超宽带天线及阵列的大规模并行模拟与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带天线是超宽带无线系统中不可缺少的重要组成部分,超宽带技术能够广泛应用于雷达、定位、探测及控制等领域,天线无疑承担了很重要的的角色,也使得超宽带天线及阵列成为了近年来的研究热点以及超宽带技术中的重要研究方向之一。本文的研究围绕着超宽带天线及阵列的快速设计方法展开。
     在对电大尺寸的超宽带天线及阵列进行全波模拟时计算时间长、占用内存大,甚至一台电脑有时都无法进行仿真,为了解决这个问题,本文基于并行自适应结构网络应用支撑软件框架(JASMIN)研究了适用于大型并行平台的高效并行时域有限差分(Finite-Difference Time-Domain,FDTD)法。首先研究了均匀网格并行FDTD方法及其关键技术,对其正确性进行了验证,并采用500个处理器核对144单元TEM喇叭及加脊TEM喇叭天线阵进行了仿真计算;接着研究了渐变非均匀并行FDTD方法,可以有效解决天线及阵列结构中存在细微结构时均匀网格内存需求和计算量大的问题,采用此并行算法在200个处理器核上模拟了64单元螺旋天线阵列的辐射特性;最后,为了快速求解具有旋转对称结构的天线辐射问题,研究了并行旋转对称FDTD方法,实现了对主反射面直径为280个波长的标准卡塞格伦天线的并行计算。
     同时超宽带天线及阵列中涉及到的参数较多,且参数与设计目标之间的关系是非线性的,因此有必要引入全局优化方法对其进行辅助设计,而优化算法的性能将直接影响天线与阵列的性能以及设计所需要的时间。为了提高全局优化算法的性能,首先研究了并行微遗传算法(Micro Genetic Algorithm,MGA).并行整数编码微分进化策略(Differential Ecolution Strategy,DES),将粗粒度和细粒度并行MGA、整数编码DES应用于32元对称线阵的方向图综合问题,证明了其性能优于串行优化算法和文献中提出的DES;接着研究了基于DES和连续蚁群优化(Continuous Ant Colony Optimization,CACO)算法的混合改进算法—HDECACO,通过对两个典型数学函数的优化,证明了改进算法的高效性。
     随后论述了本文提出的并行全局优化算法和HDECACO算法对超宽带喇叭天线的优化设计。将并行全局优化算法与三维均匀网格并行FDTD结合,实现了TEM喇叭天线的自动优化,进一步证明了并行MGA更能保持种群的多样性,搜索能力更强;为了设计出高效的反射而天线的馈源,对多模圆锥喇叭天线进行了研究,提出了旋转对称FDTD算法与全局优化算法相结合的自动优化设计方案,并应用HDECACO算法对半径突变和多节变张角圆锥喇叭天线进行了优化设计,验证了方案的可行性;采用细粒度并行MGA优化设计了工作在8-13GHz的波纹多模圆锥喇叭天线,在整个工作频带内,边缘照射电平、增益和主瓣宽度等指标都具有较好的恒定值,而且电压驻波比小于1.5.
     其后对平面超宽带(Ultra-wideband, UWB)天线及功分器进行了研究。针对平面UWB天线中涉及到的热点研究方向展开了研究,首先提出了一款新颖的带宽增强型微带天线,具有双频带的工作特性,覆盖了2.1~2.6GHz和3.3~20GHz频段;而UWB频段会对其它无线通信系统产生干扰,为了解决这一问题,研究了具有陷波功能的UWB微带天线,提出了一种开路环谐振器结构和U形结构,均可以实现双频段陷波功能,与常用的多陷波天线实现方法不同;也考虑了UWB平面定向辐射天线的应用需求,采用基于指数曲线和椭圆曲线的混合渐变线方法,实现了Vivaldi天线的小型化设计,并借鉴了这种技术,采用粗粒度并行MGA与商业电磁软件结合对功分器进行了优化,获得了比文献中的结果更好的一款UWB功分器;最后,还采用HDECACO方法与传统DES、CACO算法优化了一款超宽带E形贴片天线,进一步证明了混合优化算法的优越性。
     最后将并行MGA和HDECACO算法应用于超宽带天线阵列的优化问题。首先采用主从式并行MGA优化了含有49个单元的TEM喇叭天线阵,在200处理器核上通过并行FDTD方法求解了适应度值,减少了优化所需的时间;其次将有源单元方向图技术用于天线阵列的分析,可以考虑天线单元间的互耦,得到的阵列方向图与商业软件全波模拟后的方向图吻合很好,并与提出的全局优化算法相结合,实现了超宽带天线阵列的快速设计:采用HDECACO优化设计了一个8元H面排列的直线超宽带Vivaldi天线阵,优化变量为天线单元的馈电幅度,其激励相位相同,与等幅度和-30dB切比雪夫激励阵相比,优化后的副瓣电平明显降低了;以E形贴片天线为单元,采用细粒度并行MGA,对矩形栅格排列(256个天线单元)和三角形栅格排列(200个天线单元)平面阵的馈电幅度,以及4圈同心圆环平而阵(60个天线单元)的馈电幅度和相位进行了优化设计,有效的减少了优化所需的时间,并获得了较好的优化结果。
The ultra-wideband (UWB) antenna is an important and indispensable component of UWB wireless systems. The antenna undoubtedly plays a very important role for the UWB technology widely used in many areas such as radar, positioning, detection and control. So in recent years, the study of UWB antennas and array becomes hot investigation, as well as one of the important research directions in the UWB technology. This paper is mainly focused on the rapid design methods of the UWB antennas and array.
     The simulation of the electrically large UWB antennas and array needs long time and great memory, and even one computer sometimes can not complete the calculation. In order to solve this problem, some highly efficient parallel finite-difference time-domain (FDTD) methods for the large-scale parallel platform are studied, based on the "J parallel Adaptive Structured Mesh applications Infrastructure"(JASMIN) framework. Firstly, the uniform grid parallel FDTD method and its key technologies are studied and verified. Then the144-element TEM horn and Ridged TEM horn antenna array are calculated using500processors. Secondly, the gradual non-uniform parallel FDTD method is studied, which can effectively decrease memory requirements and computational effort problems by comparison with the uniform grid FDTD method, when the antennas and array have fine structure. Using this parallel algorithm, the radiation characteristics of a64-element spiral antenna array is simulated on200processors. Finally, the parallel body-of-revolution FDTD (BOR-FDTD) method is studied for fast solution of the antenna with rotationally symmetric structure. A standard Cassegrain antenna is parallel computed and the diameter of its main reflector is280wavelengths.
