光控阵列有源冲激雷达发射机样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文讨论了与光控阵列有源冲激雷达发射样机系统有关的三个方面内容:以光电导半导体开关(Photoconductive Semiconductor Switches,PCSS)为基础的瞬态高功率光电导脉冲源研究;利用点源近似模型,对瞬态电磁脉冲的传输特性进行了研究;以光控脉冲源和瞬态电磁脉冲的传输特性为基础,研制光控阵列有源冲激雷达发射样机系统,并对样机系统作了系统的实验测试。
     光控脉冲源是以半绝缘GaAs材料制作PCSS为核心的高功率纳秒脉冲源,完成了四个方面与PCSS的物理机制有关的工作。第一,根据Fermi-Dirac统计,研究了半绝缘GaAs中电离EL2浓度,计算了半绝缘GaAs对于1064nm激光的吸收系数;第二,讨论了EL2中心在电场作用下对电子捕获系数的加强效应,利用这一效应解释了高功率纳秒脉冲产生的机制。第三,采用连续性方程,考虑载流子的产生、漂移、复合等机制,以532nm和1064nm激光激励为例,数值计算了这两种波长激光激励下线性PCSS的输出电脉冲波形参数;考虑了储能电容大小对PCSS进入非线性模式阈值电场的影响,并对PCSS的输出脉冲进行了数值计算;数值计算结果表明:在储能电容很小的情况下,如果高电压偏置的PCSS快速而充分地导通,PCSS有可能处于线性工作模式。第四,重点研究了半绝缘GaAs PCSS非线性模式中的Lock-on模式。
     在PCSS研制与实验测试方面,主要完成了以下三方面工作:第一,分别采用解析与仿真计算方法,给出了PCSS机械结构及绝缘封装设计的一般方法;第二,探索了PCSS Pd/Ge/Ti/Pt/Au等金属系统的耐高温欧姆电极研制工艺,并研制了在50Ω负载上产生峰值功率超过2MW、触发抖动约65ps、使用寿命超过3.6×106次、脉冲宽度1ns、重复频率1kHz的高功率PCSS近1500只;第三,设计了准直流馈电和脉冲电源馈电PCSS直接测试电路,并完成了线性、非线性以及临界条件下的系列实验测试任务。
     在瞬态电磁脉冲传输特性的研究方面,主要完成了以下两个方面的工作:第一,利用点源近似模型,研究了阵列PCSS产生的瞬态电磁脉冲在轴线的传输特性、高效合成特性和波束聚焦特性;第二,用Laplace变换讨论了匹配负载的Blumlein传输线输出,计算了有阻情形下,Blumlein传输线的传输效率。
     在光控有源冲激雷达发射样机系统研制与实验测试方面,独立承担了小型化脉冲电源的设计、研制和测试;参与研制了光纤分束器、光电同步控制仪、集成Blumlein传输线和槽天线的一体化天线,以及样机系统的安装、调试及实验测试工作;实验测试结果验证了瞬态电磁脉冲的能量传输特性、阵列瞬态电磁脉冲的高效合成、波束聚焦等原理性概念,较好完成了项目研究任务。
Three topics are discussed for ultra-wide band Radar sample transmitter in this dissertation: firstly, high power electric pulse source is developed which is based on Photoconductive Semiconductor Switches (PCSS); some research work has been done on the transmission properties of transient pulses according to a simplified model; finally, ultra-wide band Radar transmitter system is set up on basis of such pulse sources and transmission properties.
     When PCSS made from semi-insulating (SI) Gallium Arsenide (GaAs) is illuminated by laser pulse with its 1064 nanometers wavelength, the parameters of output pulse from the load can be calculated if absorption coefficient of GaAs and capture coefficient are given. Firstly, in terms of Fermi-Dirac statistics approximation, the density of unionized EL2 center is calculated and absorption coefficient of SI GaAs for sub-gap laser pulse was determined. Secondly, it is the enhancement of capture coefficient by electric field via EL2 centers that leads to output pulse with a nanosecond rise-time. Thirdly, three cases are discussed when PCSS is operated under linear mode: the wavelength of laser pulse is 532, 1064 nanometers, respectively, and the capacitance from Blumlein transmission line is 27.2 pF with a biased high voltage. The last section of this topic is related to the nonlinear mode of PCSS. In this section, a proposal is given: PCSS is operated under the nonlinear mode if electric field is higher than 3.5kV/cm when the laser pulse turned off, on the contrary, PCSS is still in linear mode.
