剧烈塑性变形铜及铜合金的组织、力学和导电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剧烈塑性变形技术是制备块体超细晶材料、充分挖掘材料潜力的有效途径,其中等径角挤压技术(Equal channel angular pressing, ECAP)和反复镦压(Cyclic channel die compression, CCDC)技术具有工业化应用前景。本文以纯铜和CuCrZr合金为研究对象,对纯铜的反复镦压和CuCrZr合金的等径角挤压进行了数值模拟和实验研究。所开展的探索性工作及取得的成果如下:
     1)通过光学显微镜、扫描电镜观察了纯铜反复镦压后的组织变化,通过硬度实验、拉伸实验以及电导率测试研究了纯铜的性能变化。实验结果表明:反复镦压与其他剧烈塑性变形技术一样能使纯铜的晶粒明显细化,纯铜的硬度和抗拉强度明显提高,但断后伸长率和电导率下降。其断裂性质仍为韧性断裂,电导率仍较高,表明反复镦压具有制备高强度、高导电纯铜的潜力。高宽比对组织细化过程有影响,但对纯铜多道次变形后的抗拉强度影响不是很明显。B路线镦压更容易得到较为等轴的组织。剧烈塑性变形导致纯铜的热稳定性下降,在230~270℃发生再结晶。
     2)采用数值模拟方法研究了纯铜反复镦压过程,分析了试样高宽比、工艺路线以及摩擦对反复镦压变形分布及载荷的影响。模拟结果表明:由于摩擦的影响,镦压后等效应变分布不均匀,中心区域等效应变较高,摩擦系数越大,应变分布越不均匀;高宽比越大,道次镦压变形程度越大,但所需载荷也越大。工艺路线对变形载荷以及平均等效应变影响较小,但对镦压后的应变分布影响较为明显。
     3)通过数值模拟方法研究了CuCrZr合金的等径角挤压过程,分析了模具结构参数和挤压条件对变形分布和载荷的影响。模拟结果表明:通道夹角越小,平均等效应变、挤压载荷以及试样温升都明显增加。通道夹角处内外侧均采用圆角可有效降低挤压过程中的最大载荷,提高应变分布的均匀性。摩擦系数越大,最大挤压载荷明显增加,试样下表面区域的等效应变增加。Bc路线挤压4道次后等效应变分布更均匀。
     4)通过光学显微镜、扫描电镜研究了固溶态CuCrZr合金等径角挤压后的组织变化,通过硬度实验和电导率测试研究了不同处理状态合金的性能。实验结果表明:ECAP 10道次后CuCrZr合金的组织细化至亚微米级,晶粒较等轴、均匀。ECAP使合金的硬度大幅提高,合金的电导率下降。未经ECAP变形的固溶态CuCrZr合金500℃时效2h可获得较好的电导率和硬度的配合,电导率为80.2%IACS,硬度为158 HV。ECAP6道次CuCrZr合金375℃时效8h后,硬度达到了202 HV; 400℃时效1h后,硬度即达到了峰值200 HV。与固溶后直接时效相比,峰值硬度明显提高,达到硬度峰值的时间和温度都降低。ECAP 6道次CuCrZr合金在400℃时效1h可获得较好的电导率和硬度的配合,电导率为81.1% ACS,硬度为200HV。说明时效前的ECAP处理明显加速了合金的时效动力学过程,与常规冷塑性变形手段相比,能使材料获得更好的综合性能。ECAP 10道次CuCrZr合金的软化温度约为530℃,但在550℃时,合金的硬度仍高达161HV,说明ECAP后合金的抗软化能力并没有降低。因为ECAP细化了合金组织,形成了大量的畸变区,累积了更高的储存能,促进了时效时第二相的析出,使得第二相更为弥散、细小,钉扎了位错和晶界的运动,使合金在较高温度下仍保持了良好的综合性能。
     本文的研究工作表明,反复镦压和等径角挤压技术与其它剧烈塑性变形技术一样能极大地细化材料组织、提高材料的性能。将剧烈塑性变形与合金化相结合,通过后续的组织调控,为制备高强度、高导电、高耐热铜合金提供了一种新的途径。
Severe plastic deformation (SPD) is an effecitive method for fabricating bulk ultrafine-grained materials and sufficiently excavating the materials'latent capacity. Equal channel angular pressing (ECAP) and cyclic channel die compression (CCDC) have a potential for industrial application. In this paper, numerical simulations and experiments were conducted on CCDC of pure copper and ECAP of CuCrZr alloy. The developed exploratory work and achievements are listed as follows:
     1) The microstruture evolution of pure copper was examined by optical microscopy and scaning electron microscopy after CCDC. The properties change were investigated by microhardness test, tensile test and electrical conductivity measurement. The results show that grains can be obviously refined by CCDC same as other SPD technologies. The microhardness and tensile strength increase obviously, but the elongation to failure and electrical conductivity decrease. The fracture feature is still ductile and the electrical conductivity is high relatively. These illustrate that CCDC technolgy has the potential to fabricate pure copper with high strength and high electrical conductivity. The height-width ratio has effect on the grain refinement process, but has little effect on tensil strength. The equiaxed grains can be obtained easily by route B than route A. The thermal stability of pure copper decreases after subjecting to severe plastic deformation, static recrystallization occurs at the temperature range of 230 to 270℃.
     2) The cyclic channel die compression process of pure copper was investigated by numerical simulation. The effect of height-width ratio of the sample, processing routes and friction on effective strain distribution and deformation load were analysed. The simulation results show that the effective strain distribution is inhomogeneous after CCDC due to the effect of friction between tools and sample. The higher effective strain appears in the center of sample. The strain inhomogeneity increases with increasing the friction coefficient. The deformation degree of per pass increases with increasing the height-width ratio of the sample, but the deformation load is also enhaced. The effect of the processing route is samll on the deformation load and average effective strain, but its effect is obvious on the effective strain distribution.
     3) The equal channel angular pressing process of CuCrZr alloy was investigated by numerical simulation. The effect of die geometry and extrusion condition on effective strain distribution and deformation load were analysed. The simulation results show that the effective strain, deformation load and temperature rise increase obviously with the decrease of die angle. The appropriate outer and inner corner angle can effectively decrease maximum deformation load and increase the strain homogeneity. With increasing the friction coefficient, the maximum extrusion load is enhanced, while the effective strain at the bottom of the sample also is increased. The distribution of effective strain is more homogeneous after four passes ECAP by route Bc.