     The UWB antennas and array involve many parameters, as well as the relationship between the parameters and design goals is nonlinear. Therefore it is necessary to introduce global optimization algorithms for antennas and array aided design. The performance of optimization algorithms will directly affect the performance of the antennas and array, as well as the design time. In order to improve the performance of global optimization algorithms, the parallel micro genetic algorithms and integer coded differential evolution strategies are first studied. The coarse-grained and fine-grained parallel MGAs, integer coded DESs are applied to a32-element linear array pattern synthesis problem. It is shown that performance of the parallel algorithms is better than the serial optimization algorithms and the DES proposed in a literature. Then a hybrid optimization algorithm (HDECACO) based on DES and continuous ant colony optimization (CACO) algorithm is proposed to improve the search ability. Two representative mathematical functions are minimized using the HDECACO algorithm and the convergence rates are compared to prove its high efficiency.
     Subsequently, the proposed parallel global optimization and HDECACO algorithms focusing on the design of UWB horn antennas are discussed. The parallel optimization algorithms and the3-D uniform grid FDTD method are combined to achieve an automated parallel design process for TEM horn antenna. The results show that the parallel MGAs can be better to maintain the population diversity, and have stronger search ability. In order to design high efficient feeds for reflector antennas, the multimode conical horn antennas are studied. The automatic optimization design with combination of BOR-FDTD and global optimization algorithms is proposed. The HDECACO algorithm is applied to optimize the multimode conical horn antennas with a step of radius and multi-section changing flare angles. The feasibility of automatic design is verified And then the fine-grained parallel MGA is used to design a corrugated conical horn antenna in the8-13GHz. In the entire operating band, the tapered edge irradiation, gain and main lobe width have preferably constant values, and the voltage standing wave ratio is less than1.5.
     Thereafter, the paper studies the planar ultra-wideband (UWB) antennas and power divider. The hot research directions related to planar UWB antennas is carried out. A novel compact ultra-wideband planar antenna fed by a microstrip line is proposed. It has been demonstrated that the proposed printed compact antenna can achieve a good impedance bandwidth,2.1-2.6GHz and3.3-20GHz. Within the whole UWB band (3.1-10.6GHz), there still exist several narrow bands for other communication systems,, which may cause severe electromagnetic interference to the UWB system. Therefore, it may be necessary to have a notch for those bands in order to avoid potential interference. In this paper, two new simple dual band-notched printed antennas with variable frequency band-notch characteristic are proposed, unlike the commonly used methods. Only by using the split ring resonator and U-shaped parasitic elements on the back side of the radiation patch, two desirable operating bands can be achieved for the proposed antennas. The application requirements of UWB planar directional radiation antennas are also considered here. A tapered microstrip line comprising exponential and elliptic sections is applied to achieve the UWB performance and miniaturization design for the Vivaldi antenna. By using this technology, an UWB power divider is designed, which is optimized by the combinatorial method of the coarse grained parallel PMGA and a commercial electromagnetic software. The optimized power divider exhibits better performance. Finally, The HDECACO algorithm is applied to design an E-shaped wideband patch antenna, which achieves the impedance bandwidth4.8-6.53GHz. The advantage of this hybrid method over the DES and the CACO is also demonstrated.
     At last, the parallel MGAs and HDECACO algorithm are applied to UWB antenna arrays optimization problems. Firstly, a49-element TEM horn antenna array is optimized by the master-slave parallel MGA. The fitness values are calculated by parallel FDTD method on200processors, and the optimization time is reduced. Secondly, the active element pattern (AEP) method is used to solve the array radiation problems. The AEP method is very effective because it includes the effects of mutual coupling rigorously for computing the far-field pattern of a fully excited array. The array patterns calculated by this method are in good agreement with the results by the full-wave simulation of commercial software. The UWB antenna arrays can be fast designed by combining with the proposed global optimization algorithms:A8-element H-plane linear UWB Vivaldi antenna array in the same phase is optimized by the HDECACO algorithm. The excitation amplitudes are as the optimization variables. Compared with the uniform amplitude and-30dB Chebyshev antenna array, the side lobe level (SLL) obtained by the optimization algorithm is lower. Using the fine-grained parallel MGA, the excitation amplitudes of the256-element rectangular lattice and200-element triangular lattice E-shaped patch antenna array in the same phase is as the design parameters. To the4-circle60-element concentric circular ring E-shaped patch antenna array, the design parameters to be optimized are excitation phases and amplitudes. The optimization time is effectively reduced, and good results are achieved.
引文
[1]WIN M Z, SCHOLTZ R A. On the Robustness of Ultra-Wide Bandwidth Signals in Dense Multipath Environments [J]. IEEE Communications Letters,1998,2(2):51-53.
    [2]WEI-JU C, JENN-HWAN T. Effects of Bandwidth on Observable Multipath Clustering in Outdoor/Indoor Environments for Broadband and Ultra-wideband Wireless Systems [J]. IEEE Transactions on Vehicular Technology,2007,56(4):1913-1923.
    [3]LUO Y J, LAW C L. Indoor Positioning Using UWB-IR Signals in the Presence of Dense Multipath with Path Overlapping [J]. IEEE Transactions on Wireless Communications,2012,11(10):3734-3743.
    [4]BIALER O, RAPHAELI D, WEISS A J. Efficient Time of Arrival Estimation Algorithm Achieving Maximum Likelihood Performance in Dense Multipath [J]. IEEE Transactions on Signal Processing,2012,60(3):1241-1252.
    [5]MADISEH M G, NEVILLE S W, MCGUIRE M L. Applying Beamforming to Address Temporal Correlation in Wireless Channel Characterization-Based Secret Key Generation [J]. IEEE Transactions on Information Forensics and Security,2012,7(4): 1278-1287.
    [6]袁雪林.UWB冲激雷达动目标检测及跟踪理论与关键技术研究[D]. 博士学位论文,长沙:国防科学技术大学,2008.
    [7]KIDERA S, SAKAMOTO T, SATO T. High-Resolution 3-D Imaging Algorithm With an Envelope of Modified Spheres for UWB Through-the-Wall Radars [J]. IEEE Transactions on Antennas and Propagation,2009,57(11):3520-3529.
    [8]王芳芳,张业荣.超宽带合成孔径雷达在穿墙成像中的应用[J].南京邮电大学学报(自然科学版),2011,31(4):79-83.
    [9]LI L, TAN A E C, JHAMB K, et al. Buried Object Characterization Using Ultra-Wideband Ground Penetrating Radar [J]. IEEE Transactions on Microwave Theory and Techniques,2012,60(8):2654-2664.
