电弧喷涂金属涂层耐海水冲蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了加速海洋资源的开发,人类在海洋中建造了无数固定与活动的海上构筑物。暴露于海洋环境中的钢构造物,腐蚀最严重的区域是浪花飞溅区,其主要的失效形式之一是冲刷腐蚀。为了得到性能优异的防腐涂层,研究防腐涂层的冲刷腐蚀性能对新型涂层制备有重大意义。
     本文模拟浪花飞溅区的环境特点,设计并制造了一台旋转喷射式冲蚀试验机。该试验机可分为旋转控制系统、试样装夹和固定支撑系统、液(液固)体循环喷射系统、温度控制系统和电化学测试系统五大部分。试验机可实现冲击速度、冲击频率、溶液温度、冲击角度、冲击距离、悬挂试样数量可控,可比较不同材料的抗冲蚀性能,且通过电化学腐蚀测试监测材料冲蚀失效过程中的腐蚀分量,从而分析各因素的影响。试验机浆料流量和浓度稳定,平行试样的数据重现性良好。
     利用电弧喷涂设备,在碳钢基体表面制备了铝、钛、铝钛、铝锌和铝青铜五种涂层试样,在上述自制的冲蚀试验机上进行了冲蚀试验,研究了不同涂层的耐冲蚀性能。结果发现,铝钛、铝锌涂层保护效果较好,铝涂层保护效果居中,钛和铝青铜涂层的保护效果差。对于硬脆的钛涂层,涂层冲蚀后即产生裂纹;对于硬度低,塑性好的铝涂层,涂层冲蚀后产生鼓泡和花蕾状破坏;对于塑韧性较好的铝钛涂层,冲蚀后产生蜂窝和海绵状的破坏结构。
     冲击速度和冲击频率对涂层的冲蚀失效机制有重要影响。研究发现,当低流速、低冲击频率时,即冲击速度4m/s,冲击频率为1/6Hz,涂层主要以腐蚀为主;当增加冲击频率时,即冲击频率为1/3Hz,涂层以腐蚀和流体冲刷为主;进一步增加冲击流速和冲击频率,即冲击速度为8m/s,冲击频率为1Hz,涂层产生了空蚀,主要以力学作用为主,腐蚀为辅。
     在进行冲蚀试验的过程中,采用电化学方法监测了涂层自腐蚀电位和自腐蚀电流密度的变化。试验发现,冲击频率升高,其产生的剪切力能破坏钝化膜,使电位降低;对于牺牲阳极为主的涂层,能加速腐蚀,电位稍微正移。温度升高,可以增加离子和带电体的活性,促进扩散,使得钝化涂层电位降低,但对牺牲阳极型涂层影响很小。在低冲击频率下,流体冲击速度升高使涂层钝化容易,电位升高。经线性极化分析得知,冲蚀能增大腐蚀电流,对腐蚀有加速作用。对于腐蚀占比例较大的涂层,只要冲蚀机制不改变,涂层腐蚀电流基本不变,但其对冲蚀变化敏感。随冲蚀时间延长,铝钛涂层腐蚀电流略微升高,但增加冲击频率时,其腐蚀电流变化很小,对冲蚀变化不敏感。
In order to accelerate the exploration of ocean resource, the human build lots of immovable and movable structures in the sea.The iron structures exposing in the ocean environment are severely corroded in splash zone.In this zone, the most primary failure forms is erosion-corrosion.So, studying coatings’resistance to erosion-corrosion is meaningful to creating high performance coatings in splash zone.
     This paper invent a rotate-jet test machine on slurry erosion-corrosion to simulates the environment of splash zone.This machine include five systems such as rotate controlling system,sample fixing system,liquid(liquid-soild) jet system,temperature controlling system,electrochemical system.The parameters which include impact velocity ,impact frequency,impact distance,temperature,sample numbers are variable.It can compare the resistance to erosion between different materials and analyze corrosion factor during erosion-corrosion by electrochemical detecting.After testing, the slurry flow and concentration is steady-going and the data reappearance of parallel samples is good.