     4) The microstruture evolution of solid solution CuCrZr alloy was examined by optical microscopy and scaning electron microscopy after ECAP. The properties of CuCrZr alloy after different treatments were investigated by measuring the hardness and electrical conductivity. The results show that the grain size of the alloy can be refined to submicrometer level after 10 passes ECAP. The ultrafine grain is equaixed and uniform. The hardness increases drastically after ECAP, while the electrical conductivity decreases appreciably. The well combination of hardness and electrical conductivity can be obtained after aging 2 hours at 500℃for the unECAPed alloy. The electrical conductivity is 80.2%IACS and the Vickers hardness is 158 HV. The peak Vickers hardness respectively reaches 202 HV aging 8 hours at 375℃and 200 HV aging 1 hour at 400℃for the alloy after 6 passes ECAP. The ECAP treatment before aging enhances the peak hardness and reduces the time and temperature of peak hardness compared with direct aging after solid solution. The well combination of hardness and electrical conductivity can be obtained after aging 1 hour at 400℃for the 6 passes ECAPed alloy. The electrical conductivity is 81.1%IACS and the Vickers hardness is 200 HV. The results illustrate that the aging kinetics process can be accelerated after ECAP before aging, better comprehensive properties can be obtained compared with conventional cold plastic deformation technologies. The softening temperature is about 530℃, however, the Vickers hardness even remains 161HV at 550℃for the 10 passes ECAPed sample, which indicates that the softening resisitance of CuCrZr alloy do not decrease after ECAP. It can be attributed to the grain refinement and the precipitation of precipitates is accelerated due to abundant lattice distortion and high stored energy, which makes the precipitates are more dispered and fine. The precipitates pin the movement of grain boundaries and dislocation. The excellent comprehensive properties are still attained at elevated temperature.
     The investigation results show that CCDC and ECAP technology similarily can greatly refine the grain and enhance properties of materials same as other SPD technologies. Combining severe plastic deformation and alloying, a new approach is provided for fabricating high strength, high elecrical conductivity and high heat resistance copper alloy by subsequent microstructure control.
引文
[1]Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process [J]. Scripta Materialia,1999,40(7):795-800.
    [2]Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Progress in Materials Science,2006,51(7):881-981.
    [3]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science,2000,45(2):103-189.
    [4]Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science,2006,51:427-556.
    [5]Р.3.瓦利耶夫,И.В.亚力克山卓夫著,林柏年译.剧烈塑性形变纳米材料[M].北京:科学出版社,2006.
    [6]Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. CIRP Annals-Manufacturing Technology,2008,57(2):716-735.
    [7]郑志军,高岩.块体纳米晶材料的大塑性变形制备技术[J].材料导报,2008,22(1):90-94.
    [8]魏伟,陈光.大塑性变形制备块体纳米材料[J].机械工程学报,2002,38(7):1-5.
    [9]杨钢,王立民,刘正东.超大塑性变形的研究进展.块体纳米材料制备(1)[J].特钢技术,2008,14(1):1-9.
    [10]杨钢,张凌义,王立民.超大塑性变形的研究进展.纳米材料的晶粒细化机制(2)[J].特钢技术,2008,14(2):1-9.
    [11]杨钢,胡超,王昌.超大塑性变形的研究进展.块体纳米材料性能(3)[J].特钢技术,2008,14(3):1-8.
    [12]Segal V M, Rexnikov V I, Drobyshevskiy A E, et al. Plastic Metal Working by Simple Shear [J]. Russian Metallurgy,1981, (1):99-105.
    [13]Iwahashi Y, Wang J T, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials [J]. Scripta Materialia,1996,35(2):143-146.
    [14]Segal V M. Materials processing by simple shear [J]. Materials Science and Engineering A, 1995,197(2):157-164.
    [15]Bridgman P W. Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, NY, 1952.
    [16]Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing:Fundamentals and applications [J]. Progress in Materials Science,2008,53(6):893-979.
    [17]薛克敏,张君,李萍,等.高压扭转法的研究现状及展望[J].合肥工业大学学报(自然科学版),2008,31(10):1613-1621.
    [18]Zhilyaev A P, Kim B K, Nurislamova G V, et al. Orientation imaging microscopy of ultrafine-grained nickel [J]. Scripta Materialia,2002,46(8):575-580.
    [19]Dutkiewicz J, Kusnierz J, Maziarz W, et al. Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methods [J]. Physica status solidi (a),2005,202(12):2309-2320.
    [20]LIU M P, ROVEN H J, LIU X T, et al. Special nanostructures in Al-Mg alloys subjected to high pressure torsion [J]. Transactions of Nonferrous Metals Society of China,2010,20(11): 2051-2056.
    [21]谢子令,武晓雷,谢季佳,等.高压扭转Cu试样微观组织的热稳定性分析[J].金属学报,2010,46(4):458-465.
    [22]Wongsa-Ngam J, Kawasaki M, Zhao Y H, et al. Microstructural evolution and mechanical properties of a Cu-Zr alloy processed by high-pressure torsion [J]. Materials Science and Engineering A,2011,528(25-26):7715-7722.
    [23]李琦,李萍,薛克敏,等.高压扭转对20CrMnTi组织和力学性能的影响[J].合肥工业大学学报(自然科学版),2010,33(9):1304-1307,1314.
    [24]李琦,李萍,薛克敏,等.纯铝粉末烧结体锥形件高压扭转有限元模拟及实验[J].中国机械工程,2010,21(11):1370-1373,1385.
    [25]李晓,李萍,张倩倩,等.SiCp/Al基复合材料的高压扭转试验[J].精密成形工程,2010,2(6):29-38.
    [26]Edalati K, Horita Z. Continuous high-pressure torsion [J]. Journal of Materials Science,2010, (17):4578-4582.
    [27]Edalati K, Lee S, Horita Z. Continuous high-pressure torsion using wires [J]. Journal of Materials Science,2012,47(1):473-478.
    [28]Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J]. Scripta Materialia,1998,39(9):1221-1227.