    [10]LIU D H, KANG G, LI L, et al. Electromagnetic Time-Reversal Imaging of a Target in a Cluttered Environment [J]. IEEE Transactions on Antennas and Propagation,2005, 53(9):3058-3066.
    [11]张海英,郑国莘.超宽带(UWB)技术及其抗干扰性能分析[J].电视技术,2004,(11):37-39.
    [12]BYERS K J, HARISH A R, SEGUIN S A, et al. A Modified Wideband Dipole Antenna for an Airborne VHF Ice-Penetrating Radar [J]. IEEE Transactions on Instrumentation and Measurement,2012,61(5):1435-1444.
    [13]方有培.采用相控阵体制的舰载雷达和电子战系统[J].航天电子对抗,2003,(2):9-15.
    [14]LIANG G, GONG W B, LIU H J, et al. A Semi-Physical Simulation System for DBF Transmitter Array on LEO Satellite [J]. Progress in Electromagnetics Research,2009, 97:197-215.
    [15]LI B A, YIN Y Z, HU W, et al. Wideband Dual-Polarized Patch Antenna With Low Cross Polarization and High Isolation [J]. IEEE Antennas and Wireless Propagation Letters,2012,11:427-430.
    [16]LINDENBLAD N E. Television Transmitting Antenna for Empire State Building [J]. RCA Review,1939.
    [17]PAULSEN L, WEST J B, PERGER W F, et al. Recent Investigations on the Volcano Smoke Antenna [C]. IEEE Antennas and Propagation Society International Symposium, 2003,3:845-848.
    [18]RUMSEY V H. Frequency-independent Antennas [C]. IRE National Convention Record, 1957,1:114-118.
    [19]WOLTER J. Solution of Maxwell's Equations for Log-Periodic Dipole Antennas [J]. IEEE Transactions on Antennas and Propagation,1970,18(6):734-741.
    [20]姚远.宽带天线与天线阵列[M].北京:北京邮电大学出版社,2012.
    [21]AGRAWALL N P, KUMAR G, RAY K P. Wide-band Planar Monopole Antennas [J]. IEEE Transactions on Antennas and Propagation,1998,46(2):294-295.
    [22]BAI X F, ZHONG S S, LIANG X L. Leaf-shaped Monopole Antenna with Extremely Wide Bandwidth [J]. Microwave and Optical Technology Letters,2006,48(7): 1247-1250.
    [23]AMMANN M J, CHEN Z N. A Wide-band Shorted Planar Monopole with Bevel [J]. IEEE Transactions on Antennas and Propagation,2003,51(4):901-903.
    [24]官伯然,曹建伟.一种小型超宽带微带天线[J].微波学报,2011,27(2):60-62+92.
    [25]LING C W, CHUNG S J. A Simple Printed Ultrawideband Antenna With a Quasi-Transmission Line Section [J]. IEEE Transactions on Antennas and Propagation, 2009,57(10):3333-3336.
    [26]CHEN K R, SIM C Y D, ROW J S. A Compact Monopole Antenna for Super Wideband Applications [J]. IEEE Antennas and Wireless Propagation Letters,2011,10:488-491.
    [27]DENG C, XIE Y J, LI P. CPW-Fed Planar Printed Monopole Antenna With Impedance Bandwidth Enhanced [J]. IEEE Antennas and Wireless Propagation Letters,2009,8: 1394-1397.
    [28]NASER-MOGHADASI M, HARATY M R, MOMENI S M S. Novel Compact Semi Annular Polygons Ultra-wideband Microstrip Antenna [J]. IEICE Electronics Express, 2010,7(20):1527-1533.
    [29]BAI J A, SHI S Y, PRATHER D W. Modified Compact Antipodal Vivaldi Antenna for 4-50 GHz UWB Application [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(4):1051-1057.
    [30]BOURQUI J, OKONIEWSKI M, FEAR E C. Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging [J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2318-2326.
    [31]CAMPBELL M A, OKONIEWSKI M, FEAR E C. TEM Horn Antenna for Near-field Microwave Imaging [J]. Microwave and Optical Technology Letters,2010,52(5): 1164-1170.
    [32]CHUNG K H, PYUN S, CHOI J. Design of an Ultrawide-band TEM Horn Antenna with a Microstrip-type Balun [J]. IEEE Transactions on Antennas and Propagation,2005, 53(10):3410-3413.
    [33]MALHERBE J A G, BARNES N. TEM Horn Antenna with an Elliptic Profile [J]. Microwave and Optical Technology Letters,2007,49(7):1548-1551.
    [34]TAN A E C, JHAMB K, RAMBABU K. Design of Transverse Electromagnetic Horn for Concrete Penetrating Ultrawideband Radar [J]. IEEE Transactions on Antennas and Propagation,2012,60(4):1736-1743.
    [35]GRANET C, JAMES G L, BOLTON R, et al. A Smooth-walled Spline-profile Horn as an Alternative to the Corrugated Horn for Wide Band Millimeter-wave Applications [J]. IEEE Transactions on Antennas and Propagation,2004,52(3):848-854.
    [36]ABBAS-AZIMI M, MAZLUMI F, BEHNIA F. Design of Broadband Constant-Beamwidth Conical Corrugated-Horn Antennas [J]. IEEE Antennas and Propagation Magazine,2009,51(5):109-114.
    [37]SCHWARZ U, THIEL F, SEIFERT F, et al. Ultrawideband Antennas for Magnetic Resonance Imaging Navigator Techniques [J]. IEEE Transactions on Antennas and Propagation,2010,58(6):2107-2112
    [38]MALLAHZADEH A R, DASTRANJ A A. Double-Ridged Conical Horn Antenna for Wideband Applications [J]. International Journal of RF and Microwave Computer-Aided Engineering,2009,19(3):338-345.
    [39]MALLAHZADEH A R, DASTRANJ A A, AKHLAGHI S. Quad-Ridged Conical Horn Antenna for Wideband Applications [J]. International Journal of Rf and Microwave Computer-Aided Engineering,2009,19(5):519-528
    [40]MALLAHZADEH A R, DASTRANJ A A, HASSANI H R. A Novel Dual-polarized Double-ridged Horn Antenna for Wideband Applications [J]. Progress In Electromagnetics Research B,2008,1:67-80.
    [41]DEHDASHT-HEYDARI R, HASSANI H R, MALLAHZADEH A R. Quad Ridged Horn Antenna for UWB Applications [J]. Progress in Electromagnetics Research,2008,79: 23-38
    [42]MALLAHZADEH A R, IMANI A. Double-ridged Antenna for Wideband Applications [J]. Progress in Electromagnetics Research,2009,91:273-285.