     Metal coatings on iron which include aluminium, titanium, aluminium-titanium, zinc-aluminium, aluminium bronze are made by arc sprying. Then put them to the rotate-jet test machine for studying resistance to erosion-corrosion between different coatings. The protection effect of titanium-aluminium、zinc-aluminium coating are better;aluminium coating is worse than them;titanium、aluminium bronze coating are worst.The titanium coating which has high hardness and brittleness crack during erosion;the aluminium coating which has high plasticity and low hardness blister during erosion;the titanium-aluminium coating which has good toughness has honeycomb-like and sponge-like structure during erosion.
     The erosion-corrosion mechanism is influenced by impact velocity and impact frequency.The failure of coating is controlled by corrosion at low impact velocity and impact frequency. It is controlled by erosion at medium impact velocity and impact frequency and controlled by cavitition at high impact velocity and impact frequency.
     This paper monitors the open circuit potential and corrosion current density of coatings by electrochemical method during erosion-corrosion.Some conclusions are obtained about the test parameter and metal coating’s electrochemical property. Shearing force producing by higher impact frequency can break passive film, reduce the potential of coatings. Higher temperature can increase the activity of ion and charged particles; accelerate diffusion; break passive film. So the potential of passive coating decrease, but the sacrificial anode coating’s potential is little affected. At low impact frequency, higher impact velocity can also increase the coating’s potential.Erosion can increase corrosion current.The coatings controlled by corrosion have stable corrosion current, but they are sensitive to the change of erosion .The corrosion current of coatings which have good resisitence to erosion increase a little with the time flying and they are not sensitive to the change of erosion.
引文
[1]侯保荣.海洋腐蚀与防护[M].科学出版社,1997
    [2]周本刚,井上腾也.腐食七防食[M].大日本图书,1997 0 105
    [3]侯保荣.裸钢喷锌复合层在海洋环境中的腐蚀行为[J].海洋科学2001
    [4] Roger A. Kingo Prediction of corrosiveness of sea bed sediments Materials Performance, January, Vol. 19 P. 39一42
    [5] Francis I.Layueo Marine Corrosion John Wiley&Sons, Inc, 1975.201
    [6] Munger C. (U. Marine Coatings, in Marine Corrosion, John Wiley& Sons, Inc.1975.283
    [7]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999.
    [8]侯保荣.海洋钢铁设施的腐蚀与防护[J].金属腐蚀与防护,1978(1):45-48.
    [9]侯保荣,张经磊.海洋钢结构浪溅区、潮差区防腐蚀方法的研究[J].海洋科学,1983(4):31-33.
    [10] Baorong Hou, Jizhou Duan, Jinglei Zhang, et al. Tests for Hanging Steel Specimens in Seawater [J].MP,2002,41(10):45-49.
    [11] Baorong Hou, Jie Zhang, Jizhou Duan,et al. Corrosion of thermally sprayed zinc and aluminum coatings in splash and tidal zone conditions [J], CEST, 2003, 38 (2):157-160.
    [12] Martin Smith, Colin Bowley, Lucian Williams.In situ protection of Splash Zones-30 years on [J]. MP, 2002, 41(10):30-33.
    [13]舒马赫M.海水腐蚀手册[M].李大超,杨荫,译.北京:国防工业出版社,1985:8.
    [14]朱相荣,王相润.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社,1999: 187-209
    [15]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003·1
    [16]高荣发.热喷涂[M].北京:化学工业出版社,1992: 2-6, 162-179
    [17]胡传炘.涂层技术原理及应用[M].北京:化学工业出版社,2000: 3
    [18]徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2000: 85, 98-112
    [19]梁春永,陈学广.电弧喷涂技术的研究状况及发展方向[J].金属成形工艺,2003,21(6):58
    [20]张秀会,索双富,等.我国电弧喷涂自动化技术的发展与应用[J].材料保护,2003,36(11):27
    [21] Steffens H D, Baniak Z, Wewel M. Recent developments in arc spraying [J].IEEE Trans on Plasma Sci, 1990, 18:974
    [22]张忠礼编著.钢结构热喷涂防腐蚀技术[M].北京:化学工业出版社,2004·66
    [23] Robert M Kain, Earl A Baker, Marine atmospheric corrosion museum report on the performance of thermal spray coatings on steel[C].Testing of Metallic and Inorganic coatings, Chicago,Illinois,USA,1987:211
    [24] Satoshi Kugimaru, Seiki Nishida, Yoshitaka Nishikawa. Development of Zn-11% Al-2%Mg coated steel wire with excellent corrosion resistance and formability [J].Wire J Int.2004, 7: 60
    [25] Lester T, Kingerley D J, Harris S J, etal.Thermally sprayed composite coatings for enhanced corrosion protection of structures[C].Proceedings of the 15thInt. Thermal Spray Conf. France, 1998:49
    [26]刘燕.Zn-Al-Mg-RE粉芯丝材及其涂层自封闭机理的研究[D].北京:装甲兵工程学院,2005·45
    [27] Xu Lianyong, Jing Hongyang, Huo Lixing. Young's modulus and stress intensity factor determination of high velocity electric arc sprayed metal-based ceramic coatings [J].Sur Coat Techn, 2006,201(6):2399
    [28] Thomason W H. Cathodic Protection of Submerged Steel with Thermal-Sprayed Aluminum Coatings [J]. Material Performance, 1985, 24(3): 20~28.