    [29]Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Materialia,1999, 47(2):579-583.
    [30]詹美燕,李元元,陈维平.累积叠轧技术的研究现状与展望[J].中国有色金属学报,2007,17(6):841-851.
    [31]Xing Z P, Kang S B and Kim H W. Structure and properties of AA3003 alloy produced by accumulative roll bonding process [J]. Journal of Materials Science,2002,37(4):717-722.
    [32]王耀奇,侯红亮,李志强.纯铝累积叠轧焊高温力学性能与显微组织研究[J].塑性工程学报,2006,13(5):45.-48.
    [33]Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process [J]. Scripta Materialia,2002,47(2):69-76.
    [34]许荣昌,唐获,任学平,等.累积叠轧焊工艺改善普碳钢材料性能特征[J].北京科技大学学报,2005,27(4):448-452.
    [35]ZHAN M Y, LI Y Y, CHEN W P. Improving mechanical properties of Mg-Al-Zn alloy sheets through accumulative roll-bonding [J]. Transactions of Nonferrous Metals Society of China,2008,18(2):309-314.
    [36]Jang Y H, Kim S S, Han S Z, et al. Effect of trace phosphorous on tensile behavior of accumulative roll bonded oxygen-free copper [J]. Scripta Materialia,2005,52(1):21-24.
    [37]Takata N, Ohtake Y, Kita K, et al. Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates [J]. Scripta Materialia,2009,60(7):590-593.
    [38]Zhang R G, Acoff V L. Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils [J]. Materials Science and Engineering A,2007, 463(1-2):67-73.
    [39]Min G H, Lee J M, Kang S B, et al. Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process [J]. Materials Letters,2006,60(27): 3255-3259.
    [40]王军丽.超细晶铜材的大变形异步叠轧制备技术、组织演变过程与性能研究.昆明理工大学博十学位论文.2007.
    [41]王军丽,史庆南,钱天才,等.大变形异步叠轧技术制备高强高导超细晶铜材研究[J].航空材料学报,2010,30(3):14-18.
    [42]SlamovaM, Homola P, Karlik M. Thermal stability of twin-roll cast Al-Fe-Mn-Si sheets accumulative roll bonded at different temperatures [J]. Materials Science and Engineering A, 2007,462(1-2):106-110.
    [43]郭强,严红革,陈振华,等.多向锻造技术研究进展[J].材料导报,2007,21(2):106-108.
    [44]石凤健,王雷刚,芦笙.多轴压缩工艺制备超细晶铜的研究[J].中国机械工程,2009,20(24):2998-3001.
    [45]Salishchev G A, Valiakhmetov O R, Galeyev R M. Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties [J]. Journal of Materials Science,1993,28 (11):2898-2902.
    [46]Salishchev G A, Mironov S Yu. Effect of Grain Size on Mechanical Properties of Commercially Pure Titanium [J]. Russian Physics Journal,2001,44 (6):596-601.
    [47]Nakao Y, Miura H. Nano-grain evolution in austenitic stainless steel during multi-directional forging [J]. Materials Science and Engineering A,2011,528(3):1310-1317.
    [48]Sakai T, Miura H, Yang X. Ultrafine grain formation in face centered cubic metals during severe plastic deformation [J]. Materials Science and Engineering A,2009,499(1-2):2-6.
    [49]Nakao Y, Miura H, Sakai T. Recrystallization Behavior of Nano Grained Cu-Zn Alloy Produced by Multi-Directional Forging [J]. Materials Science Forum,2007,558-559: 1329-1334.
    [50]Miura H, Nakao Y, Sakai T. Enhanced Grain Refinement by Mechanical Twinning in a Bulk Cu-30mass%Zn during Multi-Directional Forging [J]. Materials Transactions,2007,48(9): 2539-2541.
    [51]张廷杰,张小明,田锋,等.7075铝合金在多向大变形锻造和退火中细晶粒结构的演变[J].稀有金属材料与[程,2001,30(5):335-338.
    [52]郭强,严红革,陈振华,等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744.
    [53]吴永泉,杨开怀,彭开萍,等.模压变形法的研究现状[J].热加工工艺,2010,39(1):13-16.
    [54]张萤,彭开萍,林雪慧.形变方式对模压形变H62黄铜组织的影响[J].材料热处理学报,2009,30(4):114-119.
    [55]张萤,彭开萍.模齿宽度对模压变形纯铜晶粒尺寸与力学性能的影响[J].机械[程材料,2009,33(10):13-16.
    [56]Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening [J]. Acta Materialia, 2001,49(9):1497-1505.
    [57]Huang J Y, Zhu Y T, Alexander D J, et al. Development of repetitive corrugation and straightening [J]. Materials Science and Engineering A,2004,371 (1-2):35-39.
    [58]Shin D H, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum [J]. Materials Science and Engineering A,2002,328 (1-2):98-103.
    [59]Peng K P, Su L F, Shaw L L, et al. Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys [J]. Scripta materialia,2007,56(11):987-990.
    [60]陈勇军,王渠东,李德江,等.往复挤压工:艺制备超细晶材料的研究与发展[J].材料科学与工程学报,2006,24(1):152-155.
    [61]郭学锋.细晶镁合金制备方法及组织与性能[M].北京:冶金工业出版社,2010.
    [62]徐春杰,郭学锋,张忠明,等.往复挤压及正挤压AZ91D镁合金丝材的组织及性能[J].稀有金属材料与工程,2007,36(3):500-504.
    [63]刘礼,徐春杰,张忠明,等.往复挤压L2纯铝的组织与性能[J].材料热处理学报,2006,27(3):50-53.
    [64]Wang Q D, Chen Y J, Lin J B, et al. Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method [J]. Materials Letters,2007,61: 4599-4602.
    [65]Chen Y J, Wang Q D, Roven H J, et al. Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression [J]. Scripta materialia,2008,58(4):311-314.
    [66]孙蓟泉,戴辉,唐荻.异步轧制技术发展概况及其应用前景[J].鞍钢技术,2009,(5):1-6.
    [67]Ji Y H, Park J J. Development of severe plastic deformation by various asymmetric rolling processes [J]. Materials Science and Engineering A,2009,499(1-2):14-17.
