流场作用下的酸性天然气管道内腐蚀理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油天然气事业的快速发展,石油天然气开采量的日益增加使得输运管道的里程也在不断扩大。H2S与CO2作为油气伴生气存在于油气之中,并通达油气的开采进入到输运系统中,这不仅对油气工业造成了巨大的经济损失,同时也对环境造成了很大的污染。而随着油气勘探工作越来越向地层深处发展,作为伴生气体的H2S与CO2含量也在不断上升,加之管道输运过程中高温、高压、流速和流态变化的相互作用,管道在流场作用下的腐蚀问题也愈加突出。因此,研究流场作用下管道内腐蚀预测问题,对于实现指导在役管道系统的检测工作量,保障管道系统的安全运行,具有重大的现实意义。
     本文以我国的大庆徐深6-3气站与川气东送A线为研究对象,在De waard腐蚀模型与Euler多相流模型的基础上,分别建立CO2腐蚀模型与CO2/H2S腐蚀模型对其三维管道进行仿真模拟。得出的结论如下:
     当CO2单独存在时,管段的高程变化对其腐蚀程度有直接的影响;管线的腐蚀率在以CO2分压与温度为自变量的坐标系中呈大致先增加再降低的抛物线形式;气相的微小分压变化(0.025MPa-0.197MPa)并不能引起管线近壁处湍动能与流速的增加,但会使管道内C02相分布呈线性增加。而在流场因素中单独考虑湍动能与流速影响时,可以明显表现出对腐蚀速率产生促进的倾向。弯头影响位置表现在流向变化位置的下游迎流侧壁面与弯头内径壁面;T形管影响位置表现在内部结构X形状合流方向的斜向内壁与迎流侧内径的位置;CO2相的分布情况与现场管道的腐蚀位置吻合良好;而含水率的变化(0.0668%-0.267%)将引起管道内持液率分布呈线性增加,在流场诱导下与CO2共同作用引起管道内腐蚀的直接增高。
     CO2/H2S共同存在时,当CO2分压保持0.2108MPa不变时,管线的腐蚀率在以H2S分压与温度为自变量的坐标系中呈大致先增加再降低的抛物线形式。但对流场进行分析时可以发现,对于管径较大的气体输运管道(Φ=406.4mm),由于流道较宽广通畅,在管线流道小范围变化处(50与15°)流场参数变化范围较小,管道出现均匀腐蚀的概率较之出现极值腐蚀的概率大;管线中H2S分压与C02分压的增高,使管道内壁的相分布呈线性增长,且其分布多以略高或略低于均值的椭圆片状形式出现,在其15°俯角开始与结束处的0点方向,由于流道突变的作用,使得相分布略高于均值。
     根据模拟所得的流场参数与管壁腐蚀率的关系,在冲蚀模型与De waard模型的基础上提出流场作用下的酸性天然气管道内腐蚀模型。该模型在不引入流场影响下时与De waard腐蚀模型相似,当介入流场参数的影响时,可对流场参数进行相应影响因子的修正以适应当前的工况。在与工况数据对比时,流场作用下的CO2预测模型最大腐蚀速率、平均腐蚀速率与大庆徐深6气站实测值的回归系数分别为0.84与1.12;而流场作用下的CO2/H2S腐蚀预测模型平均腐蚀速率与川东线A线实测值回归系数为1.07。该模型计算出的管线重点腐蚀位置与腐蚀率情况,在与现场工况的壁厚检测对照下吻合情况良好,验证了该改进腐蚀模型的正确性。
     图43幅,表5个,参考文献52篇。
With the rapid development of oil and natural gas utilities, the increasing exploit of oil and natural gas makes the mileage of transport pipeline expanding. CO2and H2S, as the associated gas in the oil and natural gas, join the transport system through the exploitation. It has not only resulted in enormous economic losses to the oil and natural gas industry, but also caused a lot of pollution to the environment. With the exploration work of oil and natural gas develop to the deep geological formations increasingly, the rising contents of the associated gas CO2and H2S, coupled with the interaction among high temperature, high pressure, flow rate and flow pattern in the pipeline transportation, the pipeline corrosion problems under the induce of flow field have become even more outstanding. Therefore, study on the internal corrosion prediction of pipeline induce by flow field have a great practical significance on guiding the detection and ensuring the safe operation of in-service piping systems.