    [43]CHUNG J Y. Ultra-wideband Dielectric-loaded Horn Antenna with Dual-linear Polarization Capability [J]. Progress in Electromagnetics Research,2010,102: 397-411.
    [44]AMINEH R K, RAVAN M, TREHAN A, et al. Near-Field Microwave Imaging Based on Aperture Raster Scanning With TEM Horn Antennas [J]. IEEE Transactions on Antennas and Propagation,2011,59(3):928-940
    [45]ARMBRECHT G, DENICKE E, POHL N, et al. Compact Directional UWB Antenna with Dielectric Insert for Radar Distance Measurements [C]. IEEE International Conference on Ultra-Wideband, New York,2008,1:229-232.
    [46]DESRUMAUX L, GODARD A, LALANDE M, et al. An Original Antenna for Transient High Power UWB Arrays:The Shark Antenna [J]. IEEE Transactions on Antennas and Propagation,2010,58(8):2515-2522.
    [47]DIOT J C, DELMOTE P, ANDRIEU J, et al. A Novel Antenna for Transient Applications in the Frequency Band 300 MHz-3 GHz:The Valentine Antenna [J]. IEEE Transactions on Antennas and Propagation,2007,55(3):987-990.
    [48]CADILHON B, PECASTAING L, VAUCHAMP S, et al. Improvement of an Ultra-wideband Antenna for High-power Transient Applications [J]. IET Microwaves Antennas & Propagation,2009,3(7):1102-1109.
    [49]NASIMUDDIN, ESSELLE K P, VERMA A K. Wideband High-gain Circularly Polarized Stacked Microstrip Antennas with an Optimized C-type Feed and a Short Horn [J]. IEEE Transactions on Antennas and Propagation,2008,56(2):578-584.
    [50]RANGA Y, VERMA A K, ESSELLE K P. Planar-Monopole-Fed, Surface-Mounted Quasi-TEM Horn Antenna for UWB Systems [J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2436-2439.
    [51]OSARETIN I A, TORRES A, CHEN C C.A Novel Compact Dual-Linear Polarized UWB Antenna for VHF/UHF Applications [J]. IEEE Antennas and Wireless Propagation Letters,2009,8:145-148.
    [52]王建国,田春明,刘小龙,et al.超宽带TEM天线的数值模拟[J].强激光与粒子束, 2001,13(4):493-497.
    [53]燕有杰,刘小龙,蒋廷勇,et al加脊TEM喇叭初步研究[J].强激光与粒子束,2012,24(9):2130-2134.
    [54]易超龙,朱四桃,樊亚军,et al超宽带天线辐射中心的时域测量方法[J].强激光与粒子束,2011,23(5):1312-1314
    [55]晏峰,宁辉,刘小龙,et al. L波段小型化同轴扩张型天线设计[J].强激光与粒子束,2012,24(7):1599-1602.
    [56]廖勇,张秦岭,陆巍,et al. TEM喇叭天线低频补偿实验研究[J].强激光与粒子束,2005,17(8):1247-1250.
    [57]廖勇,马弘舸,杨周炳,et al超宽带天线中同轴到平板过渡研究[J].强激光与粒子束,2005,17(5):741-745.
    [58]黎佳.超宽带反射面天线系统辐射特性研究[D].硕士学位论文,北京:中国工程物理研究院,2011.
    [59]简荣华.X波段宽带圆极化馈源设计[D].硕士学位论文,北京:中国工程物理研究院,2006.
    [60]刘培国,刘克成,何建国,et al加脊喇叭天线的时域分析[J].国防科技大学学报,2000,22(1):28-30.
    [61]周蔚红,刘培国,何建国,et al时域TEM喇叭天线的分析和设计[J].国防科技大学学报,2006,28(4):59-62.
    [62]张光甫.瞬态天线及其在超宽带雷达中的应用[D].博士学位论文,长沙:国防科学技术大学,2004.
    [63]郭晨,张安学,蒋延生,et al高功率楔形介质填充天线设计[J].强激光与粒子束,2008,20(7):1134-1136
    [64]王向晖,蒋延生,汪文秉.一种新型超宽带喇叭天线的研究[J].微波学报,2005,21(3):23-27
    [65]向坤,陈娟,张安学,et al提高喇叭天线增益的超介质构建方法[J].西安交通大学学报,2011,45(2):92-96
    [66]刘秀祥,雷振亚,王永光,et al一种改进型超宽带喇叭天线[J].电子科技,2011,24(8):90-92.
    [67]OJAROUDI M, KOHNESHAHRI G, NOORY J. Small Modified Monopole Antenna for UWB Application [J]. IET Microwaves Antennas & Propagation,2009,3(5):863-869.
    [68]THOMAS K G, SREENIVASAN M. Printed Elliptical Monopole with Shaped Ground Plane for Pattern Stability [J]. Electronics Letters,2009,45(9):445-446.
    [69]AZIM R, ISLAM M T, MISRAN N, et al. Planar UWB Antenna with Multi-slotted Ground Plane [J]. Microwave and Optical Technology Letters,2011,53(5):966-968.
    [70]AZIM R, ISLAM M T, MISRAN N. Ground Modified Double-sided Printed Compact UWB Antenna [J]. Electronics Letters,2011,47(1):9-10.
    [71]GUO L, WANG S, CHEN X, et al. Study of Compact Antenna for UWB Applications [J]. Electronics Letters,2010,46(2):115-116.
    [72]KUMAR R, SAWANT K K. Design of CPW-feed Inscribed Square Circular Fractal Antenna for UWB Applications [J]. Microwave and Optical Technology Letters,2011, 53(5):1079-1083.
    [73]ORAIZI H, HEDAYATI S. Miniaturized UWB Monopole Microstrip Antenna Design by the Combination of Giusepe Peano and Sierpinski Carpet Fractals [J]. IEEE Antennas and Wireless Propagation Letters,2011,10:67-70.
    [74]POURAHMADAZAR J, GHOBADI C, NOURINIA J. Novel Modified Pythagorean Tree Fractal Monopole Antennas for UWB Applications [J]. IEEE Antennas and Wireless Propagation Letters,2011,10:484-487.
    [75]BARBARINO S, CONSOLI F. Study on UWB and SWB Planar Slot Antennas with Different Stub Shapes [J]. Microwave and Optical Technology Letters,2011,53(7): 1528-1532.
    [76]OJAROUDI M, BASHIRI S, OJAROUDI N, et al. Octave-band, Multi-resonance CPW-fed Small Slot Antenna for UWB Applications [J]. Electronics Letters,2012, 48(16):980-981.