    [68]Cheon B H, Kim H W, Lee J C. Asymmetric rolling of strip-cast Al-5.5Mg-0.3Cu alloy sheet:Effects on the formability and mechanical properties [J]. Materials Science and Engineering A,2011,528(15):5223-5227.
    [69]Jiang J H, Ding Y, Zuo F Q, et al. Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling [J]. Scripta Materialia,2009,60(10): 905-908.
    [70]王丽娜,杨平,夏伟军,等.特殊成形工艺下AZ31镁合金的织构及变形机制[J].金属学报,2009,45(1):58-62.
    [71]夏伟军,蔡建国,陈振华,等.异步轧制AZ31镁合金的微观组织与室温成形性能[J].中国有色金属学报,2010,20(7):1247-1253.
    [72]张贵杰,李海英,宋卓霞,等.异步轧制条件下高锰钢的显微组织与加工硬化机制[J].材料热处理学报,2009,30(5):115-118.
    [73]Lee K M, Lee H C. Grain refinement and mechanical properties of asymmetrically rolled low carbon steel [J]. Journal of Materials Processing Technology,2010,210(12):1574-1579.
    [74]Ding Y, Jiang J H, Shan A D. Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling [J]. Materials Science and Engineering A,2009, 509(1-2):76-80.
    [75]Huang X S, Suzuki K, Chino Y. Improvement of stretch formability of pure titanium sheet by differential speed rolling [J]. Scripta Materialia,2010,63(5):473-476.
    [76]陈杰,张海伟,刘德佳,等.我国搅拌摩擦焊技术的研究现状与热点分析[J].电焊机,2011,41(10):92-97.
    [77]马宗义.搅拌摩擦焊接与加工技术研究进展[J].科学观察,2009,4(5):53-54.
    [78]Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Materials Science and Engineering R,2005,50(1-2):1-78.
    [79]Ma Z Y. Friction stir processing technology:a review [J]. Metallurgical and Materials Transactions A,2008,39(3):642-658.
    [80]武佳蕾,王快社,周龙海,等.搅拌摩擦加工技术研究进展[J].热加工工艺,2010,39(9):150-153.
    [81]杜随更,简波,傅莉.用强冷摩擦搅拌工艺制备超细晶紫铜板材[J].材料研究学报,2006,20(3):295-299.
    [82]孙鹏,王快社,王文,等.工艺参数对AZ31镁合金搅拌摩擦加工微观组织的影响[J].热加工工艺,2008,37(5):99-101.
    [83]Ghosh A K, Calif T O. Method of producing a fine grain aluminum alloy using three axes deformation, United Stated Patent,4721537,1988.
    [84]Vorhauer A, Pippan R. The Influence of Type and Path of Deformation on the Microstructural Evolution During Severe Plastic Deformation. M. Zehetbauer and R.Z. Valiev:Nanomaterials by Severe Plastic Deformation, Vienna, Austria, Wiley-VCH Publishers,2002:684-690.
    [85]Wadsack R, Pippan R, Schedler B. Development of Microstructure and Thermal Stability of Nano-Structured Chromium Processed by Severe Plastic Deformation. M. Zehetbauer and R.Z. Valiev:Nanomaterials by Severe Plastic Deformation, Vienna, Austria, Wiley-VCH Publishers,2002:654-659.
    [86]Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Annals-Manufacturing Technology,2008,57(2):716-735.
    [87]郭廷彪,丁雨田,胡勇,等.等通道转角挤压(ECAP)工艺的研究进展[J].兰州理工大学学报,2008,34(6):19-24.
    [88]Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing [J]. Acta Materialia,1998,46(5): 1589-1599.
    [89]Furukawa M, Horita Z, Langdon T G. Factors influencing the shearing patterns in equal-channel angular pressing [J]. Materials Science and Engineering A,2002,332(1-2): 97-109.
    [90]Huang W H, Chang L, Kao P W, et al. Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion [J]. Materials Science and Engineering A,2001,307(1-2):113-118.
    [91]Xu C, Langdon T G. Influence of a round corner die on flow homogeneity in ECA pressing [J]. Scripta Materialia,2003,48(1):1-4.
    [92]Hoseini M, Meratian M, Toroghinejad M R, et al. Texture contribution in grain refinement effectiveness of different routes during ECAP [J]. Materials Science and Engineering A, 2008,497(1-2):87-92.
    [93]Furuno K, Akamatsu H, Oh-ishi K, et al. Microstructural development in equal-channel angular pressing using a 60°die [J]. Acta Materialia,2004,52(9):2497-2507.
    [94]Toth L S, Lapovok R, Hasani A, et al. Non-equal channel angular pressing of aluminum alloy [J]. Scripta Materialia,2009,61(12):1121-1124.
    [95]Malek P, Cieslar M. The influence of processing route on the plastic deformation of Al-Zn-Mg-Cu alloys [J]. Materials Science and Engineering A,2002,324(1-2):90-95.
    [96]Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Influence of ECAP routes on the microstructure and properties of pure Ti [J]. Materials Science and Engineering A,2001, 299(1-2):59-67.
    [97]Garcfa-Infanta J M, Zhilyaev A P, Cepeda-Jimenez C M, et al. Effect of the deformation path on the ductility of a hypoeutectic Al-Si casting alloy subjected to equal-channel angular pressing by routes A, BA, BB and C [J]. Scripta Materialia,2008,58(2):138-141.
    [98]Yamashita A, Yamaguchi D, Horita Z, et al. Influence of pressing temperature on microstructural development in equal-channel angular pressing [J]. Materials Science and Engineering A,2000,287(1):100-106.
    [99]Chen Y B, Li Y L, He L Z, et al. The influence of cryoECAP on microstructure and property of commercial pure aluminum [J]. Materials Letters,2008,62(17-18):2821-2824.
    [100]Kim I, Kim J, Shin D H, et al. Effects of equal channel angular pressing temperature on deformation structures of pure Ti [J]. Materials Science and Engineering A,2003,342(1-2): 302-310.
    [101]Stolyarov V V, Lapovok R, Brodova I G, et al. Ultrafine-grained Al-5 wt.% Fe alloy processed by ECAP with backpressure [J]. Materials Science and Engineering A,2003, 357(1-2):159-167.
