. CalcagnottoM., AdachiY., PongeD.and RaabeD.. Deformation and fracturemechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels andthe effect of aging [J]. Acta Mater.,2011; Vol.59, pp.658-670.
    50. CalcagnottoM., PongeD., DemirE. and RaabeD.. Orientation gradients andgeometrically necessary dislocations in ultrafinegrained dual-phase steels studiedby2D and3D EBSD [J]. Mater. Sci. Eng. A,2010; Vol.527,pp.2738-2746.
    51. Krauss Jr. G. and Cohen M.. Strengthening and annealing of austenite formed bythe reverse martensite transformation [J]. Transactions of the American Instituteof Mining, Metallurgical and Petroleum Engineers,1962; Vol.224, pp.1212-122.
    52. Jin S., Morris Jr. J.W., Chen Y.L., Thomas G. and Jaffee R.I.. An investigation oftransformation strengthening in precipitation-hardened Fe-Ni austenite [J]. Metall.Mater.Trans. A,1978; Vol.9, pp.1625-1633.
    53. Kimmins S.T. and Gooch D.J.. Austenite memory effect in1Cr-1Mo-0.75V(Ti,B) steel [J]. Metal Sci.,1983; Vol.17, pp.519-532.
    54. Liu L., Yang Z.G., Zhang C.and Liu W.B.. An in situ study on austenite memoryand austenitic spontaneous recrystallization of a martensitic steel [J]. Mater. Sci.Eng. A,2010;Vol.527, pp.7204-7209.
    55. WatanabeS. and Kunitake T.. On the Formation of Austenite Grains from PriorMartensitic Structure [J]. Tetsu-to-Hagané,1975;Vol.61, pp.96-106.
    56. NakadaN., SyarifJ.,TsuchiyamaT. and TakakiS.. Effect of Copper particles onSoftening Behavior During Tempering in9%Nickel Martensitic Steels [C].International Symposium on Ultrafine Grained Steels (ISUGS2003), Proc. ofISUGS (2003),CD-ROM,2003.12.
    57. NakadaN., SyarifJ., TsuchiyamaT. andTakaki S.. Effect of Cu Addition onFormation of Reversed Austenite and Hardness in9%Ni Steels[J].Tetsu-to-Hagané,2003; Vol.89, pp.1050-1056.
    58. NakadaN., SyarifJ., TsuchiyamaT. and TakakiS.. Effect of Cu addition onmicrostructure and mechanical properties in9%Ni steels[C]. Solid-Solid PhaseTransformations in Inorganic Materials.2005; Vol.2, pp.449-460.
    59. NakadaN., SyarifJ., TsuchiyamaT. and TakakiS.. Improvement ofstrengthductility balance by copper addition in9%Ni steels [J]. Mat. Sci.Eng. A,2004; Vol.374, pp.137-144.
    60. Blavette D., Deconihout B., Bostel A., Sarrau J.M., Bouet M. and Menand A..The tomographic atom probe: A quantitative three-dimensional nanoanalyticalinstrument on an atomic scale [J]. Rev. Sci. Instrum.1993; Vol.64, pp.2911-2919.
    61. Deconihout B., Bostel A., Bas P., Chambrel S., Letellier L., Danoix F. andBlavette D.. Investigation of some selected metallurgical problems with thetomographic atom probe[J]. Appl. Surf. Sci.,1994; Vol.76/77, pp.145-154.
    62. Blavette D., Deconihout B., Chambrel S. and Bostel A..Three-dimensionalimaging of chemical order with the tomographic atom-probe[J]. Ultramicroscopy.1998; Vol.70, pp.115-124.
    63. Müller E.W., Panitz J.A. and McLane S.B.. The Atom-Probe Field IonMicroscope[J]. Rev. Sci. Instrum.,1968; Vol.39, pp.83-86.
    64. Panitz J.A.. Imaging atom-probe mass spectroscopy [J]. Prog. Surf. Sci.,1978;Vol.8, pp.219-262.
    65. Cerezo A., Godfrey T.J. and Smith G.D.W.. Application of a Position-sensitiveDetector to Atom Probe Microanalysis [J]. Rev. Sci. Instrum.,1988; Vol.59, pp.862-866.