    [77]GOPIKRISHNA M, DAS KRISHNA D, ANANDAN C K, et al. Design of a Compact Semi-Elliptic Monopole Slot Antenna for UWB Systems [J]. IEEE Transactions on Antennas and Propagation,2009,57(6):1834-1837.
    [78]ELSHEAKH D N, ELSADEK H A, ABDALLAH E A, et al. Enhancement of Microstrip Monopole Antenna Bandwidth by Using EBG Structures [J]. IEEE Antennas and Wireless Propagation Letters,2009,8:959-962.
    [79]ELSHEAKH D N, ELSADEK H A, ABDALLAH E A, et al. Ultrawide Bandwidth Umbrella-Shaped Microstrip Monopole Antenna Using Spiral Artificial Magnetic Conductor (SAMC) [J]. IEEE Antennas and Wireless Propagation Letters,2009,8: 1255-1258.
    [80]ZHENG Z A, CHU Q X. CPW-fed Ultra-wideband Antenna with Compact Size [J]. Electronics Letters,2009,45(12):593-594.
    [81]JIANG W, GONG Q, GONG S X, et al. Novel Ultrawideband Monopole Antenna with Miniaturized Size [J]. Microwave and Optical Technology Letters,2011,53(5): 1176-1178.
    [82]钱祖平,周锋,彭川,et al.一种小型平面超宽带天线的设计与实现[J].电波科学学报,2010,25(5):920-924.
    [83]徐海洋,张厚,殷雄,et al.低雷达截而的超宽带Koch分形槽缝天线[J].压电与声光,2012,34(1):151-153+157.
    [84]DENG C, XIE Y J, LI P. CPW-Fed Planar Printed Monopole Antenna With Impedance Bandwidth Enhanced [J]. IEEE Antennas and Wireless Propagation Letters,2009,8: 1394-1397.
    [85]YANG G M, JIN R H, XIAO G B, et al. Ultrawideband (UWB) Antennas With Multiresonant Split-Ring Loops [J]. IEEE Transactions on Antennas and Propagation, 2009,57(1):256-260.
    [86]LIU J J, ZHONG S S, ESSELLE K P. A Printed Elliptical Monopole Antenna With Modified Feeding Structure for Bandwidth Enhancement [J]. IEEE Transactions on Antennas and Propagation,2011,59(2):667-670.
    [87]MEHDIPOUR A, PARSA A, SEBAK A R, et al. Miniaturised Coplanar Waveguide-fed antenna and Band-notched Design for Ultra-wideband Applications [J]. IET Microwaves Antennas & Propagation,2009,3(6):974-986.
    [88]ZHANG X, ZHANG T L, XIA Y Y, et al. Planar Monopole Antenna with Band-notch Characterization for UWB Applications [J]. Progress In Electromagnetics Research Letters,2009,6:149-156.
    [89]DJAIZ A, NEDIL M, HABIB M A, et al. Design of a New UWB-integrated Antenna Filter with a Rejected WLAN Band at 5.8 GHz [J]. Microwave and Optical Technology Letters,2011,53(6):1298-1302.
    [90]MORADHESARI A, MOOSAZADEH M, ESMATI Z. Band-notched UWB planar monopole antenna using slotted conductor-backed plane [J]. Microwave and Optical Technology Letters,2012,54(10):2237-2241.
    [91]ESHTIAGHI R, NOURINIA J, GHOBADI C. Electromagnetically Coupled Band-Notched Elliptical Monopole Antenna for UWB Applications [J]. IEEE Transactions on Antennas and Propagation,2010,58(4):1397-1402.
    [92]XIA T F, YANG S W, NIE Z P. Band-notched UWB Planar Antenna with Parasitic Spiral Strips [J]. Microwave and Optical Technology Letters,2011,53(7):1532-1535.
    [93]PENG L, RUAN C L. UWB Band-Notched Monopole Antenna Design Using Electromagnetic-Bandgap Structures [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(4):1074-1081.
    [94]MISHRA S K, GUPTA R K, MUKHERJEE J. A Simple U-shaped Printed Ultra-wideband Antenna with WLAN Band Rejection [J]. Microwave and Optical Technology Letters,2011,53(7):1645-1649.
    [95]PAN C Y, CHIU K Y, DUAN J H, et al. Band-notched Ultra-wideband Planar Monopole Antenna Using Shunt Open-circuited Stub [J]. Microwave and Optical Technology Letters,2011,53(7):1535-1537.
    [96]AZARMANESH M, SOLTANI S, LOTFI P. Design of an Ultra-wideband Monopole Antenna with WiMAX, C and Wireless Local Area Network Band Notches [J]. IET Microwaves Antennas & Propagation,2011,5(6):728-733.
    [97]NGUYEN T D, LEE D H, PARK H C. Design and Analysis of Compact Printed Triple Band-Notched UWB Antenna [J]. IEEE Antennas and Wireless Propagation Letters, 2011,10:403-406.
    [98]WANG C, YAN Z H, XU P, et al. A Triple Band-notched UWB Printed Antenna with Various Slots [J]. Microwave and Optical Technology Letters,2012,54(9):2088-2091.
    [99]CAI L Y, LI Y, ZENG G, et al. Compact Wideband Antenna with Double-fed Structure Having Band-notched Characteristics [J]. Electronics Letters,2010,46(23): 1534-1535.
    [100]TAHERI M M S, HASSANI H R, NEZHAD S M A. UWB Printed Slot Antenna With Bluetooth and Dual Notch Bands [J]. IEEE Antennas and Wireless Propagation Letters, 2011,10:255-258.
    [101]TAHERI M M S, HASSANI H R, NEZHAD S M A. Compact Printed Coplanar Waveguide-fed Ultra-wideband Antenna with Multiple Notched Bands [J]. Microwave and Optical Technology Letters,2012,54(9):2121-2126.
    [102]NI T, JIAO Y C, LI W M, et al. A Compact Printed CPW-fed UWB Antenna with Dual Band-notched Characteristics [J]. Microwave and Optical Technology Letters,2012, 54(9):2194-2199.
    [103]LI W T, SHI X W, HEI Y Q. Novel Planar UWB Monopole Antenna With Triple Band-Notched Characteristics [J]. IEEE Antennas and Wireless Propagation Letters, 2009,8:1094-1098.
    [104]BAI J A, SHI S Y, PRATHER D W. Modified Compact Antipodal Vivaldi Antenna for 4-50-GHz UWB Application [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(4):1051-1057.
