埕岛海域浅水区构筑物地基及周边底床稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了得到埕岛海域浅水区构筑物地基及周边底床稳定性,本文通过高分辨率的回声测深、旁侧声纳及浅地层剖面等声学仪器勘查,并结合钻孔、现场和室内的实验分析,采用新的计算方法,对埕岛海域浅水区人工构筑物地基及周边底床稳定性进行了计算、分析和评价。得到了对构筑物安全稳定性有着直接影响的要素值,包括构筑物及周边冲刷量、构筑物地基沉降量及液化深度,并且讨论了在不同海洋环境参数下的底床响应。本文还着重考虑了构筑物对周边底床演化的影响和水下底坡上发育的不稳定灾害现象与构筑物的互动耦合关系。
     分析认为,浪流的冲刷作用是研究区水深地形演化的主要动力,构筑物的存在,使埕岛海域浅水区人工构筑物周边水域实测年水深增加幅度约0.3m/a,地基附近水深增加速率0.25m/a,边坡坡度平均每年以5‰减缓,而计算得出的海洋水动力冲蚀速率在水下底坡为0.2m/a,在构筑物地基冲蚀速率达0.35m/a。这种差异除水动力冲蚀外,另一个重要的原因是浅地层土体块体运动使局部浅水区表层沉积物向深水洼地填充,减缓了深水洼地加深速率。这种不稳定块体运动由波浪循环荷载诱发,其结果使底床整体坡度减缓,水深加大,而且不稳定的块体运动具有小区域、多发性和溯源侵蚀的特点,将继续影响着海域以后的水深地形的发展演化,并不断改变着该区的流场与底床地层条件,对构筑物地基土的稳定性产生着动态的影响。
     通过对底床在波浪下的响应分析,对于研究区底床上层较硬而第二层较软的情况,超静孔隙水压力幅值在层间交界处迅速衰减,在临近硬、软地层交界处前,水平有效应力增至最大,剪切应力在底床厚度大约2.7米左右达到峰值,然后减小,到硬、软层土交界位置,达到最小,因此这个界面就是最容易发生破坏的工程软弱面,现场勘查证明,即使在正常海况下,构筑物也会沿坡以此交界面为滑动面,缓慢向“盆”底滑动。在强暴风浪下,底床表层1.75米以上均有可能产生液化现象,而在构筑物前形成的完全驻波,甚至能够造成6.16米的液化深度,构筑物地基部分失去支持力,将直接导致构筑物的滑动,也就是说,在地基部分液化、软弱层的存在以及构筑物沿坡重力分力的共同影响下,构筑物将向“盆”底
    
    方向发生更大的滑动,甚至可能发生倒塌。造成灾难性后果。
     通过对构筑物及周边不稳定因素的计算,本文给出了相应的措施建议。这篇
    论文揭示了构筑物地基土的工程稳定性及与周边海域互动祸合关系,研究了浅水
    区构筑物底床在波浪等水动力作用下的动力响应,丰富了构筑物周边水下底坡稳
    定性研究的内容,为海上工程设施的地基设计提供了良好的理论指导性建议,对
    保障海上安全生产、保证海洋设施的完整及使国家财产免受损失也有重要的现实
    意义。
To get the stability of shallow structure foundation and adjacent seabed in Cheng Dao shallow sea area, we have made an investigation on high resolution echo depth side sonar and shallow strata section etc. and made use of experiment Analysis of core , in situ , indoor to compute , analyze and assess the stability on new computing method. We have got factor values which influence directly safety and stability, including structure and around wash load structure foundation sink value and liquefaction depth, and we discuss underlying bed response in different marine environment parameters. The paper do also consider the influence of structure to around underlying bed evolvement and couple relation of instability damage phenomenon on bottom and structure.
    Through analysis, we conclude that washing action of wave and flow is main power of evolvement of region of interest landform, structure lead to the fact that water area around shallow structure in Cheng Dao sea field has an increase about 0.3m/a through actual measurement, water depth increase rate around foundation is 0.25m/a, slope gradient of side slope averagely has a decrease of 5%o a year, however marine hydropower wash rate through compute is 0.2m/a on underwater bottom, the wash rate on structure foundation is 0.35m/a. Except hydropower wash, another important cause of the difference is that shallow stratum soil mass bulk movement make local shallow surface sediment fill deep water bottomland, so slow up the deep rate of deep water bottomland. This kind of instability bulk movement is induced by wave cyclic loading, as a result the slope of bottom bed decrease, water depth increase, and instability bulk movement has the character of subregion, regularity and head erosion, thus it will influence evolvement of region of interest landform, and change flow field and bottom stratum condition continually, so will lead to dynamic influence on structure foundation soil.
    Through analyzing bed's response to wave, in the condition that super-stratum is
    
