北黄海末次冰消期以来沉积特征及物源环境指示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对908底质调查为主的三次北黄海海洋地质调查获得的大量沉积物样品的粒度和矿物分析,并结合AMS14C测年数据,探讨了北黄海末次冰消期以来的沉积特征及演化模式,并由此分析了北黄海物质来源和沉积环境。北黄海表层沉积物粒度分析结果显示:研究区沉积物以砂、粉砂质砂、砂质粉砂为主,粉砂分布范围较小,泥分布范围最小。研究区自西南向东北,沉积物粒径逐渐变粗,由粉砂和泥质沉积逐渐转变为东北部的砂质沉积。通过粒度分析可将北黄海划分为5个分区,分别受到物源、水动力环境等因素的控制。
     粘土矿物分析结果表明,北黄海现代粘土矿物中,伊利石含量占绝对优势,其次为蒙皂石、绿泥石和高岭石。K型聚类分析成功识别出北黄海细颗粒沉积区粘土组合和北黄海粗颗粒沉积区粘土组合。其中细颗粒沉积区粘土矿物主要来源于黄河细颗粒物质;粗颗粒沉积区的粘土矿物则主要受到鸭绿江的影响,后者为该区提供丰富的伊利石和绿泥石。粘土矿物的空间分布与黄海环流体系有密切关系:黄海暖流和山东半岛沿岸流对细颗粒区粘土矿物的输运其主要作用,而辽东沿岸流则为大连湾附近海域提供了较多的来自于鸭绿江的伊利石和绿泥石,北黄海中部海域蒙皂石的显著富集可能与北上的黄海暖流有关。
     对63-125μm粒级(个别扩大到63-250μm粒级)碎屑矿物镜下鉴定结果表明,北黄海现代碎屑矿物中轻矿物含量较高,达到97%,重矿物含量较少,平均仅有3%。普遍出现的轻矿物有6种,以长石、石英为主,重矿物共29种,普通角闪石、绿泥石、绿帘石和白云母含量较高;研究区东北部砂质区间内矿物分布的重要控制因素是强潮流场作用下的动力分选,物质来源有鸭绿江河流输入和全新世前夕海侵造成侵蚀改造的残留沉积;大连湾-长山列岛附近海域,由于水深较浅形成的较强动力分选是区间内矿物分布的主控因素,物质来源主要是近岸及附近岛屿剥蚀;西南部细颗粒沉积区以片状矿物富集为主要特征,主要在山东半岛沿岸流及其回流以及黄海暖流的作用下接受较多的黄河沉积物;研究区中部的沉积特征显示,那里是冬季黄海暖流进入北黄海并经由渤海海峡进入渤海的通道,其在一定程度上阻挡了东西和南北两部分海域物质和水体交换,呈现通道沉积的特征。
     北黄海现代细颗粒沉积区两个岩芯的粒度组成、矿物分布特征以及AMS14C年代信息,揭示了该区域自末次冰消期以来的沉积环境和沉积演化模式。结果表明:两个岩芯沉积序列相关性较好,根据其岩石学及矿物学特征,可被分为4个沉积单元,分别对应冰后期海侵不同阶段。沉积单元4(11.5 ka之前)以砂组分的富集为最显著特征,且被推断为新仙女木时期(Younger Dryas)的近岸浅水区沉积。沉积单元3(11.5-9.6 ka)呈现一个向上逐渐变细的沉积序列,其沉积物主要来源于周边河流(比如黄河)以及沿岸侵蚀,与全新世早期海侵作用密切相关。自沉积单元2(9.6-6.4 ka),岩芯开始呈现稳定的细颗粒沉积,此时细颗粒沉积物可能源于山东半岛水下三角洲的供给。沉积单元1(6.4 ka以后)于全新世中期海平面达到最大之后形成,主要自黄海环流的带动下,接受较多的黄河物质。
     总之,北黄海现代沉积物主要是陆源沉积,由周边河流携带而来,其中黄河、鸭绿江等较大河流起主要作用,另外还有近岸侵蚀、海底侵蚀等也为北黄海贡献了较多的粗颗粒沉积物。东部的强潮流、中部的黄海暖流和南部的沿岸流共同主宰着那里的沉积分布格局。
In order to identified the provenance and sedimentary environment, and reconstruct the depositional history of ancient epicontinental seas, it is important to understand sediment characteristics and transport processes of modern and cores deposition in the continental shelf environments. A large number of surface and core sediments were obtained during cruise to the North Yellow Sea (NYS). Base upon grain size, mineral analyses, and AMS14C and 210Pb dating, the sediment characteristics and evolution were discussed, and the provenance and sedimentary environment were analyzed in addition. Grain size of surface sediment samples were analyzed, indicating that the surface sediments in the study area could be identified as mud, silt, sandy silt, silty sand and sand, and became coarser and coarser from southwestern part to northeastern. The NYS could be divided into five sediment environmental zones according to grain size analysis, which was dominated by factors such as provenance and hydrodynamic environment respectively.