    [105]BOURQUI J, OKONIEWSKI M, FEAR E C. Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging [J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2318-2326.
    [106]ABBOSH A M. Miniaturized Microstrip-Fed Tapered-Slot Antenna With Ultrawideband Performance [J]. IEEE Antennas and Wireless Propagation Letters, 2009,8:690-692.
    [107]FEI P, JIAO Y C, HU W, et al. A Miniaturized Antipodal Vivaldi Antenna With Improved Radiation Characteristics [J]. IEEE Antennas and Wireless Propagation Letters,2011,10:127-130.
    [108]徐志,刘其中,章传芳,et al改进型vivaldi天线[J].电波科学学报,2008,23(3):471-475.
    [109]FRANEK O, PEDERSEN G F. Spherical Horn Array for Wideband Propagation Measurements [J]. IEEE Transactions on Antennas and Propagation,2011,59(7): 2654-2660.
    [110]WANG Z P, HALL P S, KELLY J, et al. TEM Horn Circular Array for Wide Band Pattern Notch Reconfigurable Antenna System [C]. Loughborough Antennas & Propagation Conference,2010:365-368.
    [111]CHEN H D, SIM C Y D, WU J Y, et al. Broadband High-Gain Microstrip Array Antennas for WiMAX Base Station [J]. IEEE Transactions on Antennas and Propagation,2012,60(8):3977-3980.
    [112]NASHAAT D, ELSADEK H A, ABDALLAH E A, et al. Ultrawide Bandwidth 2x2 Microstrip Patch Array Antenna Using Electromagnetic Band-Gap Structure (EBG) [J]. IEEE Transactions on Antennas and Propagation,2011,59(5):1528-1534.
    [113]KINDT R W, KRAGALOTT M, PARENT M G, et al. Preliminary Investigations of a Low-Cost Ultrawideband Array Concept [J]. IEEE Transactions on Antennas and Propagation,2009,57(12):3791-3799.
    [114]LIN S, YANG S, FATHY A E, et al. Development of a Novel UWB Vivaldi Antenna Array Using SIW Technology [J]. Progress in Electromagnetics Research,2009,90: 369-384.
    [115]YANG Y, WANG Y, FATHY A E. Design of Compact Vivaldi Antenna Arrays for UWB See through Wall Applications [J]. Progress in Electromagnetics Research,2008,82: 401-418.
    [116]WANG H, TRAKIC A, LIU F, et al. Parallel Solvers for Finite-Difference Modeling of Large-Scale, High-Resolution Electromagnetic Problems in MRI [J]. International Journal of Antennas and Propagation,2008:1-12.
    [117]YU W H, LIU Y J, YANG X L, et al. Performance Analysis of Parallel FDTD Method on the Different Platforms [J]. Microwave and Optical Technology Letters,2008,50(9): 2465-2467.
    [118]ALIGHANBARI A, SARRIS C D. Parallel Time-Domain Full-Wave Analysis and System-Level Modeling of Ultrawideband Indoor Communication Systems [J]. IEEE Transactions on Antennas and Propagation,2009,57(1):231-240.
    [119]DEMIR V, ELSHERBENI A Z. Compute Unified Device Architecture (CUDA) Based Finite-Difference Time-Domain (FDTD) Implementation [J]. Applied Computational Electromagnetics Society Journal,2010,25(4):303-314.
    [120]STEFANSKI T P, CHAVANNES N, KUSTER N. Parallelization of the FDTD Method Based on the Open Computing Language and the Message Passing Interface [J]. Microwave and Optical Technology Letters,2012,54(3):785-789.
    [121]LEI J Z, LIANG C H, DING W, et al. Study on MPI-based Parallel Modified Conformal FDTD for 3-D Electrically Large Coated Targets by Using Effective Parameters [J]. IEEE Antennas and Wireless Propagation Letters,2008,7:175-178.
    [122]姜彦南,葛德彪,魏兵.时域有限差分并行算法中的吸收边界研究[J].系统工程与电子技术,2008,30(9):1636-1640.
    [123]赖生建,王秉中,黄廷祝.共享内存系统中高效并行FDTD计算方案[J].电子科技大学学报,2010,39(5):680-683.
    [124]彭凯,夏蒙重,刘大刚,et al.适用于Linux系统的高效可并行电磁PIC计算技术[J].强激光与粒子束,2012,24(9):2225-2229.
    [125]段鑫,陈星.基于WinSock和多线程技术的高性能并行FDTD[J].信息与电子工程,2011,9(2):169-174.
    [126]张立红,余文华.FDTD算法的三级并行实现[J].计算机工程,2011,37:333-335.
    [127]李毅,徐利军,袁乃昌.磁化等离子体的并行三维JEC-FDTD算法及其应用[J].电子学报,2008,36(6):1119-1123.
    [128]傅海军.机箱电磁耦合问题的大规模并行FDTD实现[D].硕士学位论文,成都:西南交通大学,2011.
    [129]莫则尧,张爱清.并行自适应结构网格应用支撑软件框架[M].北京:北京应用物理与计算数学研究所,2009.
    [130]YU W H, YANG X L, LIU Y J, et al. New Development of Parallel Conformal FDTD Method in Computational Electromagnetics Engineering [J]. IEEE Antennas and Propagation Magazine,2011,53(3):15-41.
    [131]HE Z L, HUANG K, ZHANG Y, et al. Study on High Performance of MPI-Based Parallel FDTD from WorkStation to Super Computer Platform [J]. International Journal of Antennas and Propagation,2012:1-7.
    [132]谢泽明,丁环环,谢启球.基于平均相日关能量增益的超宽带平面振子优化[J].电波科学学报,2012,27(5):1043-1048.
    [133]JAFARGHOLI A, KAMYAB M. Pattern Optimization in an UWB Spiral Array Antenna [J]. Progress In Electromagnetics Research M,2010,11:137-151.
    [134]PU T L, HUANG K M, WANG B, et al. Application of Micro-genetic algorithm to the Design of Matched High Gain Patch Antenna with Zero-refractive-index Metamaterial Lens [J]. Journal of Electromagnetic Waves and Applications,2010,24(8-9): 1207-1217.
    [135]WANG H, ZHANG H, WANG Z, et al. Matching Network Design for a Monopole Antenna Using the Micro-genetic Algorithm [J]. Journal of Electromagnetic Waves and Applications,2009,23(14-15):2063-2072.
    [136]ZHAI Y W, SHI X W, ZHAO Y J. Optimized Design of Ideal and Actual Transformer Based on Improved Micro-genetic Algorithm [J]. Journal of Electromagnetic Waves and Applications,2007,21(13):1761-1771.