     Taking the'Xushen6-3'gas gathering station in Daqing Oil Field and'A line'in Sichuan Natural Gas East Transportation as the objects, and based on the De waard corrosion model and Euler multiphase flow model, the CO2corrosion model and the CO2/H2S model were established respectively, their three-dimensional pipes were simulated. The conclusions reached in this article are as follows:
     When CO2exist alone, change of pipe elevation has a direct impact on the corrosion; pipeline's corrosion rate has a parabolic form which increases first and then reduces in the coordinate system where independent variables are CO2partial pressure and temperature. Slight change of CO2partial pressure (0.025MPa-0.197MPa) does not cause the increase of turbulent kinetic energy and velocity near the pipeline wall, but can make the CO2phase distribution increase linearly. But when considered alone turbulent kinetic energy and velocity in elements of the flow field, it can clearly show a tendency which promotes the corrosion rate. The location of elbow induced by the flow field occurs at the facing stream side with tendency to the fluid field downstream, while the location of tee induced by the flow field occurs at the diagonal site along the direction of the confluence in the tee's internal X-shaped structure. The CO2phase distribution is in good agreement with the site corrosion position, while the change in moisture content (0.0668%-0.267%) causes the liquid holdup distribution increasing linearly. Combined with the moisture content and CO2phase distribution, it increases the internal corrosion of pipeline directly under the influence of flow field,
     when CO2and H2S co-exist, pipeline's corrosion rate has a parabolic form which increases first and then reduces in the coordinate system where independent variables are H2S partial pressure and temperature, on the condition that the CO2partial pressure maintains0.2108MPa. But when analyzing the flow field, it can found that for the broad and smooth flow channel of the large-diameter gas transport pipeline(Φ=406.4mm), the flow parameters have a little change at the small-scale changes in the pipeline (5°and15°) and the occurrence probability of uniform corrosion is larger than that of the extreme corrosion. The increase of H2S and CO2partial pressure causes the phase distribution increasing linearly at the internal-wall of pipeline. Moreover, the phase distribution often appears in the form of elliptical sheet around the average value. The phase distribution is slightly higher than the average value at0o'clock direction of the angle of15°depression's beginning and end due to the mutation of the flow channel.
     According to the relationship of the simulated flow field parameters and the pipe wall's corrosion rates, a corrosion model under the interaction of flow field has been put forward on the basis of the erosion model and the De waard corrosion model. It's similar to the De waard corrosion model when not taking consider of the flow field factors'impact. While parameters of the flow field can be modified to adapt the current conditions when taking consider of the flow field factors'impact. Compared with the measured values of'Xushen6'gas gathering station, the regression coefficients of the maximum and the average corrosion rate predicted by the CO2corrosion prediction model under the interaction of flow field are0.84and1.12respectively. While compared with the measured values of'A line'in Sichuan Natural Gas East Transportation, the regression coefficients of the average corrosion rate predicted by the CO2/H2S corrosion prediction model under the interaction of flow field is1.07. The corrosion location and rate calculated by the modified model are consistent with the wall thickness detection of site conditions, which verified that the improved CO2corrosion model is valid.
引文
[1]召辉,萧芦荟.2003-2008中国天然气产量[J].国际石油经济,2009,17(6):65-66.
    [2]Srdjan Nesic. Key issues related to modeling of internal of corrosion of oil and gas pipelines-A review[J]. Corrosion Science,2007(49):4308-4338.
    [3]Marsh J, The T, Conflicting Views: CO2 Corrosion Models, Corrosion inhibitor acailability and the effect on subsea systems and pipeline design[C], SPE 109209 Presented at the 2007 SPE Meeting, Aberdeen, Scotland, UK, 4-7 September 2007.
    [4]Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52(4):280.