    66. Cerezo A. and Smith G.D.W.. The Position-sensitive Atom Probe: Reconstructionof the Atomic Chemistry of Solids in3-Dimensions[J]. Microchim. Acta,1991;Vol.104, pp.401-404.
    67. Cerezo A., GodfreyT. J., SijbrandijS.J., SmithG.D.W. and WarrenP.J..Performance of an energy-compensated three-dimensional atom probe [J]. Rev.Sci. Instrum.,1998; Vol.69, pp.49-58.
    68. Sateesh S.B., Thomas F.K. and Patrick P.C.. Electrostatic analysis of LocalElectrode Atom Probe[J]. Appl. Surf. Sci.,1996; Vol.94/95, pp.464-471.
    69. KellyT.F., GribbT.T., OlsonJ.D., MartensR.L.,ShepardJ.D., WienerS.A.,KunickiT.C., UlfigR.M., LenzD.R., StrennenE.M., OltmanE., BuntonJ.H.,andStraitD.R.. First Data from a Commercial Local Electrode Atom Probe (LEAP)[J].Micros. Microanal.,2004; Vol.10, pp.373-383.
    70. Vella A., VurpillotF., GaultB., Menand A.and DeconihoutB.. Evidence of fieldevaporation assisted by nonlinear optical rectification induced by ultrafast laser[J]. Phys. Rev. B,2006; Vol.73, p.165416.
    71. Cerezo A., SmithG.D.W. and CliftonP.H.. Measurement of temperature rises inthe femtosecond laser pulsed three-dimensional atom probe [J]. Appl. Phys. Lett.,2006; Vol.88, p.154103.
    72. CerezoA.,CliftonP.H., GombergA. and SmithG.D.W.. Aspects of the performanceof a femtosecond laser-pulsed3-dimensional atom probe [J], Ultramicroscopy,2007; Vol.107, pp.720-725.
    73. Shariq A., MutasS., WedderhoffK., KleinC., HortenbachH., TeichertS., KücherP.and GerstlS.S.A.. Investigations of field-evaporated end forms in voltage-andlaser-pulsed atom probe tomography [J]. Ultramicroscopy,2009; Vol.109, pp.472-479.
    74. BlavetteD., Al-KassabT., CadelE., MackelA., VurpillotF., CojocaruO.,DeconihoutB. and GilbertM.. Laser-assisted atom probe tomography andnanosciences [J]. Inter. J Mater. Res.,2008; Vol.99, pp.454-460.
    75. CerezoA., CliftonP.H., Lozano-Perez S., PanayiP., ShaG. andSmithG.D.W..Overview: Recent Progress in Three-Dimensional Atom ProbeInstruments and Applications [J]. Micros. Microanal.,2007; Vol.13, pp.408-417.
    76. KellyT.F.. Kinetic-Energy Discrimination for Atom Probe Tomography [J],Microsc. Microanal.,2011; Vol.17, pp.1-14.
    77. KellyT.F., ThompsonK., MarquisE.A. and LarsonD.J.. Atom Probe TomographyDefines Mainstream Microscopy at the Atomic Scale [J], Microsc. Today,2006;Vol.14, pp.34-40.
    78. MarquisE.A., MillerM.K., BlavetteD., RingerS.P., SudbrackC.K. andSmithG.D.W.. Structural Materials: Understanding Atomic-Scale Microstructures [J],MRS Bulletin,2009; Vol.34, pp.726-730.
    79. SeidmanD.N. and StillerK.. An Atom-Probe Tomography Primer [J]. MRSBulletin,2009; Vol.34, pp.717-724.
    80. MillerM.K.and ForbesR.G.. Atom probe tomography [J], Mater. Charact.,2009;Vol.60, pp.416-419.
    81. http://arc.nucapt.northwestern.edu/Seidman_Group MRS Bulletin,2009, Vol.34;Microsc. Microanal.,2007, Vol.13; Ultramicroscopy,2007, Vol.107; Mater.Charact.,2000, Vol.44; Surf. Interface Anal.,2007, Vol.39.