     The clay minerals in the <2μm fraction of surface sediment samples from the NYS have been identified. Illite was the most abundant component in the modern clay minerals of NYS, followed by smectite, chlorite and kaolinite. The results of the K-means clustering analysis discriminated the fine-deposition in the western part and the coarse-deposition in the northeastern part on the basis of clay mineral assemblages. Fine materials from Huanghe, as well as west coastal erosion and other rivers supplied clay minerals for western part of NYS, while Yalujiang River offered plenty of illite and chlorite with clear abrasive edge and lower crystallography index for northeastern NYS. The spatial distribution of clay minerals has a close relationship with the local circulation system. The Yellow Sea Warm Current (YSWC) and Yellow Sea Coastal Current (YSCC) exerted good control on transportation clay minerals in western NYS. Liaonan Coastal Current (LCC) brought more illite and chlorite from Yalujiang to deposit near Dalian Bay. The enrichment of smectite in the central part of the investigated area was considered to be northward transported by YSWC.
     Modern detrital minerals in NYS were absolutely dominated by light minerals (97% in average). Mineral assemblages were characterized by relatively high content of feldspar, quartz in light minerals and hornblende, chlorite, epidote, muscovite in heavy minerals. In sandy deposition of northeastern NYS, the dynamic sorting under strong tidal currents largely affected the distribution of detrital minerals, which derived from Yalujiang River and residual deposition before Holocene. Near the Dalian Bay—Changshan Islands area, dynamic sorting in shallow water exerted a dominant control on detrital minerals distribution, and sediments were mainly derived from the coastal erosion. Schistose minerals were extremely enriched in fine-grained deposition in southwestern NYS, hydrodynamic was weak therein and differentiation during long-distance transporting was responsible for the distribution of detrital minerals, which was considered to be subjected to great influence from Yellow River. The center of NYS, which was a multi-source deposition zone affected by multiple factors, was speculated to be the response of the YSWC, which obstruct water and sediment exchange between west and east regions as well as south and north regions to a large extent.
     To decipher the sedimentary evolution and sedimentary environment changes since the Last Deglaciation, two gravity cores, B-L44 and B-U35 from the western NYS were analyzed in grain size, clay minerals, detrital minerals, and 14C dating. The two cores are correlated with each other, and the succession observed are divided into four depositional units in lithology and mineral assemblages, which record the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized by great enrichment of sand, and was diagnosed as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediment from local rivers, such as Yellow River, and from coastal erosion, clearly related to the early Holocene transgression. Stable fine deposition (DU 2) in NYS began to form at about 9.6 ka and received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of DU 1 (after 6.4 ka) after the sea level maximum.
     In a word, the modern sediment in the NYS is dominated by terrigenous depositions from such as Yellow River, Yalujiang River and so on. Additionally, erosion, including coastal erosion and sea erosion, contributed to the NYS more coarse particles. The strong tidal current in eastern, the YSWC in central and YSCC in southern jointly dominated the distribution pattern in the NYS.
引文
Abe, K., Ishihi, Y., Watanabe, Y., 2003. Dissolved copper in the Yellow Sea and the East China Sea--Cu as a tracer of the Changjiang discharge. Deep Sea Research Part II: Topical Studies in Oceanography 50(2): 327-337.
    Alexander, C. R. (1990). Modern sedimentation in the Yellow Sea: Application to geologic models of epicontinental-shelf and macrotidal-mudflat environments. Geology, North Carolina State University. Ph.D.: 198.