    [102]Xu C, Xia K N, Langdon T G. The role of back pressure in the processing of pure aluminum by equal-channel angular pressing [J]. Acta Materialia,2007,55(7):2351-2360.
    [103]Kang F, Liu J Q, Wang J T, et al. The effect of hydrostatic pressure on the activation of non-basal slip in a magnesium alloy [J].Scripta Materialia,2009,61(8):844-847.
    [104]An X H, Lin Q Y, Wu S D, et al. Microstructural evolution and shear fracture of Cu-16 at.% Al alloy induced by equal channel angular pressing [J]. Materials Science and Engineering A, 2010,527(16-17):4510-4514.
    [105]Xu C, Horita Z, Langdon T G. Microstructural evolution in an aluminum solid solution alloy processed by ECAP [J]. Materials Science and Engineering A,2011,528(18):6059-6065.
    [106]Iwahashi Y, Horita Z, Nemoto M, et al. An investigation of microstructural evolution during equal-channel angular pressing [J]. Acta Materialia,1997,45(11):4733-4741.
    [107]Iwahashi Y, Horita Z, Nemoto M, et al. The process of grain refinement in equal-channel angular pressing [J]. Acta Materialia,1998,46(9):3317-3331.
    [108]Kawasaki M, Horita Z, Langdon T G. Microstructural evolution in high purity aluminum processed by ECAP [J]. Materials Science and Engineering A,2009,524(1-2):143-150.
    [109]彭渝丽,郭永春.等通道挤压后镁合金的微观结构研究[J].热加工工艺,2007,36(17):46-48.
    [110]Qu S, An X H, Yang H J, et al. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing [J]. Acta Materialia,2009,57(5): 1586-1601.
    [111]Sun P L, Kao P W, Chang C P. Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion [J]. Materials Science and Engineering A, 2000,283(1-2):82-85.
    [112]Chang C P, Sun P L, Kao P W. Deformation induced grain boundaries in commercially pure aluminium [J]. Acta Materialia,2000,48(13):3377-3385.
    [113]Murayama M, Horita Z, Hono K. Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equal-channel angular pressing [J]. Acta Materialia,2001,49(1):21-29.
    [114]Shin D H, Kim I, Kim J, et al. Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel [J]. Acta Materialia,2001,49(7):1285-1292.
    [115]Xue Q, Beyerlein I J, Alexander D J, et al. Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing [J]. Acta Materialia,2007,55(2):655-668.
    [116]Flinn J E, Field D P, Korth G E, et al. The flow stress behavior of OFHC polycrystalline copper [J]. Acta Materialia,2001,49(11):2065-2074.
    [117]张忠明,徐春杰,田景来,等.ECAP挤压L2纯铝的微观组织演化规律[J].西安理工大学学报,2005,21(3):227-231.
    [118]Zhu Y T, Lowe T C. Observations and issues on mechanisms of grain refinement during ECAP process [J]. Materials Science and Engineering A,2000,291(1-2):46-53.
    [119]Zhao G Q, Xu S B, Luan Y G, et al. Grain refinement mechanism analysis and experimental investigation of equal channel angular pressing for producing pure aluminum ultra-fine grained materials [J]. Materials Science and Engineering A,2006,437(2):281-292.
    [120]Su C W, Lu L, Lai M O. A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies [J]. Materials Science and Engineering A,2006,434(1-2):227-236.
    [121]Dobatkin S V, Szpunar J A, Zhilyaev A P, et al. Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper [J]. Materials Science and Engineering A,2007,462(1-2):132-138.
    [122]Lugo N, Llorca N, Cabrera J M, et al. Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion [J]. Materials Science and Engineering A,2008,477(1-2):366-371.
    [123]Shin D H, Kim W J, Choo W Y. Grain refinement of a commercial 0.15%C steel by equal-channel angular pressing [J]. Scripta Materialia,1999,41(3):259-262.
    [124]Xu C, Furukawa M, Horita Z, et al. Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy [J]. Acta Materialia,2003,51(20):6139-6149.
    [125]Zheng M Y, Xu S W, Wu K, et al. Superplasticity of Mg-Zn-Y alloy containing quasicrystal phase processed by equal channel angular pressing [J]. Materials Letters,2007,61(22): 4406-4408.
    [126]Xia S H, Wang J, Wang J T, et al. Improvement of room-temperature superplasticity in Zn-22 wt.%Al alloy [J]. Materials Science and Engineering A,2008,493(1-2):111-115.
    [127]Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scripta Materialia,2002,47(12):893-899.
    [128]Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002,419:912-916.
    [129]Horita Z, Ohashi K, Fujita T, et al. Achieving High Strength and High Ductility in Precipitation-Hardened Alloys [J]. Advanced Materials,2005,17(13):1599-1602.
    [130]Ko Y G, Namgung S, Lee B U, et al. Mechanical and electrical responses of nanostructured Cu-3 wt%Ag alloy fabricated by ECAP and cold rolling [J]. Journal of Alloys and Compounds,2010,504(S1):448-451.
    [131]Purcek G, Saray O, Kul O, et al. Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion [J]. Materials Science and Engineering A,2009,517(1-2):97-104.
    [132]Wang J T, Xu C, Du Z Z, et al. Microstructure and properties of a low-carbon steel processed by equal-channel angular pressing [J]. Materials Science and Engineering A,2005,410-411: 312-315.
    [133]Xu C Z, Wang Q J, Zheng M S, et al. Microstructure and properties of ultra-fine grain Cu-Cr alloy prepared by equal-channel angular pressing [J]. Materials Science and Engineering A, 2007,459(1-2):303-308.
    [134]Tsai T L, Sun P L, Kao P W, et al. Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion [J]. Materials Science and Engineering A,2003,342(1-2):144-151.
    [135]He Y B, Pan Q L, Qin Y J, et al. Microstructure and mechanical properties of ZK60 alloy processed by two-step equal channel angular pressing [J]. Journal of Alloys and Compounds, 2010,492(1-2):605-610.
    [136]Gubicza J, Chinh N Q, Labar J L, et al. Correlation between microstructure and mechanical properties of severely deformed metals [J]. Journal of Alloys and Compounds,2009, 483(1-2):271-274.
    [137]Molodova X, Gottstein G, Winning M, et al. Thermal stability of ECAP processed pure copper [J]. Materials Science and Engineering A,2007,460-461:204-213.