     As for PCSS fabrication and the test of PCSS, research work has been done as follows.First, mechanic structure and insulation package of PCSS are developed for PCSS excellent performance. Second, the layers of refractory Ohmic electrode consist of Pd/Ge/Ti/Pt/Au for longetivity of PCSS.1500 PCSSes have been fabricated by such electrode layers.When 50? load is used for measurement of the output power and pulse width (more than 2MW, less than 1 nanosecond), each PCSS lasts more than 3.6×106 shots if repetitition frequency of the triggering signal is set to 1kHz.Third, two types of test circuit are designed for the research of differences between linear and nonlinear mode of PCSS. One of test circuits is charged by direct current voltage module, while another is charged by pulse charged module.
     Some research on properties of transient electromagnetic pulse has been done as follows: the z-axis properties of transient pulse coming from PCSS array such as transmission, power combination and beam formation are simulated by a model where each antenna is at its own location; the ouput efficiency of Blumlein transmission line is discussed by Laplace technique when the resistance of PCSS is taken into account.
     The impulse radar system is made up of some modules such as pulse charged module, laser generation and optical fibre transmission module, the module for the control of time sequence between two triggering signals, the antenna package module integrated with Blumlein transmission line and antenna.Among those modules,the pulse charged module is independently designed,developed and tested by the author.Other modules are designed,developed and tested by the collaboration of our research group.After the impulse radar system is completed, properties of transient electromagnetic pulse such as transmission, power combination and beam formation are explained and verified when simulation results and experimental results are in their comparison.
引文
[1].Jayaraman S, Lee C H. Observation of two-photon conductivity in GaAs with nanosecond and picosecond light pulse. Appl. Phys. Lett., 1972, 20 (10): 392-395
    [2].Auston D.H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. lett., 1975, 26 (3): 101-103
    [3].黄裕年.高功率微波武器技术的发展评述.微波学报. 1999, 12(4): 354-360
    [4].黄裕年.采用光导开关的脉冲功率系统.半导体光电. 2000, 21(5): 321-324
    [5].Gong-Ru Lin, Wen-Chung Chen, C.S.Chang, et al. Material and Ultra-fast Optoelectronic Properties of Furnace-Annealed Arsenic-Ion-Implanted GaAs, IEEE Journal of quantum electronics, 1998, 34(9): 1740-1747
    [6].F.J.Zutarvern, J.C.Armijo, S.M.Cameron, et al. Optically activated switches for low jitter pulsed power applications. Pulsed Power Conference, 2003. Digest of Technical Papers. PPC-2003. 14th IEEE International, 2003: 591-594
    [7].A.Mar, G.M.Louberiel, F.J.Zutarvern, et al. Fireset applications of improved longevity optically activated GaAs photoconductive semiconductor switches. Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers, 2001: 166-169
    [8].Forrest J.Agee, David W. Scholfield, William Prather, Jeffrey W. Burger. Powerful ultra-wideband RF Emitters status and challenges. SPIE, 1995, 2557: 98-109
    [9].Loudire G.M. Photoconductive semiconductor switches for fire sets and electro-optic modulators. In: Proc. Of 10th IEEE, pulsed power conf., 1995: 354-359
    [10].Forrest J. Agee and Robert J. Barker. Basic research in High Power Microwaves (HPM): recent progress in university and Air Force Research Laboratory efforts SPIE, 1997, Vol.3158: 120-128
    [11].Burger J.W. PCSS used for UWB high power microwave generation. Proc. Of SPIE, 1997, 3158: 65-71
    [12].G.M. Louberiel, J.F.Aurand, G.J.Dension, et al. Optically-activated GaAs switches for ground penetrating radar and firing set applications. Pulsed Power Conference, 1999. Digest of Technical Papers. 12th IEEE International, 1999: 673-676.