    Alexander, C. R., DeMaster, D. J., Nittrouer, C. A., 1991. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology 98(1): 51-72.
    Alley, R. B., 2000. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19(1-5): 213-226.
    Bard, E., Hamelin, B., Delanghe-Sabatier, D., 2010. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327: 1235-1237.
    Bard, E., Hamelin, B., Fairbanks, R. G., 1990. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130000 year. Nature 346(6283): 456-458.
    Beardsley, R. C., Limeburner, R., Yu, H., Cannon, G. A., 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research 4(1-2): 57-76.
    Biscaye, P. E., 1965. Mineralogy and Sedimentation of Recent Deep-Sea Clay in Atlantic Ocean and Adjacent Seas and Oceans. Geological Society of America Bulletin 76(7): 803-&.
    Chen, Y. L., Hu, D. X., Wang, F., 2004. Long-term variabilities of thermodynamic structure of the East China Sea cold eddy in summer. Chinese Journal of Oceanology and Limnology 22(3): 224-230.
    Cheng, P., Gao, S., Bokuniewicz, H., 2004. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis. Estuarine, Coastal and Shelf Science 60(2): 203-212.
    Chough, S. K., Kim, D. C., 1981. Dispersal of fine-grained sediments in the southeastern Yellow Sea: a steady-state model. Journal of sediment petrology 51: 721-728.
    Chough, S. K., Lee, H. J., Yoon, S. H., Eds. (2000). Marine Geology of Korean Seas. Amsterdam, Elsevier.
    Drake, D. E., 1976. Suspended sediment transport and mud deposition on continental shelves. Marine sediment transport and environmental management. D.J. Stranley ,D.J.P. Swift. New York: 127-158.
    Dronkers, J., Miltenburg, A. G., 1996. Fine sediment deposits in shelf seas. Journal of Marine Systems 7(2-4): 119-131.
    Ehrmann, W., 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 139(3-4): 213-231.
    Ehrmann, W., Polozek, K., 1999. The heavy mineral record in the Pliocene to Quaternary sediments of the CIROS-2 drill core, McMurdo Sound, Antarctica. Sedimentary Geology 128(3-4): 223-244.
    Ehrmann, W. U., Melles, M., Kuhn, G., Grobe, H., 1992. Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology 107(4): 249-273.
    Fairbanks, R. G., 1989. A 17000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342: 637-642.
    Fu, M., Li, Z., Xu, X., Shi, X., 2003. Sporopollen analysis of Core B10 in the southern Yellow Sea and reflected characteristics of climate changes. chinese science bulletin 48(S1): 42-48.
    Gao, S., Park, Y. A., Zhao, Y. Y., Qin, Y. S. (1996). Transport and resuspension of fine-grained sediments over the southeastern Yellow Sea. Proceedings of the Korean–China international seminar on Holocene and late Pleistocene environments in the Yellow Sea Basin. L. C.B. ,Z. Y.Y. Seoul, Korea. Garzanti, E., Andò, S., 2007. Heavy Mineral Concentration in Modern Sands: Implications for Provenance Interpretation. Developments in Sedimentology. A.M. Maria ,T.W. David, Elsevier. Volume 58: 517-545.
    Garzanti, E., Andò, S., Vezzoli, G., 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters 273(1-2): 138-151.
    Gibbs, R. J., 1977. Clay mineral segregation in the marine environment. Journal of sediment petrology 47(1): 237.
    Gingele, F. X., 1996. Holocene climatic optimum in Southwest Africa--evidence from the marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeoecology 122(1-4): 77-87.
    Gingele, F. X., De Deckker, P., Hillenbrand, C.-D., 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia -- source and transport by ocean currents. Marine Geology 179(3-4): 135-146.
    Gingele, F. X., Müller, P. M., Schneider, R. R., 1998. Orbital forcing of freshwater input in the Zaire Fan area--clay mineral evidence from the last 200 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 138(1-4): 17-26.
    Giorgetti, G., Talarico, F., Sandroni, S., Zeoli, A., 2009. Provenance of Pleistocene sediments in the ANDRILL AND-1B drillcore: Clay and heavy mineral data. Global and Planetary Change 69(3): 94-102.