    [138]Cao W Q, Gu C F, Pereloma E V, et al. Stored energy, vacancies and thermal stability of ultra-fine grained copper [J]. Materials Science and Engineering A,2008,492(1-2):74-79.
    [139]Ning J L, Jiang D M. Influence of Zr addition on the microstructure evolution and thermal stability of Al-Mg-Mn alloy processed by ECAP at elevated temperature [J]. Materials Science and Engineering A,2007,452-453:552-557.
    [140]张郑,杜忠泽,王经涛,等.7475铝合金ECAP变形及组织热稳定性[J].有色金属,2004,56(2):31-34,121.
    [141]Srinivasan R, Cherukuri B, Chaudhury P K. Scaling up of Equal Channel Angular Pressing (ECAP) for the Production of Forging Stock [J]. Mater. Sci. Forum,2006,503-504:371-378.
    [142]Liu Z Y, Liang G X, Wang E D, et al. The effect of cumulative large plastic strain on the structure and properties of a Cu-Zn alloy [J]. Materials Science and Engineering A,1998, 242(1-2):137-140.
    [143]Nakashima K, Horita Z, Nemoto M, et al. Development of a multi-pass facility for equal-channel angular pressing to high total strains [J]. Materials Science and Engineering A, 2000,281(1-2):82-87.
    [144]Chakkingal U, Suriadi A B, Thomson P F. The development of microstructure and the influence of processing route during equal channel angular drawing of pure aluminum [J]. Materials Science and Engineering A,1999,266(1-2):241-249.
    [145]叶小青.ECAP塑性力学分析与拉拔工艺研究.硕士学位论文,西安:西安建筑科技大学:2001.
    [146]Zisman A A, Rybin V V, Boxel S V, et al. Equal channel angular drawing of aluminium sheet [J]. Materials Science and Engineering A,2006,427(1-2):123-129.
    [147]Alkorta J, Rombouts M, Messemaeker J D, et al. On the impossibility of multi-pass equal-channel angular drawing [J]. Scripta Materialia,2002,47(1):13-18.
    [148]Luis Perez C J, Berlanga C, Perez-Ilzarbe J. Processing of aluminium alloys by equal channel angular drawing at room temperature [J]. Journal of Materials Processing Technology,2003, 143-144:105-111.
    [149]Saito Y, Utsunomiya H, Suzuki H, et al. Improvement in the r-value of aluminum strip by a continuous shear deformation process [J]. Scripta Materialia,2000,42(12):1139-1144.
    [150]Utsunomiya H, Hatsuda K, Sakai T, et al. Continuous grain refinement of aluminum strip by conshearing [J]. Materials Science and Engineering A,2004,372(1-2):199-206.
    [151]何涛,杜忠泽,王庆娟,等.连续等通道转角挤压工艺的发展[J].矿冶,2007,16(2):38-42.
    [152]Lee J C, Seok H K, Han J H, et al. Controlling the textures of the metal strips via the continuous confined strip shearing(C2S2) process [J]. Materials Research Bulletin,2001, 36(5-6):997-1004.
    [153]Nam C Y, Han J H, Chung Y H, et al. Effect of precipitates on microstructural evolution of 7050 Al alloy sheet during equal channel angular rolling [J]. Materials Science and Engineering A,2003,347(1-2):253-257.
    [154]Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process [J]. Journal of Materials Processing Technology,2011,211(6):1085-1090.
    [155]Park J W, Kim J W, Chung Y H. Grain refinement of steel plate by continuous equal-channel angular process [J]. Scripta Materialia,2004,51(2):181-184.
    [156]程永奇.AZ31镁合金板材等径角轧制及冲压性能研究.湖南大学博士学位论文.2007.
    [157]钟毅.连续挤压技术及其应用.北京:冶金工业出版社,2004:14-15.
    [158]Raab G J, Valiev R Z, Lowe T C, et al. Continuous processing of ultrafine grained Al by ECAP-Conform [J]. Materials Science and Engineering A,2004,382(1-2):30-34.
    [159]Xu C, Schroeder S, Berbon P B, et al. Principles of ECAP-Conform as a continuous process for achieving grain refinement:Application to an aluminum alloy [J]. Acta Materialia,2010, 58(4):1379-1386.
    [160]Segal V M. Mechanics of continuous equal-channel angular extrusion [J]. Journal of Materials Processing Technology,2010,210(3):542-549.
    [161]郑艳霞,赵西成,杨西荣,等.等径弯曲通道变形的有限元模拟现状[J].材料导报,2007,21(3):97-100.
    [162]Prangnell P B, Harris C, Roberts S M. Finite element modelling of equal channel angular extrusion [J]. Scripta Materialia,1997,37(7):983-989.
    [163]Semiatin S L, DeLo D P, Shell E B. The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion [J]. Acta Materialia,2000, 48(8):1841-1851.
    [164]Bowen J R, Gholinia A, Roberts S M, et al. Analysis of the billet deformation behaviour in equal channel angular extrusion [J]. Materials Science and Engineering A,2000,287(1): 87-99.
    [165]Kim H S, Seo M H, Hon g S I. On the die comer gap formation in equal channel angular pressing [J]. Materials Science and Engineering A,2000,291(1-2):86-90.
    [166]Suh J Y, Kim H S, Park J W, et al. Finite element analysis of material flow in equal channel angular pressing [J]. Scripta Materialia,2001,44(4):677-681.
    [167]Kim H S. Finite element analysis of deformation behaviour of metals during equal channel multi-angular pressing [J]. Materials Science and Engineering A,2002,328(1-2):317-323.
    [168]Suo T, Li Y L, Deng Q, et al. Optimal pressing route for continued equal channel angular pressing by finite element analysis [J]. Materials Science and Engineering A,2007,466(1-2): 166-171.
    [169]Baik S C, Estrin Y, Kim H S, et al. Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing [J]. Materials Science and Engineering A,2003,351(1-2):86-97.
    [170]Pei Q X, Hu B H, Lu C, et al. A finite element study of the temperature rise during equal channel angular pressing [J]. Scripta Materialia,2003,49(4):303-308.