    [13].Funk E.E. Generation of an 80kW pulse in a PCSS controlled inductive energy storage pulsedpower system. In Proc. 9th high power particle beams conf., 1992: 102-105
    [14].F.J.Zutarvern, G.M.Louberiel, Wesley D.Helgeson, et al. Optically-activated GaAs switches for compact accelerators and short pulse sensors. IEEE 1996: 31-34
    [15].Falk R.A. Optical probe techniques for avalanching photoconductors. In Proc: 8th IEEE pulsed power conf.,1991: 29-31
    [16].Wonkyu Choi, Jang Myoun Kim, Ji Hoon Bee. Cheolsig Pyo. High gain and broadband microstrip array antenna using combined structure of corporate and series feeding. Antennas and Propagation Society International Symposium,IEEE, 2004: 2484-2487
    [17].J.M.Lehr, M.D.Abdalla, J.S.H.Schoenberg, et al. Progress toward a compact, high power ultra-wideband array using gallium arsenide photoconductive semiconductor switches. Conference Record of the 1998 Twenty-Third International Power Modulator Symposium, 1998:156-159
    [18].Ralg Peter Brinkmann, Karl H. schoenbach, Michael S. Mazzola, et al. Analysis of time-dependent current transport in an optically controlled Cu-compensated GaAs switches. SPIE Optically Activated Switching, 1992, 1632: 262-273
    [19].Hudgins J L,Bailey D W, et al. Streamer model for ionization growth in a photoconductive power switch .IEEE Trans. power Electronics.1995, 10(5): 615~620
    [20].Dougal R A, Hudgins J L, et al. Optical FIgure of Merit for High gain Photoconductive switching. In Proc. 20th IEEE power modulator symposium. 1992:301-306
    [21].施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析.电子学报, 2000, 28(2): 20-23
    [22].曾刚,杨宏春,吴明和,等.线元天线阵列传输特性实验研究.压电与声光, 2007, 29(1): 103-105
    [23].Fred J.Zutarvern, G. M. Louberiel, M.W.O’Malley, et.al. Photoconductive semiconductor switch experiments for pulsed power applications. IEEE Transactions on Electronics Device, 1990, 37(12): 2472-2477
    [24].Brittingham J N. Focus wave modes in homogeneous Maxwell’s equations in transverse electric mode. J Appl Phys, 1983, 54(3): 1179-1189
    [25].Ziolkowski R W. Localized transmission of electromagnetic energy. Phys. Rev. A, 1989, 39(4): 2005-2033
    [26].Ehud Heyman, Felsen L B. Complex-source pulsed-beams fields. J. Opt. Soc. Am. A, 1989, 6: 806-817
    [27].F.J.Zutarvern, G.M.Louberiel, M.W.O’Malley, et al. Characteristics of current filamentation inhigh gain photoconductive switching. Power Modulator Symposium IEEE,1992: 305-311
    [28].G.M.Louberiel, M.W.O′malley, F.J.Zutarvern, et al. High Current photoconductive semi- conductor switching. IEEE, 1988: 312-317
    [29].William C.Nunnally. High-power microwave generation using optically activated semiconductor switches. IEEE transactions on electronics device, 1990, 37(12): 2439-2448
    [30].Wu T T, Lehmann H. Spreading of electromagnetic pulses. J Appl Phys, 1985, 58(5): 2064-2065
    [31].Shen H M, Wu T T. the transverse energy pattern of an electromagnetic missile from a circular disk. Proc SPIE, 1989: 1061
    [32].Wang Gang, Wang Wenbing, Liang Changhong. Beam characteristics of short-pulse radiation with electromagnetic missile effect. J. Appl. Phys., 1998, 83(10): 5040-5044
    [33].Wen Keyi, Ruan Chengli, Lin Weigan.Unified theory of the backscattering of electromagnetic missiles by a perfectly conducting target. J. Appl. Phys.1992, 71(7):3103-3106
    [34].Wu T T, King R W P, Shen H M. Spherical lens as a launcher of electromagnetic missiles. J. Appl. Phys., 1987, 62(10): 4036-4040
    [35].Shen H M, King R W P, Wu T T. V-Conical antenna. IEEE Trans. Ap., 1988, 36(11): 1519-1525
    [36].Shen H M. Experimental study of electromagnetic missiles. Proc SPIE, 1988, 873: 399-346
    [37].Shen H M, Wu T T, King R W P. Generalized analysis of the spherical lens as a launcher of electromagnetic missiles. J. Appl. Phys., 1988, 63(12): 5647-5653
    [38].Ziolkowski R W, Lewis D K, Cook B D. an experimental research for the localized wave packet. J.Acoust.Soc.Am.Suppl1, 1988, 84: 209
    [39].阮成礼.电磁导弹概论.北京:人民邮电出版社, 1994, 3-6
    [40].阮成礼,万长华.电磁导弹的波形条件.科学通报. 1990, 36(10): 738-741
    [41].M.G.M.Hussain.Antenna patterns of nonsinsoidal waves with the time variation of a Gaussian pulse. IEEE Transaction on electromagnetic compatibility, 1988, 30(4):504-512
    [42].杨宏春,阮成礼.正弦脉冲与等腰梯形脉冲衰减特性的比较.电子科技大学学报. 2001, 30(6): 571-575
    [43].孙庆玲,杨宏春,阮成礼.瞬态阵列电磁脉冲慢衰减与同相合成特性研究.微波学报(已录用).