    Guan, B., 1988. Major features and variability of the Kuroshio in the East China Sea. Chinese Journal of Oceanology and Limnology 6(1): 35-48.
    Hanebuth, T., Statteffer, K., gROOTES, P. M., 2000. Rapid flooding of the Sunda Shelf: a late-Glacial sea-level record. Science 228(5468): 1033-1035.
    Hover, V. C., Ashley, G. M., 2003. Geochemical signatures of paleodepositional and diagenetic environments: a STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania Clays and clay minerals 51(3): 231-251.
    Hu, D., 1984. Upwelling and sedimentation dynamics. Chinese Journal of Oceanology and Limnology 2(1): 12-19.
    Ichikawa, H., Beardsley, R. C., 2002. The current system in the Yellow and East China Seas. Journal of Oceanography 58(1): 77-92.
    Jian, Z., Wang, P., Saito, Y., Wang, J., Pflaumann, U., Oba, T., Cheng, X., 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters 184(1): 305-319.
    Kim, G., Yang, H.-S., Church, T. M., 1999. Geochemistry of alkaline earth elements (Mg, Ca, Sr, Ba) in the surface sediments of the Yellow Sea. Chemical Geology 153(1-4): 1-10.
    Kim, J.-M., Kennett, J. P., 1998. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae). Marine Micropaleontology 34(1-2): 71-89.
    Kim, J.-M., Kucera, M., 2000. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years. Quaternary Science Reviews 19(11): 1067-1085.
    Kong, G. S., Park, S. C., Han, H. C., Chang, J. H., Mackensen, A., 2006. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea. Quaternary International 144(1): 38-52.
    Lee, H. J., Chough, S. K., 1989. Sediment distribution, dispersal and budget in the Yellow Sea. Marine Geology 87(2-4): 195-205.
    Lee, H. J., Chu, Y. S., 2001. Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan mud belt. Journal of sediment research 71(144-154).
    Lee, H. J., Jeong, K. S., Han, S. J., Bahk, K. S., 1988. Heavy minerals indicative of holocene transgression in the southeastern Yellow Sea. Continental Shelf Research 8(3): 255-266.
    Lesueur, P., Tastet, J. P., Marambat, L., 1996. Shelf mud fields formation within historical times: examples from offshore the Gironde estuary, France. Continental Shelf Research 16(14): 1849-1870.
    Li, C. X., Zhang, J. Q., Fan, D. D., Deng, B., 2001. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Marine Geology 173(1-4): 97-120.
    Lie, H. J., Cho, C. H., Lee, J. H., Lee, S., Tang, Y. X., Zou, E., 2001. Does the Yellow Sea Warm Current really exist as a persistent mean flow? Journal of Geophysical Research 106(10): 22199-22210.
    Lim, D. I., Jung, H. S., Choi, J. Y., Yang, S., Ahn, K. S., 2006. Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance. Continental Shelf Research 26(1): 15-24.
    Liu, J.-p. (2001). Post-glacial sedimentation in a river-dominated epicontinental shelf:The Yellow Sea example. VA, USA, The College of William Mary. phD Dissertation.
    Liu, J., Li, A., Chen, M., Xiao, S., Wan, S., 2008a. Sedimentary changes during the Holocene in the Bohai Sea and its paleoenvironmental implication. Continental Shelf Research 28(10-11): 1333-1339.
    Liu, J., Saito, Y., Kong, X., Wang, H., Xiang, L., Wen, C., Nakashima, R., 2010. Sedimentary record of environmental evolution off the Yangtze River estuary,East China Sea, during the last ~13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quaternary Science Reviews 29(17-18): 2424-2438.
    Liu, J., Saito, Y., Kong, X., Wang, H., Zhao, L., 2009a. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea. Continental Shelf Research 29(7): 846-855.
    Liu, J., Saito, Y., Wang, H., Yang, Z., Nakashima, R., 2007. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology 236(3-4): 165-187.
    Liu, J. P., Milliman, J. D., Gao, S., 2002. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea. Geo-Marine Letters 21(4): 212-218.
    Liu, J. P., Milliman, J. D., Gao, S., Cheng, P., 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology 209(1-4): 45-67.