    
    
    more hard and second-stratum is more soft in region of interest, super static interstitial hydraulic pressure amplitude die away rapidly between stratums, before in sight of boundary between hard and soft stratum, plane effective pressure increase to max. Shear stress reach peak value when bed thickness is approximately 2.7 meters, then it will decrease to the minimum on the place where the flexible soil has a common boundary with the rigidity, so the boundary is the most destroy plane on engineering. On the basis of reconnaissance in situ, In normal situation of sea, the structure slides to the basin along the boundary. In the storm, the part on surface layer of the underlying bed will produce the liquefaction, the absolute standing wave that form the front of the structure may bring 6.16 meter depth of the liquefaction, so the foundation of structure will lose part of the supporting force ,the structure will slide in this situation. That is to say, because of the foundation partly liquefaction, the exist of soft layer and the component force of gravity, the structure slide further to the basin and collapse, which leads to disastrous consequence.
    By calculating instability factor in research area, this paper gives some corresponding suggestion. This paper shows engineering instability around instrument foundation and coupling relation to the circumjacent seabed, and research the dynamic response between wave and seabed, and enriches the research content of instability of seabed around instrument foundation and give some appropriate suggestion to foundation planning of ocean engineering, also it prevents instrument , facility and property of state from losing and risking.
引文
1. Jeng. D.S.. Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed. Soil Dynamics and Earthquake Engineering, 2001,21:699-712
    2. Jeng. D.S. . Mechanism of the wave-induced seabed instability in the vicinity of a breakwater:review. Ocean Engineering, 2001,28:537-570
    3. Jeng. D. S.. Wave-induced liquefaction potential in a cross-anisotropic seabed. The journal of the Chinese Institute of Engineering, 1996, 18:59-70
    4. Jeng. D. S.. Soil Response in a cross-anisotropic seabed due to standing waves. Journal of Geotechnical and Geoenvironmental Engineering, 1997,1:9-19
    5. Jeng. D.S., Hsu. J. R. C.. Wave-induced soil response in a nearly saturated seabed of finite thickness. Geotechnique, 1996,3:427-440
    6. Jeng. D. S., Lin Y. S.. Finite element modeling for water wave-soil interaction. Soil dynamics and Earthquake Engineering, 1996,5:283-300
    7. Jeng. D. S., Lin Y. S.. Non-linear wave-induced response of porous seabed:A finite element analysis. International Journal for Numerical and analytical Methods in Geomechanics, 1997,1:15-42
    8. Jeng. D. S., Seymour, B. R.. Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability. International Journal of Offshore Mechanics and Arctic Engineering, 1997,4:327-334
    9. M. E. Rahhal, G. Lefebvre. Understanding the effect of a static driving shear stress on the liquefaction resistance of medium dense granular soils. Soil Dynamics and Engineering, 2000,20:397-404
    10. M. S. Rahman, F. M. Layas. Probabilistic Analysis for Wave-induced Submarine Landslides. Marine Geotechnology, 1984,vol.6:99-115
    11. Prior, D. B. , J. N. Suhayda, N. Z. Lu, B. D. Bornhold, G.H.Keller et al. Storm wave reaction of a submarine landslide. Nature,1989,341:47-50
    
    
    12. Prior, D. B. , Z. S. Yang. , B. D. Borland, G. H. Keller et al. Active slope failure, sediment collapse, and silt flows on the Modern subaquesous Huanghe (Yellow river) Delta. Geo-marine letters, 1986,6:85-95
    13. Prior, D. B. , Z. S. Yang. , B. D. Borland, G. H. Keller et al. The subaqueous Delta of the Modern Huanghe (Yellow river) . Geo-marine Letters 6, 1986:67-75
    14. Keller, G. H., J. Zhen, Z. S. Yang, B. D. Bornhold, D. B. Prior et al.. Mass physical of Huanghe Delta and Southern Bohai near surface deposits, China. . Marine Geotechnology, 1990:207-225
    15. Chaney, R. C. , H. Y. Fang. Liquefaction in the coastal Enviornment: Analysis of Case Histories. Marine Geotechnology, 1991,vol.10:343-370
    16. Denlinger,R. P. , R. M. Iverson. Limiting Equilibrium and Liquefaction Potential in Infinite Submarine Slope. Marine Geotechnology, 1990, vol. 10:343-370
    17. Rahman, M. S. . Wave-induced Instability of Seabed: Mechanism and Conditions. Marine Geotechnology,1991,vol 10:277-299
    18. ZhangQi, J. N. Suhayda. Behavior of Marine Sediment Under Storm Wave-loading. Marine Georesources and Geotechnology,1994, vol. 12:259-269
    19. Biot M. A. . General theory of three-dimensional consolidation. Journal of Applied Physics. 1941,12:155-164
    20. Leland M. Kraft, Jr., Steven C. Helfrich, Joseph N. Suhayda, et al.. Soil Response to Ocean Waves. Marine Geotechnology. 1984,vol6:173-203
    21. Jeng. D. S. , T. L. Lee. Gynamic response of porous seabed to ocean waves. Computrs and Geotechnics, 2001,28:99-128
    22. Wright, S. G., A. S. Dunham. Bottom stability under wave induced loading. 4th. OTC, 1972,vol1:853-862
    23. Polous, S. J. ,G. Castro, J. W. France. Liquefaction evaluation produre. Journal of Geotechnical Engineering, 1985, vol. 111(6) :772-792
    24. Dunlap, W. A. .W.R.Bryant, R. A. Bennett, A. F.Richards. Pore Pressure measurements
    