    [171]Jiang H, Fan Z G, Xie C Y. Finite element analysis of temperature rise in CP-Ti during equal channel angular extrusion [J]. Materials Science and Engineering A,2009,513-514:109-114.
    [172]Kim H S. Analysis of thermal behavior during equal channel multi-angular pressing by the 3-dimensional finite volume method [J]. Materials Science and Engineering A,2009, 503(1-2):130-136.
    [173]Nagasekhar A V, Hon Y T. Optimal tool angles for equal channel angular extrusion of strain hardening materials by finite element analysis [J]. Computational Materials Science,2004, 30(3-4):489-495.
    [174]W.J. Kim, J.C. Namkung. Computational analysis of effect of route on strain uniformity in equal channel angular extrusion [J]. Materials Science and Engineering A,2005,412(1-2): 287-297.
    [175]Son I H, Lee J H, Im Y T. Finite element investigation of equal channel angular extrusion with back pressure [J]. Journal of Materials Processing Technology,2006,171(3):480-487.
    [176]Xu S B, Zhao G Q, Luan Y G, et al. Numerical studies on processing routes and deformation mechanism of multi-pass equal channel angular pressing processes [J]. Journal of Materials Processing Technology,2006,176(1-3):251-259.
    [177]Xu S B, Zhao G Q, Ma X W, et al. Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials [J]. Journal of Materials Processing Technology,2007,184(1-3):209-216.
    [178]Kim H S. On the effect of acute angles on deformation homogeneity in equal channel angular pressing [J]. Materials Science and Engineering A,2006,430(1-2):346-349.
    [179]Yoon S C, Kim H S. Finite element analysis of the effect of the inner corner angle in equal channel angular pressing [J]. Materials Science and Engineering A,2008,90(1-2):438-444.
    [180]Wang S Q, Liang W, Wang Y, et al. A modified die for equal channel angular pressing [J]. Journal of Materials Processing Technology,2009,209(7):3182-3186.
    [181]Balasundar I, Raghu T. Effect of friction model in numerical analysis of equal channel angular pressing process [J]. Materials & Design,2010,31(1):449-457.
    [182]Xu S B, Zhao G Q, Ren X F, et al. Numerical investigation of aluminum deformation behavior in three-dimensional continuous confined strip shearing process [J]. Materials Science and Engineering A,2008,476(1-2):281-289.
    [183]Wei W, Zhang W, Wei K X, et al. Finite element analysis of deformation behavior in continuous ECAP process [J]. Materials Science and Engineering A,2009,516(1-2): 111-118.
    [184]Yoon S C, Seo M H, Krishnaiah A, et al. Finite element analysis of rotary-die equal channel angular pressing [J]. Materials Science and Engineering A,2008,490(1-2):289-292.
    [185]Nagasekhar A V, Kim H S. Plastic deformation characteristics of cross-equal channel angular pressing [J]. Computational Materials Science,2008,43(4):1069-1073.
    [186]Djavanroodi F, Ebrahimi M. Effect of die parameters and material properties in ECAP with parallel channels [J]. Materials Science and Engineering A,2010,527(29-30):7593-7599.
    [187]刘安强.纯铜镦挤变形晶粒细化/纳米化过程的研究.昆明理工大学硕士学位论文.2007.
    [188]Kundu A, Kapoor R, Tewari R, et al. Severe plastic deformation of copper using multiple compression in a channel die [J]. Scripta Materialia,2008,58(3):235-238.
    [189]Li Y J, Zeng X H, Blum W. On the elevated-temperature deformation behavior of polycrystalline Cu subjected to predeformation by multiple compression [J]. Materials Science and Engineering A,2008,483-484:547-550.
    [190]Li Y J, Blum W. Strain rate sensitivity of Cu after severe plastic deformation by multiple compression [J]. Physica Status Solidi,2005,202(11):119-121.
    [191]Ahn S H, Chun Y B, Yu S H, et al. Microstructural refinement and deformation mode of Ti under cryogenic channel die compression [J]. Materials Science and Engineering A,2010, 528(1) 165-171.
    [192]Liu W C, Chen M B, Yuan H. Evolution of microstructures in severely deformed AA 3104 aluminum alloy by multiple constrained compression [J]. Materials Science and Engineering A,2011,528(16-17):5405-5410.
    [193]Parimi A K, Robi P S, Dwivedy S K. Severe plastic deformation of copper and Al-Cu alloy using multiple channel-die compression [J]. Materials & Design,2011,32(4):1948-1956.
    [194]Rezaee-Bazzaz A, Ahmadian S. Modeling of mechanical behavior of ultra fine grained aluminum produced by multiple compressions in a channel die [J]. Materials & Design,2012, 34:230-234.
    [195]罗许,史庆南,刘韶华,等.6061铝合金超细晶制备及其组织性能的研究[J].材料热处理学报,2009,30(3):71-75.
    [196]杨朝聪.高强高导电铜合金的研究及进展[J].云南冶金,2000,29(6):26-29.
    [197]方善锋,汪明朴,程建奕,等.高强高导Cu-Cr-Zr系合金材料的研究进展[J].材料导报,2003,17(9):21-24.
    [198]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2005.
    [199]谢春生,翟启明,徐文清,等.高强度高导电性铜合金强化理论的研究与应用发展[J].金属热处理,2007,32(1):12-20.
    [200]袁振宇,董企铭,刘平,等.时效对Cu-Cr-Zr合金显微硬度及导电率的影响[J].洛阳工学院学报,2002,23(1):8-11.
    [201]行如意,苏娟华,康布熙,等.Cu-0.3Cr-0.15Zr合金时效时的析出相[J].河南科技大学学报(自然科学版),2004,25(2):1-4.
    [202]李伟,刘平,苏娟华,等.时效与形变对Cu-Cr-Zr合金性能的影响[J].特种铸造及有色合金,2004,(6):25-26.
    [203]高锦张.塑性成形工艺与模具设计[M].北京:机械工业出版社,2008.
    [204]Estrin Y, Toth L S, Molinari A, et al. A dislocation-based model for all hardening stages in large strain deformation [J]. Acta Materialia,1998,46(15):5509-5522.
    [205]Cherukuri B, Nedkova T S, Srinivasan R. A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding [J]. Materials Science and Engineering A,2005,410-411: 394-397.