    Liu, Z., Trentesaux, A., Clemens, S. C., Colin, C., Wang, P., Huang, B., Boulay, S., 2003. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology 201(1-3): 133-146.
    Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C.-Y., Selvaraj, K., Chen, C.-T. A., Zhao, Y., Siringan, F. P., Boulay, S., Chen, Z., 2008c. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology 255(3-4): 149-155.
    Liu, Z., Xia, D., Berne, S., Wang, K., Marsset, T., Tang, Y., Bourillet, J. F., 1998. Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea. Marine Geology 145(3-4): 225-253.
    Luepke, G., 1980. Opaque minerals as aids in distinguishing beween source and sorting effects on beach-sand mineralogy in southwestern oregon. Journal of Sedimentary Research 50(2): 489-495.
    Martin, J. M., Zhang, J., Shi, M. C., Zhou, Q., 1993. Actual flux of the Huanghe (yellow river) sediment to the Western Pacific ocean. Netherlands Journal of Sea Research 31(3): 243-254.
    McCave, I. N., 1972. Transport and escape of fine-grained sediment from shelf areas. Shelf sediment transport: process and pattern;. D.J.P. Swift, D.B. Duane ,O.H. Pilkey. Dowden, Hutchinson and Ross: 225-248.
    McManus, J., 1988. Grain size determination and interpretation. Techniques in sedimentology. M.E. Tucker. Oxfor England, Blackwell science.
    Milliman, J. D., Meade, R. H., 1983. World-Wide Delivery of River Sediment to the Oceans. The Journal of Geology 91(1): 1-21.
    Milliman, J. D., Qin, Y. S., Ren, M.-E., Saito, Y., 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. Journal of Geology 95(6): 751-762.
    Moore, D. M., Reynolds, R. C. J., Eds. (1997). X-Ray diffraction and the identification and analysis of clay minerals. Oxford New York, Oxford University Press.
    Morton, A. C., Hallsworth, C. R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology 124(1-4): 3-29.
    Morton, A. C., Hurst, A., Eds. (1995). Correlation of sandstones using heavyminerals: an example from the Statfjord Formation of the Snorre Field, northern North Sea. Nonbio stratigraphical Methods of Dating and Correlation, Geological Society Special Publication.
    Morton, A. C., Whitham, A. G., Fanning, C. M., 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology 182(1-4): 3-28.
    Naimie, E. C., Blain Ann , C., Lynch, R. D., 2001. Seasonal mean circulation in the Yellow Sea -- a model-generated climatology. Continental Shelf Research 21(6-7): 667-695.
    Park, S.-C., Lee, H.-H., Han, H.-S., Lee, G.-H., Kim, D.-C., Yoo, D.-G., 2000. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Marine Geology 170(3-4): 271-288.
    Park, Y. A., Khim, B. K., 1992. Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology 104(1-4): 205-213.
    Park, Y. A., Kim, B. K., 1994. Sea level fluctuation in the Yellow Sea Basin. Journal of Korean Society of Oceanography 29: 42-49.
    Petschick, R., Kuhn, G., Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology 130(3-4): 203-229.
    Qin, Y. S., Li, F.,1983. Study of influence of sediment loads discharged from the Huanghe River on sedimentation in the Bohai Sea and the Huanghai Sea. Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea,, Hangzhou, China Ocean Press.
    Ren, M.-E., Shi, Y.-L., 1986. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research 6(6): 785-810.
    Saito, Y., Yang, Z., Hori, K., 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41(2-3): 219-231.
    Scourse, J. D., Austin, W. E. N., 2002. Quaternary shelf sea palaeoceanography: recent developments in Europe. Marine Geology 191(3-4): 87-94.
    Shepard, F. P., 1954. Nomenclature based on sand-silt-clay rations. Journal of sediment petrology 24: 151-158.
    Shinn, Y. J., Chough, S. K., Kim, J. W., Woo, J., 2007. Development of depositional systems in the southeastern Yellow Sea during the postglacial transgression. Marine Geology 239(1-2): 59-82.
    Svendsen, J. B., Hartley, N. R., 2002. Synthetic heavy mineral stratigraphy: applications and limitations. Marine and Petroleum Geology 19(4): 389-405.