    82. KolliR.P., WojesR.M., ZauchaS. and SeidmanD.N.. A subnanoscale study of thenucleation, growth, and coarsening kinetics of Cu-rich precipitates in amulticomponent Fe-Cu based steel [J]. Inter. J Mater. Res.,2008; Vol.99, pp.513-527.
    83. ASTM Designation A710,1995Annual Book of ASTM Standards [M]. ASTM,Philadelphia, PA, vol.01.04,1995, pp.354-356.
    84. Shome M. and Mohanty O.N.. Continuous Cooling Transformation DiagramsApplicable to the Heat-Affected Zone of HSLA-80and HSLA-100Steels [J].Metall. Mater. Trans. A,2006; Vol.37, pp.2159-2169.
    85. Pickering F.B.. Physical Metallurgy and the Design of Steels [M]. London:Applied Science Publishers, Ltd.,1978; pp.60-100.
    86. Hanzaki A. Z., Pandi R., Hodgson P. D. and Yue S.. Continuous coolingdeformation testing of steels[J]. Metall. Trans. A,1993;Vol.24, pp.2657-2665.
    87. Zhao J.Z., Mesplont C. and Cooman B.D.. Kinetics of phase transformations insteels: A new method for analysing dilatometric results [J]. ISIJ Int.,2001;Vol.41,pp.492-497.
    88. Sangwoo C.. Model for estimation of transformation kinetics from the dilatationdata during a cooling of hypoeutectoid steels [J]. Mater. Sci. Eng. A,2003; Vol.363, pp.72-80.
    89. Lee S.J., Lusk M.T. and Lee Y.K.. Conversional model of transformation strain tophase fraction in low alloy steels [J]. Acta Mater.,2007; Vol.55, pp.875-882.
    90. Miller M. K.. Atom Probe Tomography: Analysis at the Atomic Level [M]. NewYork: Kluwer Academic/Plenum Publishers,2000.
    91. Ester M., Kriegel H., Sander J. and Xu X.. A Density-based Algorithm forDiscovering Clusters in Large Spatial Data Bases with Noise, in: Proceedings2ndInternational Conference Knowledge Discovery and Data Mining(KDD’96),1996; pp.226-231.
    92. Hellman O.C., Vandenbroucke J.A., Rusing J., Isheim D. and Seidman D.N..Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram [J].Microsc. Microanal.,2000; Vol.6, pp.437-444.
    93. Hellman O.C., Vandenbroucke J.A., BlatzduRivage J. and Seidman D.N..Application Software for Data Analysis for Three-dimensional Atom ProbeMicroscopy [J]. Mater. Sci. Eng. A,2002; Vol.327, pp.29-33.
    94. Hellman O.C., BlatzduRivage J. and Seidman D.N.. Efficient Sampling forThree-dimensional Atom Probe Microscopy Data [J]. Ultramicroscopy,2003;Vol.95, pp.199-205.
    95. Vaumousse D., Cerezo A. and Warren P.J.. A Procedure for Quantification ofPrecipitate Microstructures from Three-dimensional Atom Probe Data [J].Ultramicroscopy,2003; Vol.95, pp.215-221.
    96. Vurpillot F., DeGeuser F., DaCosta G., Blavette D. and Microsc J.. Application ofFourier Transform and Autocorrelation to Cluster Identification in theThree-dimensional Atom Probe [J]. JMicrosc.,2004; Vol.216, pp.234-240.
    97. Stephenson L.T., Moody M.P., Liddicoat P.V. and Ringer S.P.. New Techniquesfor the Analysis of Fine-scaled Clustering Phenomena with in Atom Probe Data[J]. Micros. Microanal.,2007;Vol.13, pp.448-463.
    98. Shariq A., Al-Kassab T., Kircheim R. and Schwartz R.. Exploring the NextNeighborhood Relationship in Amorphous Alloys Utilizing Atom ProbeTomography [J]. Ultramicroscopy,2007;Vol.107, pp.773-780.
    99. Cerezo A. and Davin L., Aspects of the Observation of Clusters in the3-dimensional Atom Probe [J]. Surface and Interface Analysis, Vol.39,2007,pp.184-188.
    100.Karnesky R.A., Isheim D. and Seidman D.N.. Direct Measurement ofTwo-dimensional and Three-dimensional Interprecipitate Distance Distributionsfrom Atom-probe Tomographic Reconstructions [J]. App. Phys. Let.,2007;Vol.91, p.013111.