    [137]肖绍球,王秉中.基于微遗传算法的微带可重构天线设计[J].电子科技大学学报,2004,33(2):137-141.
    [138]覃延明,廖成,卫涛,et al.超宽带TEM喇叭天线阵列的微遗传算法优化[J].电波科学学报,2008,23(2):352-355.
    [139]STORN R, PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization,1997, 11(4):341-359.
    [140]GOUDOS S K, SIAKAVARA K, VAFIADIS E E, et al. Pareto Optimal Yagi-uda Antenna Design Using Multi-objective Differential Evolution [J]. Progress in Electromagnetics Research,2010,105:231-251.
    [141]GOUDOS S K, SIAKAVARA K, SAMARAS T, et al. Self-Adaptive Differential Evolution Applied to Real-Valued Antenna and Microwave Design Problems [J]. IEEE Transactions on Antennas and Propagation,2011,59(4):1286-1298.
    [142]CARVALHO R, SALDANHA R R, GOMES B N, et al. A Multi-Objective Evolutionary Algorithm Based on Decomposition for Optimal Design of Yagi-Uda Antennas [J]. IEEE Transactions on Magnetics,2012,48(2):803-806.
    [143]ZHANG L, CUI Z, JIAO Y C, et al. Broadband Patch Antenna Design Using Differential Evolution Algorithm [J]. Microwave and Optical Technology Letters,2009, 51(7):1692-1695.
    [144]CHEN Y K, YANG S W, NIE Z P. The Application of a Modified Differential Evolution Strategy to Some Array Pattern Synthesis Problems [J]. IEEE Transactions on Antennas and Propagation,2008,56(7):1919-1927.
    [145]LI F, JIAO Y C, REN L S, et al. Pattern Synthesis of Concentric Ring Array Antennas by Differential Evolution Algorithm [J]. Journal of Electromagnetic Waves and Applications,2011,25(2-3):421-430.
    [146]ZHU Q J, YANG S W, ZHENG L, et al. Design of a Low Sidelobe Time Modulated Linear Array With Uniform Amplitude and Sub-Sectional Optimized Time Steps [J]. IEEE Transactions on Antennas and Propagation,2012,60(9):4436-4439.
    [147]廖成,卫涛,陈伟.整数微分进化策略及其在微波成像中的应用[J].西南交通大学学报,2007,42(6):647-652.
    [148]HOSSEINI S A, ATLASBAF Z. Optimization of Side Lobe Level and Fixing Quasi-nulls in Both of the Sum and Difference Patterns by Using Continuous Ant Colony Optimization (ACO) Method [J]. Progress in Electromagnetics Research,2008, 79:321-337.
    [149]赵小莹,柯腾龙,丁忆涵.基于改进型蚁群算法的阵列天线综合[J].电波科学学报,2012,27(3):447-451+464.
    [150]王大明,毛宗源.并行遗传算法综述[J].暨南大学学报(自然科学与医学版),1998,19(1):20-25.
    [151]CHEN X, WANG G S, HUANG K. A Novel Wideband and Compact Microstrip Grid Array Antenna [J]. IEEE Transactions on Antennas and Propagation,2010,58(2): 596-599.
    [152]WANG G S, LIN S Y, FANG W D, et al. Design of a Compact Wideband High-gain Microstrip Grid Array Antenna [J]. Microwave and Optical Technology Letters,2011, 53(5):1144-1147.
    [153]沈伋,韩丽川,吕继淮.并行遗传算法在机载宽频带天线罩设计中的应用研究[J].航空学报,2005,26(2):158-161.
    [154]CHAKRAVARTY S, MITTRA R. Design of a Frequency Selective Surface (FSS) with Very Low Cross-polarization Discrimination via the Parallel Micro-genetic Algorithm (PMGA) [J]. IEEE Transactions on Antennas and Propagation,2003,51(7):1664-1668.
    [155]梁才浩,段献忠,钟志勇,et a1.基于差异进化和PC集群的并行无功优化[J].电力系统自动化,2006,30(1):29-34.
    [156]LIANG C H, CHUNG C Y, WONG K P, et al. Parallel Optimal Reactive Power Flow Based on Cooperative Co-evolutionary Differential Evolution and Power System Decomposition [J]. IEEE Transactions on Power Systems,2007,22(1):249-257.
    [157]郑轩.并行调用有限积分软件进行天线优化的算法研究与实现[D].硕士学位论文,成都:西南交通大学,2011.
    [158]LIN W Y. A GA-DE Hybrid Evolutionary Algorithm for Path Synthesis of Four-bar Linkage [J]. Mechanism and Machine Theory,2010,45(8):1096-1107.
    [159]包子阳,陈客松,何子述,et al.两种改进算法相结合的圆阵稀布方法[J].现代雷达,2009,31(4):73-76+86.
    [160]NEMATI S, BASIRI M E, GHASEM-AGHAEE N, et al. A Novel ACO-GA Hybrid Algorithm for Feature Selection in Protein Function Prediction [J]. Expert Systems with Applications,2009,36(10):12086-12094.
    [161]侯琳,刘湘伟,鞠照群,et al.基于混合智能算法的通信干扰装备分配优化[J].指挥控制与仿真,2012,34(3):35-40.
    [162]晁坤,刘运林,杨儒贵.蚁群算法结合微遗传算法优化设计多层雷达吸波涂层[J].功能材料,2008,39(6):1052-1055.
    [163]POZAR D M. The Active Element Pattern [J]. IEEE Transactions on Antennas and Propagation,1994,42(8):1176-1178.
    [164]JUNYEON K, JOONHO S, WON J, et al. Gain Estimation by Convergence of Active Element Pattern for E-plane Notch Phased Array Antenna [J]. Microwave and Optical Technology Letters,2007,49(5):1047-1049.
    [165]HE Q Q, WANG B Z. Design of Microstrip Array Antenna by Using Active Element Pattern Technique Combining with Taylor Synthesis Method [J]. Progress in Electromagnetics Research,2008,80:63-76.
    [166]ZHANG S A, GONG S X, GONG Q, et al. Application of the Active Element Pattern Method for Calculation of the Scattering Pattern of Large Finite Arrays [J]. IEEE Antennas and Wireless Propagation Letters,2011,10:83-86.
    [167]张帅,龚书喜,关莹,et al.大型平面阵列天线辐射方向图的小阵外推计算和综合方法[J].计算物理,2011,28(4):554-560.
    [168]HE Q Q, WANG B Z, SHAO W. Radiation Pattern Calculation for Arbitrary Conformal Arrays that Include Mutual-Coupling Effects [J]. IEEE Antennas and Propagation Magazine,2010,52(2):57-63.