    Uehara, K., Saito, Y., 2003. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geology 162(1-2): 25-38.
    Wan, S., Li, A., Xu, K., Yin, X., 2008. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene. Journal of China University of Geosciences 19(1): 23-37.
    Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156(1-4): 245-284.
    Wang, Y., Aubrey, D. G., 1987. The characteristics of the China coastline. Continental Shelf Research 7(4): 329-349.
    Wright, L. D., Wiseman, W. J., Bondhold, B. D., Prior, D. B., Suhayda, J. N., Keller, G.H., Yang, Z. S., Fan, Y. B., 1988. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature 332: 629-632.
    Xu, L.-l., Wu, D.-x., Lin, X.-p., Ma, C., 2009. The Study of the Yellow Sea Warm Current and Its Seasonal Variability. Journal of Hydrodynamics, Ser. B 21(2): 159-165.
    Yang, D., Yu, G., Xie, Y., Zhan, D., Li, Z., 2000. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China. Geomorphology 33(1-2): 73-88.
    Yang, J. Y., 2007a. An oceanic current against the wind: How does Taiwan Island Steer Warm Water into the East China Sea? Journal of physical oceanography 37(10): 2563-2569.
    Yang, S., Wang, Z., Guo, Y., Li, C., Cai, J., 2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal of Asian Earth Sciences 35(1): 56-65.
    Yang, S., Youn, J.-S., 2007b. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology 243(1-4): 229-241.
    Yang, S. Y., Jung, H. S., Lim, D. I., Li, C. X., 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews 63(1-2): 93-120.
    Yang, S. Y., Li, C. X., 2000. Elemental compositions in the sediments of the Changjiang and the Huanghe and their tracing implication. Progress In Natural Science 10(8): 612-618.
    Yang, S. Y., Li, C. X., Jung, H. S., Lee, H. J., 2002b. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Marine Geology 186(3-4): 229-241.
    Yang, Z. S., Liu, J. P., 2007c. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology 240 (1-4):169-176.
    Zhang, S. W., Wang, Q. Y., Lü, Y., Cui, H., Yuan, Y. L., 2008. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998. Continental Shelf Research 28(3): 442-457.
    Zhou, W., Head, M. J., An, Z., De Deckker, P., Liu, Z., Liu, X., Lu, X., Donahue, D., Jull, A. J. T., Beck, J. W., 2001. Terrestrial evidence for a spatial structure oftropical-polar interconnections during the Younger Dryas episode. Earth and Planetary Science Letters 191(3-4): 231-239.
    中国科学院《中国自然地理》编委会, Ed. (1981).中国自然地理—地表水.北京, 科学出版社.
    王年斌,周尊春, 2006.大连湾赤潮异弯藻赤潮的多元分析.海洋学报28(3): 151-156.
    王昆山,王国庆,蔡善武,窦衍光,石学法,程振波,姜晓黎, 2007.长江水下三角洲沉积物的重矿物分布及组合.海洋地质与第四纪地质27(1): 7-12.
    王昆山,石学法,林振宏, 2003.南黄海和东海北部陆架重矿物组合分区及其来源.海洋科学进展21(1): 31-40.
    王琦,杨作升, 1981.黄海南部表层沉积物中的自生黄铁矿.海洋与湖沼12(1): 25-32.
    王伟,李安春,徐方建,黄朋,李艳, 2009.北黄海表层沉积物粒度分布特征及其沉积环境分析.海洋与湖沼40(5): 525-531.
    王红霞,林振宏,文丽,姜学钧,张志, 2004.南黄海西部表层沉积物中碎屑矿物的分布.海洋地质与第四纪地质24(1): 51-56.
    丘道立,周诗贵,李昌明, 1989.应用聚类分析法划定黄海水团的初步研究.中国海洋大学学报(自然科学版) 6(3): 287-289.
    申顺喜,陈丽蓉,高良,李安春, 1993.南黄海冷涡沉积和通道沉积的发现.海洋与湖沼24(6): 563-570.
    任美锷,杨纫章,包浩生, Eds. (1979).中国自然地理纲要.北京,商务印书馆.