    [5]Nesic S, Lee K L J. A M Echanistic Model for CO2 corrosion of mild Steel in the presence of protective iron carbonate films-part3:film growth model[J]. Corrosion, 2003,59(7):616-628.
    [6]Rolf Nyborg, Field Data Collection, Evaluation and use for corrosivity prediction and validation of models[C]. NACE International Annual Conference, Houston: 2006, Paper No.06118.
    [7]De Waard C, Milliams D E. Carbonic acid corrosion of steel[J]. Corrosion, 1975,31(5):177.
    [8]Hedges B, Paisley D, Woollam R. The corrosion inhibitor availability model[C]. Corrosion Houston, TX: NACE, 1999: 34.
    [9]De Waard C, Smith L, Bartlett P, Cunningham H. Modelling corrosion rates in oil production tubing[C]. Eurocorr 2001. Milano, Italy: Associazione Italiana di Matallurgia,2001:254.
    [10]Srinivasan S, Kane R D. Critical issues in the application and evaluation of a corrosion prediction model for oil and gas systems[C]. Corrosion. Houston, TX: NACE, 2003:640.
    [11]NORSOK Standard No.M506. CO2 calculation model[S].
    [12]Jepson W P, Stitzel S, Kang C, Gopal M. Model for sweet corrosion in horizontal multiphase slug flow[C]. Corrosion. Houston, TX: NACE,1997:11-16.
    [13]Gartland P O, Johnsen R. Application of internal corrosion modeling in the risk assessment of pipeline[C]. Corrosion. Houston, TX: NACE, 2003:179-183.
    [14]Pots B F M, John R C. Improvement on de waard-millams corrosion prediction and application to corrosion management[C]. Corrosion. Houston:NACE, 2002, Paper No. 02235.
    [15]Agrawal A K, Durr C, Koch G H. Sulfide films and corrosion rates of AIS Ⅱ 018 carbon steel in saline solutions in the presence of H2S and CO2 at temperature up to 175°F[J]. Corrosion. Houston: NACE,2004,PaperNo.04383.
    [16]Sun W, Nesic S, Papavinasam S. Kinetics of iron sulfide and mixed iron sulfide/carbonate scale precipitation in CO2/H2S corrosion[C]. Corrosion. Houston: NACE, 2006, Paper No. 06644.
    [17]Ramanarayanan T A, Smith S N. Corrosion of iron in gaseous environments and in gas-saturated aqueous environment[J]. Corrosion, 1990,46(l):66-74.
    [18]白真权,任呈强,刘道新.N80钢在CO2、H2S高温高压环境中的腐蚀行为[J].石油机械,2004,32(12):16.
    [19]张清,李全安,文九巴,等.CO2分压对油管钢CO2 / H2S腐蚀的影响[J].钢铁研究学报,2004,16(4):72.
    [20]Heitz. E. Chemo-mechanical effects of flow on corrosion[J]. Houston, TX; NACE International; 1991:620-631.
    [21]API RP-14E. Recommended practice for design and installation of offshore production platform piping systems[S].2000.
    [22]李智利译.冲蚀与腐蚀运行环境下多相流管道设计准则[J].油气储运,1996,15(4):48-50.
    [23]Srdian Nesic. Using computational fluid dynamics in combating erosion-corrosion[J]. Chemical Engineering Science, 2006, 61:4086~4097.
    [24]田兴玲,林玉珍,刘景军,等.碳钢在液/固双相管流中的磨损腐蚀机理研究[J].北京化工大学学报,2003,30(5):40-43.
    [25]刘景军,林玉珍,田兴玲,等.碳钢在固/液两相流条件下的流动腐蚀的数值模拟[J].化工学报,2004,55(2):231-236.
    [26]胡志伟,李勤凌,苗永森.三维强弯管内湍流声的数值分析[J].西安交通大学学报,1998,32(1):49-52.
    [27]龙凤乐,郑文军,陈长风,许振清,韩庆.温度、CO2分压、流速、pH值对X65管线钢CO2均匀腐蚀速率的影响规律[J].腐蚀与防护,2005,26(07):2-4.