    101.Prakash K.R. and Seidman D.N.. Comparison of Compositional andMorphological Atom-probe Tomography Analyses for a Multicomponent Fe-CuSteel [J]. Micros. Microanal.,2007;Vol.13, pp.272-284.
    102.Philippe T., De Geuser F., Duguay S., Lefebvre W., Cojocaru-Mirédin O., DaCosta G. and Blavette D.. Clustering and Nearest Neighbor Distances inAtom-probe Tomography [J]. Ultramicroscopy,2009; Vol.109, pp.1304-1309.
    103.Philippe T., Cojocaru-Miré din O., Duguay S. and Blavette D.. Clustering andNearest Neighbour Distances in Atom Probe Tomography: the Influence of theInterfaces [J]. J Micros.,2010; Vol.239, pp.72-77.
    104.Stephenson L.T.. Cluster Analysis Under the Microscope: QuantitativeTechniques for Atom Probe Analysis of Solute Clustering in Multi-componentMaterials [D]. PhD. thesis, the University of Sydney,2010.
    105.Lefebvre W., Philippe T. and Vurpillot F.. Application of Delaunay Tessellationfor the Characterization of Solute-rich Clusters in Atom Probe Tomography [J].Ultramicroscopy,2011; Vol.111, pp.200-206.
    106.Schober M., Eidenberger E., Staron P. and Leitner H.. Critical Consideration ofPrecipitate Analysis of Fe-1at.%Cu Using Atom Probe and Small-Angle NeutronScattering [J]. Micros. Microanal.,2011; Vol.17, pp.26-33.
    107.Sebastian J.T., Hellman C.O. and Seidman D.N.. New method for the calibrationof three-dimensional atom-probe mass spectra [J]. Rev. Sci. Instrum.,2001;Vol.72, pp.2984-2988.
    108.Danoix F., Grancher G., Bostel A. and Blavette D., Standard deviations ofcomposition measurements in atom probe analyses. Part I Conventional1D atomprobe [J].Ultramicroscopy,2007; Vol.107, pp.734-738.
    109.Danoix F., Grancher G., Bostel A. and Blavette D.. Standard deviations ofcomposition measurements in atom probe analyses Part II:3D atom probe [J].Ultramicroscopy,2007; Vol.107, pp.739-743.
    110.Hyde J.M., Marquis E.A., Wilford K.B. and Williams T.J.. A sensitivity analysisof the maximum separation method for the characterisation of solute clusters[J].Ultramicroscopy,2011; Vol.111, pp.440-447.
    111.Thompson S.W., Colvin D.J. and Krauss G.. Continuous Cooling Transformationsand Microstructures in a Low-Carbon, High-Strength Low-Alloy Plate Steel [J].Metall; Mater; Trans.,1990; Vol.21A, pp.1493-1507.
    112.Thompson S.W., Colvin D.J. and Krauss G.. Austenite Decomposition DuringContinuous Cooling of an HSLA-80Plate Steel [J]. Metall; Mater; Trans.,1996;Vol.27A, pp.1557-1571.
    113.Das S., Ghosh A., Chatterjee S. and Rao P.R.. Evolution of microstructure in anultra-low carbon Cu bearing HSLA forging [J]. Scand. J Metall.,2002; Vol.31, pp.272-280.
    114.Banadkouki S.S.G. and Dunne D.P.. Formation of Ferritic Products duringContinuous Cooling of a Cu-bearing HSLA Steel [J]. ISIJ Int.,2006; Vol.46, pp.759-768.
    115.Thompson S. W. and Krauss G.. Copper Precipitation During Continuous Coolingand Isothermal Aging of A710-Type Steels [J]. Metall. Mater. Trans.,1996; Vol.27A, pp.1573-1588.
    116.Speich G.R. and Scoonover T.M.. in Processing, Microstructure and Properties ofHSLA Steels [M]. A.J. DeArdo, ed., TMS, Warrendale, PA,1988; pp.263-286.
    117.Wilson A.D., Hamburg E.G., Colvin D.J., Thompson S.W. and Krauss G.. inMicroalloyed HSLA Steels [M]. ASM International, Metals Park, OH,1988; pp.259-275.