    [44].杨宏春,阮成礼.平面阵列瞬态电磁脉冲源轴线能量传播特性研究,全国电波传播学术讨论年会论文集, 2001.9
    [45].龚仁喜,张义门,石顺祥,等.光导开关及其两种工作模式.半导体技术.2001, 26(9):1-8
    [46].E.E.Foreman, M.C.Smith. A comparison of high power solid state GaAs FETs versus microwave power modules from a user’s perspective: The cooperative engagement capability program. Microwave Symposium Digest, 1999 IEEE MTT-S International: 333-336
    [47].Loubriel G M. The use of optically triggered, high gain GaAs switches for UWB pulse generation, Ultra-wideband, short-pulse electromangnetics 2, Edited by Carin L and Felsen L B, plenum press, New York, 1995: 31-33
    [48].Rahul Gunda, David S.Gleason, Kapil Kelkar, et al. Radio-Frequency Heating of GaAs and SiC Photoconductive Switch for High-Power Applications.IEEE Transactions on Plasma Science. 2006, 34(5):1697-1701
    [49].冯晓辉,刘锡三. Blumlein传输线的解析分析.强激光与粒子束. 2000, 12(4): 517-521.
    [50].陈立万,吴明和.一种新型高功率电脉冲产生系统.高电压技术. 2008, 34(5):1057-1061
    [51].Eric E.Funk, Chi H.Lee.Free-Space Power Combining and Beam Steering of Ultra-Wideband Radiation Using an Array of Laser-Triggered Antennas. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(11): 2039-2044
    [52].Sirbu M, Lepaul SBP.Coupling 3-D Maxwell's and Boltzmann's equations for analyzing a terahertz photoconductive switch. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(9): 2991-2998
    [53].M. Li, F. G. Sun, G. A. Wagoner, et.al .Measurement and analysis of terahertz radiation from bulk semiconductors. Appl. Phys. lett.,1995, 67 (1): 25-27
    [54].Tze-an Liu, Gong-Ru Lin, Yen Chi-Lee, et al.Dark current and trailing-edge suppression in ultrafast photoconductive switches and Terahertz spiral antennas fabricated on multienergy arsenic-ion-implanted GaAs. J. Appl. Phys., 2005, 98(013711): 013711-1~ 013711-4.
    [55].Gong-Ru Lin, Ci-Ling Pan.Picosecond responses of low-dosage arsenic-ion-implanted GaAs Photoconductors. Appl. Phys. lett.,1997, 71 (20):2901-2903
    [56].L.Joulaut J. Mangeney, J.-M. Loum’oz, P. Crozar. 2.2 ps electrical pulse generated from 1.55μm optically-triggered ion-irradiated photoconductive switch. Lasers and Electro-optics Society IEEE, 2003: 993-994
    [57].J.F.Holzaman, F.E.Vermeulen, A.Y.Elezzabi. Ultrafast photoconductive self-switching of subpicosecond electrical pulses.IEEE Journal of Quantum electronics. 2000, 32(2):130-136
    [58].M.E.Savage. Final results from the high-current, high-action closing switch test program at Sandia National Laboratories. IEEE on Plasma Science, 1999.74(5): 1238-1241
    [59].王家骅,李长健,牛文成.半导体器件物理.北京:科学出版社, 1983,第一版: 5-14
    [60].D.C.Look and Z.-Q.Fang. Simple measurement of 300 K electron capture cross section for EL2 in GaAs, J. Appl. Phys. 2001,80 (6):3590-3591.