    [29]胡传忻,王正方,白立来.电弧喷涂铝、锌涂层防腐研究[J].北京工业大学学报, 1990, 16 (1): 44~48.
    [30] Spinder H. Study of Anodic Metal Coatings[J]. WerkstKorros, 1958, 9(5): 278.
    [31] Steffens H D. The Cathodic Protection of the Flame-Sprayed Al Coating in Seawater[A]. Proceedings the 7th Int Metal-Spraying Conference.[C] London: [s. n.], 1973. 18.
    [32] MagoneM, MimaY, UenoK, eta.l The Potential the Al-Sprayed Coating in Seawater [A]. Proc 9th in Thermal Spraying Conference[C]. Netherland: The Hague, 1980. 82.
    [33]SempelsR E, LeclercqM E. The Performance of Cathodic Protection of the Thermal-Sprayed Al and Zn-Al Alloy Coatings [A] .Proc 9th Int Thermal Spraying Conference[C].Netherland: TheHague, 1980. 88.
    [34] F.van Rodijnen and M.Knepper. Low energy arc spraying for applications in the capacitor industry[A]. ITSC'2002[C], Essen, OH: Materials Park, 2002: 170-174
    [35] D.I. Wimpenny, G.J. Gibbons. Metal spray tooling for composite forming[J]. Journal of Materials Processing Technology, 2003, (138): 443-448
    [36] H. Pokhmurska, V. Dovhunyk, M. Student, et al. Tribological properties of arc sprayed coatings obtained from FeCrB and FeCr-based powder wires[J]. Surface and CoatingsTechnology, 2002,(151-152): 490-494
    [37] Roger W. Staehle.Transient stability of passive Wlms in aqueous solutions[J]Corrosion Science 49 (2007) 7–19
    [38] H.X. Guo, B.T. Lu, J.L. Luo.Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis [J] Electrochimica Acta 52 (2006) 1108–1116
    [39] P.Fauchais,A.Vardelle, B.Dussoubs. Quo vadis thermal spraying[J] Journal of Thermal Spray Technology. 2001, 10(1): 44-66
    [40] D. L. Hale, W. D. Swank, D. C. Haggard. In-flight particle measurements of twin wire electric arc sprayed aluminum[J]. Journal of Thermal Spray Technology, 1998, 7(1): 58-63
    [41] A. P. Newbery, P. S. Grant. Droplet splashing during arc spraying of steel and the effect on deposit microstructure[J]. Journal of Thermal Spray Technology, 2000, 9(2): 250-258
    [42] Robert C. Tucker Jr. Thermal spray coatings: broad and growing applications [J]. The International Journal of Powder Metallurgy, 2002, 38(7): 45-53
    [43] S.V.Zakharov, A. N. Serenko, V. A. Royanov. Bonding strength of thermally sprayed coatings[J]. Welding International. 2002 ,16 (8): 654-658
    [44]夏兰廷等金属材料的海洋腐蚀与防护[M]北京:冶金工业出版社2003 90-91
    [45]罗惕乾等流体力学[M]北京:机械工业出版社2005 252-260
    [46]朱耀忠电机与电力拖动[M]北京:北京航空航天大学出版社2005 3.2
    [47]黎清宁等喷射式浆体冲蚀磨损试验机的研制及其性能考核[J]昆明理工大学学报(理工版) 2006 31(2) 45-46
    [48] G.T.Burstein*, K.Sasaki. Detecting electrochemical transients generated by erosion corrosion [J] Electrochimica Acta 46(2001)36-76
    [49]王志平.超音速火焰喷涂技术特性分析与涂层性能及测试实验方法的研究[D].北京:机械科学研究院博士论文,2000: 4-8, 90, 96, 116
    [50]林丽华,章国英,滕清泉,等.金属表面渗层与覆盖层金相组织图谱[M].北京:机械工业出版社,1998: 8
    [51]陈魁.实验设计与分析[M].北京:清华大学出版社,1996: 94-180
    [52]栾军.现代实验设计优化与方法[M].上海:上海交通大学出版社,1994: 14-24