    成松林, Ed. (1983).我国的河流.北京,科学出版社.
    何良彪,刘秦玉, 1997.黄河与长江沉积物中粘土矿物的化学特征.科学通报42(7): 730-734.
    何将启,梁世友,赵永强,程晓玲,李海华, 2007.北黄海盆地地质构造特征及其在油气勘探中的意义.海洋地质与第四纪地质27(2): 101-105.
    李凡, Ed. (1998).黄河埋藏古河道及灾害地质图集.济南,济南出版社.
    李凡,丁宗信, 1996.南黄海海水中悬浮体垂向分布类型及跃层.海洋科学集刊37: 33-42.
    李安春(1997).中国东部海域可矿物气溶胶通量及物质组成特征的研究.青岛,中国科学院海洋研究所.博士: 144.
    李汝燊, Ed. (1984).自然地理统计资料(新编第二版).北京,商务印书馆.
    李绍全,刘健,王圣洁,杨子赓, 1997.南黄海东侧陆架冰消期以来的海侵沉积特征.海洋地质与第四纪地质17(4): 1-12.
    李艳,李安春,万世明,徐方建,李传顺,池野, 2009.大连湾近海表层沉积物矿物组合分布特征及其物源环境.海洋地质与第四纪地质29(4): 115-121.
    李铁刚,江波,孙荣涛,张德玉,刘振夏,李青, 2007.末次冰消期以来东黄海暖流系统的演化.第四纪研究27(6): 945-954.
    李铁刚,常凤鸣,于心科, 2010. Younger Dryas事件与北黄海泥炭层的形成.地学前缘17(1): 322-329.
    和钟铧,刘招君, 2001.柴达木盆地北缘大煤汉剖面重矿物分析及其地质意义. 世界地质20(3): 279-284.
    周晓静,池野,李安春,孟庆勇,胡刚, 2009.两种方法计算粘土矿物相对含量结果的比较.海洋地质与第四纪地质待刊.
    林晓彤,李巍然,时振波, 2003.黄河物源碎屑沉积物的重矿物特征.海洋地质与第四纪地质23(3): 17-21.
    初凤友,陈丽蓉,申顺喜,李安春,石学法, 1995.南黄海自生黄铁矿成因及其环境指示意义.海洋与湖沼26(3): 227-233.
    金秉褔,林振宏,杨群慧,季褔武, 2002.沉积矿物学在陆缘海环境分析中的应用. 海洋地质与第四纪地质22(3): 113-118.
    金翔龙, Ed. (1982).黄东海地质.北京,科学出版社.
    金翔龙, Ed. (1988).东海海洋地质.北京,海洋出版社.
    金翔龙, Ed. (1992).东海海洋地质.北京,海洋出版社.
    修日晨,李繁华,孔祥德, 1989.渤海及北黄海潮流场的基本特征.海洋科学(5): 1-7.
    徐方建(2009).东海内陆架泥质区EC2005孔沉积特征及古环境记录.海洋地质与环境重点实验室.青岛,中国科学院海洋研究所. Ph D.
    徐茂泉,许文彬,孙美琴,彭时文, 2004.福建兴化湾表层沉积物中重矿物组分及其分布特征.海洋学报26(5): 74-82.
    徐学仁,张志中, 2004.应用分光光度计法检测大连湾海水COD.海洋环境科学23(3): 58-60.
    秦蕴珊,李凡, 1986.黄河入海泥沙对渤海和黄海沉积作用的影响.海洋科学集刊27: 124-134.
    秦蕴珊,赵一阳,陈丽蓉,1989.黄海地质.北京,海洋出版社.
    高抒, 2002.全球变化中的浅海沉积作用与物理环境演化—以渤、黄、东海区域为例.地学前沿9(2): 330-335.
    高建华,李军,汪亚平,白风龙,李家胜,程岩, 2009.鸭绿江河口及济南海域沉积物中重矿物组成、分布及其沉积动力学意义.海洋学报31(3): 84-94.
    高建华,高抒,董礼先,张经, 2003.鸭绿江河口地区沉积物特征及悬沙输送.海洋通报22(5): 26-33.
    程天衣,赵楚年, 1985.我国主要河流入海径流量、输沙量及对沿岸的影响.海洋学报7(4): 461-471.