    [61].Fred J.Zutarvern, G. M. Louberiel, M.W.O’Malley, et al. Photoconductive semiconductor switch experiments for pulsed power applications. IEEE transactions on electronics device, 1990, 37(12): 2472-2477.
    [62].V.Ortiz, J.Nagle, J.-F.Lampin,et al. Low-temperature-grown GaAs: modeling of transient reflectivity experiments. J.Appl.Phys., 2007,102, 043515:1-9
    [63].A.Cola, L.Reggiani, L.Vasanell. Field-assisted capture of electrons insemi-insulating GaAs. J.Appl.Phys., 1997, 81(2):997-999
    [64].林维涛,阮成礼,杨宏春. InP:Fe光导开关产生超短电脉冲实验研究.电子科技大学学报. 2003, 32(6): 649-651
    [65].杨春,杨宏春,阮成礼.光导开关实验研究.压电与声光,2004, 26(6): 443-446
    [66].杨宏春,阮成礼,吴明和,等.利用光导开关产生瞬态电脉冲研究.压电与声光,2007, 29(1):6-9
    [67].赵会娟,牛憨笨.光导开关锁定机理分析.光子学报. 1997, Vol.26, No.1: 61-65
    [68].J.S.Kenney, R.J.Allen, S.Ludwig, et al. Temporal development of instablilities in low light activate GaAs switches. IEEE 1992: 320-323
    [69].D.Lancefield,A.R.Adams,and M.A.Fisher. Reassessment of ionized impurity scattering and compensation in GaAs and InP including correlation scattering. J.Appl.Phys., 1987,62(6):2342-2358
    [70].Phillip J.Stout, Mark J.Kushner. Characteristics of an optically activated pulsed power GaAs (Si and Cu) switch obtained by two-dimensional modeling. J. Appl. Phys.,1995, 77 (7): 3518-3522
    [71].Gong RenXi, Zhang YiMen, Shi ShunXiang, et al. Characterization of the performance Parameters of linear photoconductive switches. Solid-state and Integrated-Circuit Technology. IEEE.2001: 1270-1273
    [72]. J.R.Hislum W.C.Nunnally.Analytical modelling of a linear GaAs photoconductive switch for short pulse excitation. IEEE.1999: 1207-1210
    [73].W.Facett, A.D.Broddman, S.Swain. Monte-carlos determination of electron transport properties in GaAs. J.phys.chem.soild, 1970, 31(9):1963-1990
    [74].A.W.Heinle.displaced maxwellian calculation of transport in N-type GaAs. Phys.Rev., 1969, 178(10):13-19
    [75].C.Braun, T.Burke. The role of field enhanced emission from deep level defects in GaAs in optical switches. Power Modulator Symposium. IEEE, 1990: 375-384.
    [76].Zhao H M, Hadizad P, et al. Avalanche injection model for lock-on effect in III-V power Photoconductive Switches. J. Appl.phys., 1993, 73(4): 1007-1012
    [77].S.F.Glover, F.J.Zutarvern, K.W.Reed, et al. Fiber-Optic Controlled PCSS Triggers for High Voltage Pulsed Power Switches. Power Modulator Symposium IEEE, 2006: 192-195
    [78].L.L.Bonilla, P.J.Hernando, M.Kindelan and F.Piazza.H. Determination of EL2 capture and emission coefficients in semi-insulating n-GaAs. Streamer model for ionization growth in a photoconductive power switch. Appl.Phys.Lett.,1999, 74(7):988-990
    [79].V.V.Katsoev, L.V.Katsoev, and E.A.Il’ichev. Role of deep-level centers in compensated semi-insulating GaAs. Russian Microelectronics,2008,37(5):296-301
    [80].F. Piazza, P. C. M. Christianen, and J. C. Maan.Electric field dependent EL2 capture coefficient in semi-insulating GaAs obtained from propagating high field domains. Appl. Phys. Lett., 69 (13):1909-1911.