    118.ZhangZ.W.,LiuC.T., WenY.R., HirataA., GuoS., ChenG., ChenM.W. andChinB.A.. Influence of Aging and Thermomechanical Treatments on theMechanical Properties of a Nanocluster-Strengthened Ferritic Steel [J]. Metall.Mater. Trans. A,2012; Vol.43, pp.351-359.
    119.Aaronson H.I. and Domian H.A.. Partition of alloying elements between austeniteand proeutectoid ferrite or bainite [J]. Trans. AIME,1966; Vol.236, pp.781-795.
    120.Krauss G. and Thompson S.W.. Ferritic microstructures in continuously cooledlow-and ultralow-carbon steels [J]. ISIJ Int.,1995; Vol.35, pp.937-945.
    121.Howell P.R., Ricks R.A. and Honeycombe R.W.K.. The observation of interphaseprecipitation in association with the lateral growth of Widmanst tten ferrite [J]. JMater. Sci,1980, Vol.15, pp.376-380.
    122.Ricks R.A.. A comparative study of precipitation at interphase boundaries inFe-Cu-Ni and Fe-Au-Ni alloys [J]. J Mater. Sci.,1981; Vol.16, pp.3006-3012.
    123.Hornbogen E. and Glenn R.C.. A metallographic study of precipitation of copperfrom alpha iron [J]. Trans. AIME,1960; Vol.218, pp.1064-1070.
    124.Speich G.R. and Oriani R.A.. The Rate of Coarsening of Copper Precipitate in anAlpha-Iron Matrix [J]. Trans. AIME,1965; Vol.233, pp.623-631.
    125.Howell P.R. and Honeycombe R.W.K.. in: Aaronson H I, Laughlin D.E., SekerkaR.F. and Wayman C.M.. eds., Solid-Solid Phase Transformations [M]. Warrendale,PA: TMS-AIME,1982; p.399.
    126.Balliger N.K. and Honeycombe R.W.K. The effect of nitrogen on precipitationand transformation kinetics in vanadium steels [J]. Metall. Trans. A,1980; Vol.11A, pp.421-429.
    127.Porter D.A. and Easterling K.E.. Phase Transformations in Metals and Alloys [M],New York, NY: Van Nostrand Reinhold,1981; p.265.
    128.Lee Y.K.. Empirical formula of isothermal bainite start temperature of steels [J]. JMater. Sci. Lett.,2002; Vol.21, pp.1253-1255.
    129.Capdevila C., Caballero F.G. and García de Andrés C.. Determination ofMsTemperature in Steels: A Bayesian Neural Network Model [J]. ISIJ Int.,2002;Vol.42,pp.894-902.
    130.Kolli R.P., Mao Z., Seidman D.N. and Keane D.T.. Identification of aNi0.5(Al0.5-xMnx) B2phase at the heterophase interfaces of Cu-rich precipitates inan α-Fe matrix [J]. Appl. Phys. Lett.,2007;Vol.91, pp.241903.
    131.Kolli R.P.. Kinetics of nanoscale Cu-rich precipitates in a multicomponentconcentrated steel [D]. Ph.D dissertation, Northwestern University,2007.
    132.Kolli R.P. and Seidman D.N.. The temporal evolution of the decomposition of aconcentrated multicomponent Fe-Cu-based steel [J]. Acta Mater.,2008; Vol.56, pp.2073-2088.
    133.Ande C.K. and Sluiter M.H.F.. First-principles prediction of partitioning ofalloying elements between cementite and ferrite [J]. Acta Mater.,2010; Vol.58, pp.6276-6281.
    134.Miller M.K.. Atom probe tomography characterization of solute segregation todislocations and interfaces [J]. J Mater. Sci.2006; Vol.41, pp.7808-7813.
    135.Schober M., Eidenberger E., Leitner H., Staron P., Reith D. and Podloucky R.. Acritical consideration of magnetism and composition of (bcc) Cu precipitates in(bcc) Fe [J]. Appl. Phys. A,2010; Vol.99, pp.697-704.