    in underconsolidated sediments. OTC 3168,1978:1049-1055
    25. Jeng. D. S., Rahman M.S., Lee T. L. Effects of inertia forces on wave-induced seabed response. International Journal of Offshore and Polar Engineering,1999,9:307-313
    26. Jeng. D. S. , Rahman M. S. . Effctive stress in a porous seabed of finite thickness: inertia effects. Canadian Geotechnical Journal,2000, 37:15-36
    27. Dean R. G, Dalrymple R.A.. Water wave mechanics for engineers and scientists. New Jersey: Prentice Hall, 984
    28. Moshagen H,Torum A.. Wave-induced pressure in permeable bottom. Journal of Waterway, Harour, and Coastal Engineering, ASCE 1975,101:49-57
    29. Mu Y, Cheng AHD, Badiey M.Bennett R. Water wave driven seepage in sediment and parameter inversion based on pore pressure data. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23:1655-1674
    30. Yamamoto T, Koning H. L. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics, 1978, 87:193-206
    31. Hsu, J. R. C.,Jeng, D. S., Lee, C. P.. Oscillatory soil response and liquefaction in an unsaturated layered seabed. International Journal for Numerical and Analytical Methods in Geomechanics. 1995,12:825-849
    32. Henkel, D. H.. The role of waves in causing submarine landslides. Geotechnique, 1970, 20(1) :75-80
    33. Towhata, Ikuo Fukue, Masaharu. Soil-mechanic aspects of seabed instability. International Offshore and Polar Engineering Conference, 1993,1:556-566
    34. Sharif, A.M. Preston, R. Simulation of thick-walled submarine pipeline collapse under bending and hydrostatic pressure. Offshore Technology Conference, 1996, vol. 4:589-598
    35. Lee, C. Y. .Poulos, H. G. .Hull, T. S.. Effect of seafloor instability on offshore pile foundations. Canadian Geotechnical Journal, 1991,vol. 28:729-737
    
    
    36. Towhata, Ikuo,Ryull, Kim Seung. Undrained strength of underconsolidated clays and its application to stability analysis of submarine slopes under rapid sedimentation. Soils and Foundations,1990,vol. 30:100-114
    37. Rahman, M.S.. Instability and movement of oceanfloor sediments: A review. International Journal of Offshore and Polar Engineering, 1997, vol. 7:220-225
    38. Ross, C. T. F. Palmer, A.. General instability of swedge-stiffened circular cylinders under uniform external pressure. Journal of Ship Research, 1993,vol. 37:77-85
    39. Gaullier, V. Bellaiche, G. Near-bottom sedimentation processes revealed by echo-character mapping studies, northwestern Mediterranean Basin. AAPG Bulletin (American Association of Petroleum Geologists), 1998, vol. 82:1140-1155
    40. Rahman, M. S., Jaber, W. Y. . Wave-induced instability of offshore infinite slopes: a probabilistic analysis. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium,1987. vol. 1:411-416
    41. Okusa, Shigeyasu Yoshimura, Mitsugu. Wave-induced instability in sandy submarine sediments. Soils and Foundations,1987, vol. 27:62-72
    42. KarlsrudK, Nowacki F, Kalsnes B. Response of piles in soft clay and silt deposits to static and cyclic loading based on recent instrument pile load tests. On Offshore Site investigation and Foundation Behaviour, 1992, vol. 2:25-37
    43. Gibson, R. E. . Some results concerning displacements and stresses in a non-homogeneous elastic half-space. Geotechnique,1967, 17:58-67
    44. Christian, J. T., Taylor, P. K., Yen, J. K. C., Erali, D. R.. Large diameter underwater pipeline for nuclear power plant designed against soil liquefaction. In:proceeding of Offshore Technology Conferenc, Dallas, 597-606
    45. Pirumov, S. S. Sakvarelidze, V. V. , Chechelashvili, N. I. Determination of velocities of mass movement of sediments on the foreshore. Water Resources, 1984, vol. 11:55-61
    46. Towhata, Ikuo, Al-Hussaini, T. M. Lateral loads on offshore structures exerted
    