    [206]Zhilyaev A P, Swaminathan S, Raab G I, et al. Distortion of annealing twins during the initial equal channel angular pressing pass [J]. Scripta Materialia,2006,55(10):931-933.
    [207]Gubicza J, Nam N H, Balogh L, et al. Microstructure of severely deformed metals determined by X-ray peak profile analysis [J]. Journal of Alloys and Compounds,2004, 378(1-2):248-252.
    [208]Mingler B, Karnthaler H P, Zehetbauer M, et al. TEM investigation of multidirectionally deformed copper[J]. Materials Science and Engineering A,2001,319-321:242-245.
    [209]Michaela Prell, Cheng Xu, Terence G. Langdon. The evolution of homogeneity on longitudinal sections during processing by ECAP [J]. Materials Science and Engineering A, 2008,480(1-2):449-455.
    [210]Hosseini S A, Manesh H D. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process [J]. Materials & Design,2009,30(8):2911-2918.
    [211]Ko Y G, Namgung S, Lee B U, et al. Mechanical and electrical responses of nanostructured Cu-3 wt%Ag alloy fabricated by ECAP and cold rolling [J]. Journal of Alloys and Compounds,2010,504(S1):448-451.
    [212]Takata N, Lee S H, Tsuji N. Ultrafine grained copper alloy sheets having both high strength and high electric conductivity [J]. Materials Letters,2009,63(21):1757-1760.
    [213]Shaarbaf M, Toroghinejad M R. Nano-grained copper strip produced by accumulative roll bonding process [J]. Materials Science and Engineering A,2008,473 (1-2):28-33.
    [214]Zhang Z J, Duan Q Q, An X H, et al. Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing [J]. Materials Science and Engineering A,2011,528(12):4259-4267.
    [215]Hosseini E, Kazeminezhad M, Mani A, et al. On the evolution of flow stress during constrained groove pressing of pure copper sheet [J]. Computational Materials Science,2009, 45(4):855-859.
    [216]Gubicza J, Dobatkin S V, Khosravi E, et al. Microstructural stability of Cu processed by different routes of severe plastic deformation [J]. Materials Science and Engineering A,2011, 528(3):1828-1832.
    [217]Cao W Q, Gu C F, Pereloma E V, et al. Stored energy, vacancies and thermal stability of ultra-fine grained copper [J]. Materials Science and Engineering A,2008,492(1-2):74-79.
    [218]Amouyal Y, Divinski S V, Klinger L, et al. Grain boundary diffusion and recrystallization in ultrafine grain copper produced by equal channel angular pressing [J]. Acta Materialia,2008, 56(19):5500-5513.
    [219]Molodova X, Gottstein G, Winning M, et al. Thermal stability of ECAP processed pure copper [J]. Materials Science and Engineering A,2007,460-461:204-213.
    [220]Wang G, Wu S D, Zuo L, et al. Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples [J]. Materials Science and Engineering A,2003,346(1-2): 83-90.
    [221]Haouaoui M, Hartwig K T, Payzant E A. Effect of strain path on texture and annealing microstructure development in bulk pure copper processed by simple shear [J]. Acta Materialia,2005,53(3):801-810.
    [222]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [223]Field D P, Eames R C, Lillo T M. The role of shear stress in the formation of annealing twin boundaries in copper [J]. Scripta Materialia,2006,54(6):983-986.
    [224]Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu [J]. Acta Materialia,2007,55(12):4233-4241.
    [225]FERRASSE S, SEGAL V M, HARTWIG K T, et al. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,1997,28:1047-1057.
    [226]Kim H S. Finite element analysis of equal channel angular pressing using a round corner die [J]. Materials Science and Engineering A,2001,315(1-2):122-128.
    [227]石凤健,王雷刚.锐角模具通道等径角挤压有限元分析[J].热加工工艺,2008,37(15):61-64.
    [228]石凤健,王雷刚,黄忠富.工艺路线对等径角挤压变形均匀性影响的研究[J].热加工工艺,2009,38(23):134-137.
    [229]Kim J K, Jeong H G, Hong S I, et al. Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing [J]. Scripta Materialia,2001,45(8):901-907.
    [230]Hockauf M, Meyer L W, Zillmann B, et al. Simultaneous improvement of strength and ductility of Al-Mg-Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging [J]. Materials Science and Engineering A,2009,503(1-2): 167-171.
    [231]Gubicza J, Schiller I, Chinh N Q, et al. The effect of severe plastic deformation on precipitation in supersaturated Al-Zn-Mg alloys [J]. Materials Science and Engineering A, 2007,460-461:77-85.
    [232]Wei K X, Wei W, Wang F, et al. Microstructure, mechanical properties and electrical conductivity of industrial Cu-0.5%Cr alloy processed by severe plastic deformation [J]. Materials Science and Engineering A,2011,528(3):1478-1484.
    [233]Kim W J, Wang J Y. Microstructure of the post-ECAP aging processed 6061 Al alloys [J]. Materials Science and Engineering A,2007,464(1-2):23-27.
    [234]Ohashi K, Fujita T, Kaneko K, et al. The aging characteristics of an Al-Ag alloy processed by equal-channel angular pressing [J]. Materials Science and Engineering A,2006,437(2): 240-247.
    [235]Dadbakhsh S, Taheri A K, Smith C W. Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process [J]. Materials Science and Engineering A, 2010,527(18-19):4758-4766.
    [236]Zheng L J, Li H X, Hashmi M F, et al. Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment [J]. Journal of Materials Processing Technology,2006,171(1):100-107.
    [237]李伟,刘平,刘勇,等.微量稀土元素对Cu-Cr-Zr合金接触线抗软化性能的影响[J].金属热处理,2005,30(2):38-40.
    [238]Furukawa M, Horita Z, Nemoto M, et al. Microstructural characteristics of an ultrafine grain metal processed with equal-channel angular pressing [J]. Materials Characterization,1996, 37(5):277-283.
    [239]Molodova X, Gottstein G, Winning M, et al. Thermal stability of ECAP processed pure Cu and CuZr [J]. International Journal of Materials Research,2007,98(4):269-275.
    [240]Furukawa M, Iwahashi Y, Horita Z, et al. Structural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size [J]. Acta Materialia,1997,45(11): 4751-4757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700