    136.Schober M., Eidenberger E., Staron P. and Leitner H.. Critical consideration ofprecipitate analysis of Fe-1at.%Cu using atom probe and small-angle neutronscattering [J]. Microsc. Microanal.2011; Vol.17, pp.26-33.
    137.LeMay I. and Krishnadev M.R.. Copper in Iron and Steel[M]. New York: JohnWiley&Sons,1982; pp.5-10.
    138.Lai G.Y., Wood W.E., Clark R.A., Zackay V.F. and Parjer E.R.. The effect ofaustenitizing temperature on the microstructure and mechanical properties ofas-quenched4340steel [J]. Metall. Trans,1974; Vol.5B, pp.1663-1670.
    139.Honeycombe R.W.K.. Steels: Microstructure and Properties[M].. AmericanSociety for Metals,1982; pp.76-79.
    140.Chen P.C. and Winchell P.G.. Martensite lattice changes during tempering [J].Metall. Trans. A,1980; Vol.11, pp.1333-1339.
    141.Cheng L., Brakman C.M., Korevaar B.M. and Mittemeijer E.J.. The tempering ofiron-carbon martensite; dilatometric and calorimetric analysis [J]. Metall. Trans.A,1988; Vol.19A, pp.2415-2426.
    142.Morra P.V., B ttger A.J. and Mittemeijer E.J.. Decomposition of Iron-basedMartensite. A kinetic analysis by means of differential scanning calorimetry anddilatometry [J]. J Therm. Analysis Calorimetry,2001; Vol.64, pp.905-914.
    143.刘庆冬,刘文庆,王泽民,周邦新. Nb-V微合金钢中碳化物析出的三维原子探针表征[J].金属学报,2008, Vol.44, pp.786-790.
    144.刘庆冬,褚于良,王泽民,刘文庆,周邦新.铌钒微合金钢中渗碳体周围元素分布的三维原子探针表征[J].金属学报,2008; Vol.44, pp.1281-1285.
    145.Kubaschewski O.. Iron Binary Phase Diagrams [M]. Springer-Verlag/Heidelbergand Verlag Stahleisen mbH, Dusseldorf,1982.
    146.Hardouin H.A., Doole R.C., Jenkins M.L. and Barbu A.. A High-resolutionelectron microscopy study of copper precipitation in Fe-1.5wt%Cu underelectron irradiation [J]. Philos. Mag. Lett.,1995; Vol.71, pp.325-333.
    147.Le Bouar Y.. Atomistic Study of the Coherency Loss During the B.C.C.-9RTransformation of Small Copper Precipitates in Ferritic Steels [J]. Acta mater.2001; Vol.49, pp.2661-2669.
    148.Lee T.H., Kim Y.O. and Kim S.J.. Crystallographic model for bcc-to-9Rmartensitic transformation of Cu precipitates in ferritic steel [J]. Philos. Mag.,2007; Vol.87, pp.209-224.
    149.Othen P.J., Jenkins M.L. and Smith G.D.W.. High-resolution electron microscopystudies of the structure of Cu precipitates in α-Fe [J]. Philos. Mag.,1994; Vol.70A, pp.1-24.
    150.Othen P.J., Jenkins M.L., Smith G.D.W. and Phythian W.J.. Transmission electronmicroscope investigations of the structure of copper precipitates inthermally-aged Fe-Cu and Fe-Cu-Ni [J]. Philos. Mag. Lett.,1991; Vol.64, pp.383-391.
    151.Monzen R., Iguchi M. and Jenkins M. L.. Structural changes of9R copperprecipitates in an aged Fe-Cu alloy [J]. Philos. Mag. Lett.,2000; Vol.80, pp.137-148.
    152.Monzen R., Jenkins M. L., Sutton A. P.. The bcc-to-9R martensitic transformationof Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy[J]. Philos. Mag.,2000; Vol.80, pp.711-723.
    153.Liu, Q.D., Liu, W.Q.&Zhao, S.J.. Solute Behavior in the Initial Nucleation of V-and Nb-containing Carbide[J]. Metall. Mater. Trans. A,2011; Vol.42A, pp.3952-3960.
    154.Vurpillot F., Bostel A., and Blavette D.. Trajectory overlaps and localmagnification in three-dimensional atom probe[J]. Appl. Phys. Lett.,2000;76:
    3127.