    by submarine mudflows. Soils and Foundations, 1988, vol 28:26-34
    47.林振宏,杨作升.海岸河口区重力再沉积和底坡的不稳定性.北京:海洋出版社,1990
    48.杨作升,王涛.埕岛油田勘探开发海洋环境.青岛:中国海洋大学出版社,1993
    49.李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质,2000,20:21~26
    50.杨作升,沈渭铨.河口沉积动力学研究文集(一).青岛:中国海洋大学出版社,1991
    51.张琦,J.N.Suhayda.黄河口水下底坡不稳定的水动力机制探讨.海洋学报,1992,14:133-141
    52.胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散.泥沙研究,1996,12
    53.张琦,杨作升,陆念祖,陈卫民等.黄河口水下底坡不稳定的水动力机制探讨.海洋学报,1992,3:133-140
    54.王琦,曹立华,杨作升,沈渭铨,王新泰,G.H.Keller,D.B.Prior.黄河水下三角洲的动力沉积特征.中国科学,1991,6:659-664
    55.王栋,栾茂田,郭莹.波浪作用下海床动力反应有限元数值模拟与液化分析.大连理工大学学报,2001,vol.41(2):216-222.
    55.王栋,栾茂田,文立.波浪作用下海床动力学研究进展.第五届全国土动力学学术会议论文集,大连:大连理工大学出版社,1990
    56.陈卫民,杨作升,D.B.Prior,曾卓英,张琦,林天充.老黄河口水下底坡不稳定性的研究.广州国际海洋工程地质讨论会文选,北京:地质出版社,1994
    57.杨作升,沈渭铨等.黄河口水下底坡不稳定性.河口沉积动力学研究文集(一),青岛:中国海洋大学出版社,1991
    58.庞家珍,司书亨.黄河河口演变.河口泥沙国际学术讨论会论文集,1980,417-426
    59.高国勇,郝喜旺,霍家喜,付作民,左学升.黄河三角洲滨海区水下地形演变浅析.科技纵横,2000,12:31-32
    60.罗延生,方华灿.沉垫支持式平台底部流场分布规律的实验研究.科研试验.1996,6:106-109
    
    
    61.胡志敏,董艳秋,张建民.张力腿平台波浪载荷计算.中国海洋平台,2002,3:6-11
    62.李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质,2000,2:21-26
    63.孙青,张士萌.立波作用下底沙运动.海岸工程,1996,3:7-14
    64.刘曙光,李从先,丁坚,李希宁,Ivanov V V.黄河三角洲整体冲淤平衡及其地质意义.海洋地质与第四纪地质,2001,4:13-17
    65.尹延鸿,刘宪启.影响黄河三角洲海岸带冲淤速率的因素.海洋地质动态,2000,4:1-4
    66.杨少丽,沈渭铨,杨作升.波浪作用下海底粉砂液化的机理分析.岩土工程学报,1995,4:28-37
    67.王栋,栾茂田,郭莹.波浪作用下弹性海床的动力反应及其影响因素分析.岩石力学与工程学报,2001,增1:1132-1136
    68.白玉川,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟.海洋与湖沼,2000,2:186-196
    69.阎通,李广雪.埕北海域海底管线冲刷稳定性研究.中国海洋大学学报,1999,4:721-726
    70.泰崇仁,赵冲久.波浪作用下沙纹床面上底部剪应力的实验研究.水利学报,1993,9:2-10
    71.刘润,阎澎旺,王金英,狄慧敏.海工结构物浅地基稳定性的可靠度分析.海洋工程,2001,2:23-28
    72.季春群.海洋工程环境条件的设计考虑.中国海洋平台,1999,1:39-43
    73.李家春,王涛.海洋工程中的流固耦合问题.非线性动力学学报,1999,4:286-292
    74.郑继民,沈谓铨.黄河口及渤海中南部沉积物工程特性及其机理,中国海洋大学学报,1994,2:231-238
    75.冯秀丽,林霖等.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系.海岸工程,1999,4:1-7
    
    
    76.李广雪,薛春汀.黄河水下三角洲沉积厚度,沉积速率及砂体形态.海洋地质与第四纪地质,1993,4:35-44
    77.房营光,杜宏彪.平台一群柱地基对浪流冲击的动力反应分析.应用数学和力学,1998,11:996-1003
    78.王建华,要明伦,狄惠敏,邢延.振动荷载作用下海底浅层原状土的强度变化.中国海上油气(工程),1997,3:21-26
    79.冯秀丽,沈渭铨.现代黄河水下三角洲砂土液化模式.中国海洋大学学报,1995,2:221-228
    80.陈卫民,曹立华等.高分辨率底声波探测在浅海工程中底应用.海岸工程,1992,3:15-24
    81.何广纳,曹亚林.近海重力式建筑物振动下地基动态稳定性分析.大连理工大学学报,1994,1:75-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700