    [28]EI-Dessouky H. Non-equilibrium two phase flow in a horizontal T-junction[J].Chemical Engineering Communications.1995,134:211-230.
    [29]Roberts P A, Azzopardi B J, Hiboerd S. The split of horizontal semi-annular flow at a large diameter T-junction [J].Int J Multiphase Flow, 1995,21:455-466.
    [30]Penmatcha V R, Ashton P J, Shohan O. Two-phase stratified flow splitting at a T-junction with an inclined branch [J]. Int J Multiphase Flow, 1996,22:1105-1122.
    [31]Rezkallak K S. Recent progress in the studies of two-phase flow at microgravity conditions [J]. Advances in Spance Research, 1995,16:123-132.
    [32]Chien S F. Phase splitting of wet stream in annular flow through a horizontal branching tee [J]. SPE Production & Facilities,1996,11:83-88.
    [33]Adewumi, Michael A, et al. Compositional multiphase hydrodynamic modeling of gas/gas-condensate dispersed flow in gas pipelines[J]. SPE Production Engineerin.Feb.1990: 85-90.
    [34]李玉星,冯叔初等.天然气/凝析液长距离管道稳态模拟研究[J].油气田地面工程.1998(1):7-12.
    [35]De Waard C, Corcon, Aerdenhout, et al. The influence of crude oils on well tubing corrosion rates[C]. Corrosion. Houston, TX: NACE, 2003:629.
    [36]李鹤林,白真权,李鹏亮,等.模拟CO2/H2S环境中APIN80(?)的腐蚀影响因素研究[C].第二届石油石化工业用材研讨会论文集.成都:中国腐蚀学会,2001,101-104.
    [37]张清,李萍,白真权.不同CO2/H2S分压下油管钢腐蚀速率预测模型[J].焊管.2006(29):39-41
    [38]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics: the finite volume approach[M]. London: Pearson Education Ltd, 2007.
    [39]Lopez D A, Perez T, simison S N. The Influence of microst ruture and chemical composition of carbon and low alloy steels in CO2 corrosion[J]. Materials and Design, 2003,24(8): 561-575.
    [40]杨新明,周晓红OLGA与PIPEFLOW软件在海底天然气混输管道设计中的适用性比较[J].石油工程建设.2006(32):21-23.
    [41]Srdjan Nesic. Key issues related to modeling of internal of corrosion of oil and gas pipelines—review[J]. Corrosion Science, 2007(49):4308-4338.
    [42]NACE International. NACE RP-0775-91 preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations[S].Houston,TX:NACE, 1991.
    [43]中国特种检测研究院.徐深6测厚数据录入报告[R].2011
    [44]Lopez D A, Perez T, Simison S N. The influence of microst ruture and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal[J]. Materials and Design, 2003,24(8):561-575.
    [45]M.H. Moayed and R.C. Newman, Deterioration in critical pitting temperature of 904L stainless steel by addition of sulfate ions[J]. Corrosion. Sci.,48 (2006), pp:3513-3530.
    [46]王选奎.户部寨气田腐蚀机理及防护措施研究[D].北京:中国地质大学,2007.13.
    [47]Modeling pipeline crevice corrosion under a disbanded coating with and without cathodic protection under transient and steady state conditions [J]. Corrosion Science.50(2008):70-83.
    [48]Stephen B. Pope. Turbulent Flows[M]北京:世界图书出版公司,2010.
    [49]Prasad B K. Effects of alumina particle dispersion on the erosive-corrosive wear response of a zinc-based alloy under changing slurry conditions and distance[J]. Wear, 2000, 238:151-159.
    [50]Vaidya M L. Corrosion behaviour of squeeze cast aluminium alloy-silicon carbide composite[J]. Master. Sci,1992,27:3897-3902.
    [51]张清,李全安,文九巴,白真权.温度与油管CO2 / H2S腐蚀速率的关系[J].焊管,2004(7):16-18.
    [52]张清,李全安,文九巴,白真权.H2S分压对油管钢C02/H2S腐蚀的影响[J].腐蚀科学与防护技术,2004(11):395-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700