    155.De Geuser F., Lefebvre W., Danoix F., Vurpillot F., Forbord B. and BlavetteD..An improved reconstruction procedure for the correction of local magnificationeffects in three-dimensional atom-probe [J]. Surf. Interface Anal.2007;Vol.39, pp.268-272.
    156.Hornbogen E. and Glenn R.C.. A Metallographic Study of Precipitation of Copperfrom Alpha Iron [J]. Trans. TMS-AIME,1960; vol.218, pp.1064-1070.
    157.Mulholland M.D. and Seidman D.N.. Multiple dispersed phases in a high-strengthlow-carbon steel: An atom-probe tomographic and synchrotron X-ray diffractionstudy [J]. Scripta Mater.2009;Vol.60, pp.992-995.
    158.IAEA-TECDOC-1441,Effects of nickel on irradiation embrittlement on lightwater reactor pressure vessel steels[C]. International Atomic Energy Agency, June
    2005.
    159.Auger P., Pareige P., Weizel S. and Van Duysen J.C.. Synthesis of atom probeexperiments on irradiation-Induced solute segregation in french ferritic pressurevessel steels[J]. J Nucl. Mater.,2000; Vol.280, pp.331-344.
    160.Miller M.K., Wirth B.D. and Odette G.R.. Precipitation in neutron-irradiatedFe-Cu and Fe-Cu-Mn model alloys: A comparison of APT and SANS data[J].Mater. Sci. Eng.A,2003; Vol.353, pp.133-139.
    161.Miller M.K., Sokolov M.A., Nanstad R. K. and Russell K.F.. APTcharacterization of high nickel RPV steels[J]. J Nucl. Mater.,2006; Vol.351,pp.187-196.
    162.Toyama T., Nagai Y., Tang Z., Hasegawa M., Almazouzi A., Walle E.V. andGerard R..Nanostructural evolution in surveillance test specimens of acommercial nuclear reactor pressure vessel studied by three-dimensional atomprobe and positron annihilation[J]. Acta Mater.,2007; Vol.55, Vol.6852-6860.
    163.Miller M.K. and Russel K.F., Embrittlement of RPV steels: An atom probetomography perspective[J]. J Nucl. Mater.,2007; Vol.371, pp.145-160.
    164.Miller M.K., Chernobaeva A.A., Shtrombakh Y.I., Russell K.F, Nanstad R.K.,Erak D.Y. and Zabusov O.O.. Evolution of the nanostructure of VVER-1000PRVmaterials under neutron irradiation and post irradiation annealing[J]. J Nucl.Mater.2009; Vol.385, pp.615-622.
    165.Cerezo A., Hirisawa S., Rozdilsky I. and Smith G.D.W.. Combined atomic-scalemodeling and experimental studies of nucleation in the solid state[J]. Phil. Trans.R. Soc. Lond.2003; Vol.361A, pp.463-476.
    166.Erlach S., Danoix F., Leitner H., Auger P., Siller I. and Clemens H.. Precipitationreactions during the early stages of aging in a Ni and Al alloyed martensiticmedium carbon steel [J]. Surf. Interface Anal.,2007; Vol.39, pp.213-220.
    167.Schober M., Lerchbacher Ch., Eidenberger E., Staron P., Clemens H. and LeitnerH.. Precipitation behavior of intermetallic NiAl particles in Fe-6at.%Al-4at.%Nianalyzed by SANS and3DAP [J]. Intermetallics,2010; Vol.18, pp.1553-1559.
    168.Kozo O., Hiroshi O., Shojiro O., Minoru T., Kazuo A., Michihiro F., Koji K. andFumio K.. Precipitation hardening in Fe-Cu binary and quaternary alloys [J]. ISIJInt.,1994; Vol.34, pp.359-365.
    169.Deschamps A., Militzer M. and Poole W. J.. Precipitation kinetics andstrengthening of a Fe-0.8wt%Cu alloy [J]. ISIJ Int.,2001; Vol.41, pp.196-205.
    170.Rao B.V.N. and Thomas G.. Structure-property relations and the design ofFe-4Cr-C base structural steels for high strength and toughness [J]. Metall. Trans.,1980; Vol.11A, pp.441-457.