    [81].施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析.电子学报.2000, 28(2): 20-23
    [82].Phillip J.Stout, Mark J.Kushner. Modeling of high power semiconductor switches operated in the nonlinear mode. J. Appl. Phys., 1996, 79 (4): 2084-2090
    [83].M.K.Browder, W.C.Nunnally. Analytical studies of non-linear photoconductive switching in bulk GaAs semiconductor switches. IEEE 1990: 361-366
    [84].W.T.White III, C.G.Dease, Michael D.Pocha, et al. Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension. IEEE transactions on electronics device, 1990, 37(12): 2532-2541.
    [85].Fork P A, Adams J C, Capps C D, et al. Optical probe technique for avalanching photocond- uctors, 1991 Proc. 8th IEEE Pulsed Power Conference, San Diego, CA: 29-32
    [86].K.Kambour, H.P.Hjalmarson, F.J.Zutarvern, et al. Simulation of Current Filaments in Photo- conductive Semiconductor Switches.Pulsed Power Conference IEEE. 2005: 814-817
    [87].Zutavern F.J.Z, Loubriel G.M, Mally M.W.O. High gain photoconductive semiconductor switching, Proc. 1991 8th IEEE Pulsed Power Conrence, San Diego, CA: 23-26
    [88].A.Neumann. Slow domain in semi-insulating GaAs.J.Appl.Phys.,2001, 90(1):1-26.
    [89].杨宏春,阮成礼,孙庆玲等.线性GaAs光电导开关的饱和参数研究,科学通报.2008, 53(13): 1516-1522
    [90].F.J.Zutarvern, Albert G.Baca, Weng W,et al. Electron-hole plasmas in semiconductors. Pulsed Power Plasma Science IEEE,2002: 289-293
    [91].Wei Shi, LiQiang Tian,Zheng Liu, et al. 30kV and 3 kA semi-insulating GaAs photo-conductive semiconductor switch. Appl.Phys.lett., 2008, 92 (043511):043511-1~043511-3.
    [92]. M.Kaminska, J.M.Parsey, J.lagowski, et al. Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electronics by the major deep donor EL2. Applied physics lett., 1982, 41 (10): 989-991
    [93].G.E.Bulman, V.M.Robbins, K.F.Brennan, K.Hess, et al. Experimental determination of impact ionization coefficients in(100) GaAs.IEEE electron device letters. 1983, 4(6): 181-185
    [94].K.S.Kelkar, N.E.Islam, C.M.Fessler, et.al. Silicon carbide photoconductive switch for high- power, linear- mode operations through sub-band-gap triggering. J. Appl.phys.,2005, 98(093102): 093102-1~093102-4
    [95].Minghe Wu, Xiaoming Zheng, Chengli Ruan, Hongchun Yang, Yunqing Sun, Shan Wang, Kedi Zhang and Hong Liu. Photoresistances of semi-insulating GaAs photoconductive switch illuminated by 1.064μm laser pulse.J. Appl. Physics.2009, 106,023101: 1~6.
    [96].吴明和,阮成礼,杨宏春. GaAs半导体对1.06微米激光的吸收响应.激光与光电子进展. 2005, 42(2):30-33
    [97].沈学础.半导体光谱和光学性质.北京:科学出版社.2002,第二版,133-139.
    [98].吴明和,郑晓明,孙云卿,等.储能电容与光导开关工作模式.电子科技大学学报.(录用待发)
    [99].J.A.Oicles, J.R.Grant, M.H.Herman. Realizing the potential of photoconductive switching for HPM application. SPIE 2557:225-236.
    [100].犬石嘉雄,滨川圭弘,白藤纯嗣.半导体物理.北京:科学出版社,1986,第1版: 138-144
    [101].S.M.Sze and G.L.Gibbons. Avalanche breakdown voltage of aobrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP. Appl. Phys. Lett. 1966, 8(5): 111-113
    [102].吴明和,阮成礼,杨宏春,等.用回扫变压器赋能的光导开关功率辐射系统.高电压技术.2007, 33(9):143-145.
    [103].Hongchun Yang,Chengli Ruan,Weitao Lin. Beam scanning and decaying property of linear element planar antenna array. Chinese journal of radio science, 2003, 18(5): 496-501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700