    程鹏(2000).北黄海细颗粒物质的沉积特征和输运过程.海洋地质与环境重点实验室.青岛,中国科学院海洋研究所.博士学位论文.
    程鹏,高抒, 2000.北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼31(6): 604-615.
    程鹏,高抒,刘敬圃,官晨钟,王桂芝, Milliman, J. D., 2001.北黄海西部全新统分布的初步认识.第四纪研究21(4): 379.
    董礼先,苏纪兰,王康墡, 1989.黄渤海潮流场及其与沉积物搬运的关系.海洋学报11(1): 102-114.
    刘振夏,夏冬兴,王撰洋, 1998.中国陆架潮流沉积体系和模式.海洋与湖沼29(2): 141-147.
    刘健,王红,李绍全,金仙梅, 2004.南黄海北部泥质沉积区冰后期海侵沉积记录. 海洋地质与第四纪地质24(3): 1-10.
    刘健,李绍全,王圣洁,杨子赓,葛宗诗, 1999.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质19(1): 13-24.
    刘敬圃,赵松龄, 1995.渤海海底买曾黄土及沿岸出露黄土的成因.海洋与湖沼26(4): 363-368.
    刘爱菊,尹逊福,卢铭, 1984.黄海潮汐特征Ⅱ.黄渤海海洋2(2): 24-27.
    刘现明,徐学仁, 2001.大连湾沉积物中PAHS的初步研究.环境科学学报21(4):507-509.
    吕亚男, 1982.山东日照近岸沉积物的重矿物分布与来源.山东海洋学院学报12(3): 43-52.
    吕晓霞,宋金明,李学刚,袁华茂,詹天荣,李宁,高学鲁, 2005.北黄海沉积物中氮的地球化学特征及其早期成岩作用.地质学报79(1): 114-123.
    孙白云, 1990.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征.海洋地质与第四纪地质10(3): 23-34.
    孙湘平, Ed. (2006).中国近海区域海洋.北京,海洋出版社.
    汤毓祥,邹娥晦, Jae, L. H., 2001.冬至初春黄海暖流的路径和起源.海洋学报23(1): 1~12.
    温国义,李广雪, 2008.根据AVHRRSST探讨中国北部海域冬季环流演变.海洋环境科学27(增2): 19-23.
    缪经榜,刘兴泉, 1989.北黄海和渤海冬季环流动力学的数值试验.海洋学报11: 15-22.
    苏纪兰,黄大吉, 1995.黄海冷水团的环流结构.海洋与湖沼增刊26(5): 1-7.
    蒋富清(2001).冲绳海槽晚第四纪沉积特征及其物源和环境意义.青岛,中国科学院海洋研究所.博士: 139.
    许东禹,刘锡清,张训华, Eds. (1997).中国近海地质.北京,地质出版社.
    赵月霞,刘保华,李西双,刘怀山,王揆洋, 2003.南黄海中西部晚更新世沉积地层结构及其意义.海洋科学进展21(1): 21-30.
    赵松龄, 1991.晚更新世末期中国陆架沙漠化及其衍生沉积的研究.海洋与湖沼22(3): 285-293.
    赵保仁, 1985.黄海冷水团锋面与潮混合.海洋与湖沼16(6): 451-460.
    赵纯厚,朱振宏,周端庄, Eds. (2000).世界江河与大坝.北京,中国水利水电出版社.
    陈志华,石学法,王湘芹,辛春英,孔繁荣, Yi,H.I., 2003.南黄海B-10岩芯的地球化学特征及其对古环境和古气候的反应.海洋学报25(1): 69-77.
    陈丽蓉, 1989.渤海、黄海、东海沉积物中矿物组合的研究.海洋科学(2): 1-8.
    陈丽蓉,2008.中国海沉积矿物学.北京,海洋出版社.
    陈则实, Ed. (1999).中国海湾志北京,海洋出版社.
    韩康,张存智, 1994.大连湾及附近海域潮流场模拟数值.海洋通报13: 20-25.
    齐君,李凤业,宋金明,高抒,王桂芝,程鹏, 2004.北黄海沉积速率及其沉积通量.海洋地质与第四纪地质24(2): 9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700