    171.Koo J.Y., Luton M.J., Bangaru N.V., Petkovic R.A., Fairchild D.P., Petersen C.W.,Asahi H., Hara T., Terada Y., Sugiyama M., Tamehiro H., Komizo Y., OkaguchiS., Hamada M., Yamamoto A. and Takeuchi I.. Metallurgical design of ultrahigh-strength steel for gas pipelines [J]. Int. J. Offshore Polar Eng.,2004; Vol.14,pp.2-10.
    172.Brown L.M. and Ham R.K.. Dislocation-particle interactions, in: Kelly A.,Nicholson R.B.(Eds.), Strengthening Methods in Crystals, Applied SciencePublishers, London,1965; pp.9-135.
    173.Ivan Holzera and Ernst Kozeschnik.Computer simulation of the yield strengthevolution in Cu-precipitation strengthened ferritic steel [J]. Mater. Sci. Eng. A,2010; Vol.527, pp.3546-3551.
    174.Russell K.C. and Brown L.M.. A dispersion strengthening model based ondiffering elastic moduli applied to the iron-copper system [J]. Acta Metall. Mater.1972; Vol.20, pp.969-974.
    175.Hutchinson C.R., Gouné M. and Redjaimia A.. Selecting non-isothermal heattreatment schedules for precipitation hardening systems: An example of coupledprocess-property optimization [J]. Acta Mater.,2007; Vol.55, pp.213-223.
    176.Fine M.E. and Isheim D.. Origin of copper precipitation strengthening in steelrevisited [J]. Scripta Mater.,2005; Vol.53, pp.115-118.
    177.RussellK.C. and BrownL.M..A dispersion strengthening model based on differingelastic moduli applied to the iron-copper system.Acta Metall.,1972; Vol.20, pp.969-974.
    178.Ashby M.. The theory of the critical shear stress and work hardening ofdispersion-hardened crystals [C]. in: Ansell G.S., Cooper T.D., Lenel F.V.(Eds.),Metallurgical Society Conference, Gordon and Breach, New York,1968;Vol.47,pp.143-205.
    179.Kim J.I, Kim H.J and Morris J.W.. The role of the constituent phases indetermining the low temperature toughness of5.5Ni cryogenic steel [J]. Metall.Trans.,1984; Vol.15A, pp.2213-2219.
    180.任勇强,谢振家,尚成嘉.低碳钢中残余奥氏体的调控及对力学性能的影响[J].金属学报,2012; Vol.48, pp.1074-1080.
    181.Kim Y.H., Kim H.J. and Morris J.W.. The influence of precipitated austenite onhydrogen embrittlement in5.5Ni steel [J]. Metall. Trans.,1986; Vol.17A, pp.1157-1164.
    182.Mujahid M., Lis A.K., Garcia C.I., DeArdo A.J.. HSLA-100Steels: Mcrostructureand Properties [J]. Key Eng. Mater.,1993; Vol.84-85, pp.209-236.
    183.Fultz B., Kim J. I., Kim Y. H. and Morris J. W. Jr.. The chemical composition ofprecipitated austenite in9Ni steel [J]. Metall Trans.,1986; Vol.17A, pp.967-972.
    184.Strifie J. R. and Passoja D. E.. The effect of heat treatment on microstructure andcryogenic fracture properties in5Ni and9Ni steel [J]. Metall. Trans.,1980; Vol.11A, pp.1341-1350.
    185.Fultz B. and Morris J. W. Jr.. The mechanical stability of precipitated austenite in9Ni steel [J]. Metall. Trans.,1985; Vol.16A, pp.2251-2256.
    186.Deardo A. J.. Multi-phase microstructures and their properties in high strengthlow carbon steels [J]. ISIJ Int.,1995; Vol.35, pp.946-954.
    187.高古辉,张寒,白秉哲.回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J].金属学报,2011; Vol.47, pp.513-519.
    188.刘东升,程丙贵,陈圆圆.低C含Cu NV-F690特厚钢板的精细组织和强韧性[J].金属学报,2012; Vol.48, pp.334-342.
    189.刘东升,程丙贵,罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为.金属学报, Vol47, pp.1233-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700