    [169]YANG X S, QIAN H, WANG B Z, et al. Radiation Pattern Computation of Pyramidal Conformal Antenna Array with Active-Element Pattern Technique [J]. IEEE Antennas and Propagation Magazine,2011,53(1):28-37.
    [170]OUYANG J, LUO X, YANG J, et al. Analysis and Synthesis of Conformal Conical Surface Linear Phased Array with Volume Surface Integral Equation Plus AEP (Active Element Pattern) and INSGA-Ⅱ [J]. IET Microwaves Antennas & Propagation,2012, 6(11):1277-1285.
    [171]刘青凯,赵伟波,徐小文.基于SAMR网格的流体力学不稳定性并行计算[J].计算机工程与科学,2012,34(8):81-85.
    [172]任健,申卫东.辐射流体力学RH2D程序的重构与改进[J].计算机工程与科学,2012,34(2):93-98.
    [173]任健,魏军侠,曹小林.基于JASMIN框架的辐射流体与粒子输运耦合计算[J].计算物理,2012,29(2):205-212.
    [174]曹小林,郑春阳,张爱清,et al.面向数千处理器的三维等离子体粒子模拟程序研制[J].自然科学进展,2009,19(5):544-550.
    [175]曹小林,莫则尧,刘旭,et al基于JASMIN框架的快速多极子并行解法器[J].中国科学:信息科学,2010,40(9):1187-1196.
    [176]温彬.基于JASMIN框架结构的并行多层快速多极子算法及应用研究[D].硕士学位论文,成都:电子科技大学,2010.
    [177]陈军,董烨,杨温渊,et al.高功率微波三维全电磁PIC并行模拟[J].电子学报,2009,37(12):2845-2848.
    [178]李瀚宇,周海京,廖成JEMS-FDTD超大规模并行计算测试[J].强激光与粒子束,2011,23(11):3003-3006.
    [179]MUR G. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-field Equations [J]. IEEE Transactions on Electromagnetic Compatibility,1981,23(4):377-382.
    [180]BERENGER J-P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves [J]. Journal of Computational Physics,1994,114(2):185-200.
    [181]RODEN J A, GEDNEY S D. Convolution PML (CPML):An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media [J]. Microwave and Optical Technology Letters,2000,27(5):334-339.
    [182]葛德彪,闫玉波.电磁波时域有限差分法[M].西安:西安电子科技大学出版社,2006.
    [183]LUEBBERS R J, KUNZ K S, SCHNEIDER M, et al. A Finite-Difference Time-Domain Near Zone to Far Zone Transformation [J]. IEEE Transactions on Antennas and Propagation,1991,39(4):429-433.
    [184]王秉中.计算电磁学[M].北京:科学出版社,2002.
    [185]曾碧能.基于FDTD算法的非均匀网格及共形网格技术的实现[D].硕士学位论文,成都:电子科技大学,2007.
    [186]ANDREEV Y A, BUYANOV Y I, EFREMOV A M, et al. High-power Ultrawideband Electromagnetic Radiation Generator [C]. Digest of Technical Papers 11th IEEE International Pulsed Power Conference,1997,1:730-735.
    [187]王建国,田春明,夏洪富,et al.复合振子天线辐射特性的数值模拟[J].强激光与粒子束,2005,17(4):581-585.
    [188]CHEN L L, LIAO C, CHANG L, et al. A Novel Ultra-wideband Knife-shape TEM Horn Antenna Design for Transient Application [C]. International Conference on Microwave and Millimeter Wave Technology,2010:355-358.
    [189]李相强.高功率径向线螺旋阵列天线研究[D].博士学位论文,成都:西南交通大学,2008.
    [190]李相强,刘庆想,赵柳.短螺旋天线改进设计[J].微波学报,2009,25(1):51-54.
    [191]张健穹.高功率高增益径向线螺旋阵列天线研究[D].博士学位论文,成都:西南交通大学,2011.
    [192]CHEN Y C, MITTRA R, HARMS P. Finite-difference Time-domain Algorithm for Solving Maxwell's Equations in Rotationally Symmetric Geometries [J]. IEEE Transactions on Microwave Theory and Techniques,1996,44(6):832-839.
    [193]LIU Y L, LU Z W, REN Z B, et al. Perfectly Matched Layer Absorbing Boundary Conditions in Rigorous Vector Analysis of Axially Symmetric Diffractive Optical Elements [J]. Optics Communications,2003,223(1-3):39-45.
    [194]FARAHAT N, YU W H, MITTRA R. A Fast Near-to-far-field Transformation in Body of Revolution Finite-difference Time-domain Method [J]. IEEE Transactions on Antennas and Propagation,2003,51(9):2534-2540.
    [195]余文华,苏涛,Raj Mittra,刘永峻.并行时域有限差分法[M].北京:中国传媒大学出版社,2005.
    [196]TONG M S, SAULEAU R, ROLLAND A, et al. Analysis of Electromagnetic Band-gap Waveguide Structures Using Body-of-Revolution Finite-Difference Time-Domain Method [J]. Microwave and Optical Technology Letters,2007,49(9):2201-2206.
    [197]张火明,高明正,张晓菲.交叉变异的连续蚁群优化算法[J].中国计量学院学报,2009,20(3):259-262+273.
    [198]秋实.高功率微波窗口击穿及馈源技术[D].博士学位论文,西安:西安电子科技大学,2010.
    [199]WONG S W, ZHU L. Ultra-wideband Power Divider with Good in-band Splitting and Isolation Performances [J]. IEEE Microwave and Wireless Components Letters,2008, 18(8):518-520.
    [200]CHIEH J C S, PHAM A V. Development of a Wide Bandwidth Wilkinson Power Divider on Multilayer Organic Substrates [J]. Microwave and Optical Technology Letters,2010,52(7):1606-1609.
    [201]DADGARPOUR A, DADASHZADEH G, NASER-MOGHADASI M, et al. PSO/FDTD Optimization Technique for Designing UWB In-Phase Power Divider for Linear Array Antenna Application [J]. IEEE Antennas and Wireless Propagation Letters,2010,9: 424-427.
    [202]CHIANG C T, CHUNG B K. Ultra Wideband Power Divider Using Tapered Line [J]. Progress in Electromagnetics Research,2010,106:61-73.
    [203]SON S H, JEON S I, KIM C J, et al. GA-Based Design of Multi-Ring Arrays With Omnidirectional Conical Beam Pattern [J]. IEEE Transactions on Antennas and Propagation,2010,58(5):1527-1535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700