    [53] Xu Binshi, Ma Shining, Wang Jianjun. Application of electric arc technique to enhance corrosion resistance of steel structures on ships [J]. Surface Engineering International, 1995, 11(1): 38-42
    [54]吴开源,王勇,赵卫民.金属结构的腐蚀与防护[M].东营:石油大学出版社,2000: 25-32
    [55]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社,2002: 21-68
    [56] Plesset M S.Trans.ASME, 82, Ser.D, Jr.Basic Engineering, 1960.808
    [57] B.-R. Hou, J. Zhang, J.-Z. Duan, Y. Li and J.-L. Zhang.Corrosion of thermally sprayed zinc and aluminium coatings in simulated splash and tidal zone conditions[J]Corrosion Engineering Science and Technology 2003.2.38
    [58] Mar?′a-Dolores Bermu′dez *, Ana-Eva Jime′nez, Gine′s Mart?′nez-Nicola′s.Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion–corrosion processes [J]Applied Surface Science 253 (2007) 7295–7302
    [59] Steller K.Personal Communications with F.G.Hamitt,Inst.Fluid Flow Mach.Polish Academy Science.Gdansk, Poland, 1976.
    [60]朱日彰,杨德钧,沈卓匀等,金属腐蚀学.北京:冶金工业出版社,1989.204
    [61]古特曼.金属力学化学腐蚀.北京:科技出版社,1989.
    [62] Srinivasan K R.PH.D.Dissertation, Carnegie-Mellon University,1973.153.
    [63] Knapp R T.Cavitation.New York: McGraw Hill Book Co,1970
    [64] Bruno G, Pecha R.Mie scattering from a sonoluminescing bubble with high spatial and temporal resolution.Phys Rev E, 2000, 61(5):5253—5256
    [65] Harvey E N,McElroy W D,Whiteley A H.On cavity formation in water.J Appl Phys,1947,18:162—172
    [66] Arora M, Ohl C D, Morch K A.Cavitation inception on microparticles:A self-propelled particle accelerator.Phys Rev Lett,2004,92:174501
    [67] Jones S F, Evans G M, Galvin K P.Bubble nucleation from gascavities—A review.Adv Coll interf Sci, 1999, 80:27—50
    [68] Gniloskurenko S V,Raichenko A I,Nakamura T,et al.Theory of initial microcavity growth in a liquid metal around a gas-releasing particle.II Bubble initiation conditions and growth kinetics.Powd Metall Metal Ceram,2002,41(1-2):90—96
    [69] Y. Li, G.T.Burstein, I.M. Hutchings * Influence of environmental composition and electrochemical potential on the slurry erosion-corrosion of aluminium[J] Wear 181-183 (1995) 70-79
    [70] T.C. Aude, N.T. Cowper, T.L. Thompson and E.L. Wasp, Slurry piping systems: Trends, design methods, guidelines, Gem Eng , 78 (1971) 74.
    [71] W.R. McDermott, Savage River Mines-The World’s first long distance iron ore slurxy pipeline, CIM Trans., 73 (1970) 340.
    [72]J. Postlethwaite,E.B.Tinker and M.W. Hawyla, Erosion-corrosion in slurry pipelines,Corrosion, 30 (8) (1974) 285-290.
    [73] PI B.W. Madsen, Measurement of erosion-corrosion synergism with a slurry wear test apparatus, Wear, I23 (1988) 127-142.
    [74] H.Abd-El-Kader and S.M.El-Raghy, Wear-corrosion mechanism of stainless steel in chloride media, Corros. Sci., 26 (8) (1986) 647-653.
    [75] B.R.Pearson, P.A.Brook and R.B.Waterhouse, Influence of electrochemical potential on the wear of metals, particularly nickel, TriboZogy, 21 (4) (1988) 191-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700