中国地方家鸭品种的分子遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为全面了解中国家鸭遗传资源的现状、遗传多样性及遗传关系,本研究通过原产地调查并采集了来自中国不同地区的24个地方鸭种,通过微卫星标记技术,检测了24个中国地方鸭种1440个个体在28个微卫星基因座的基因型。分析了等位基因频率、群体杂合度(H)、有效等位基因数、多态信息含量、群体间的Nei氏标准遗传距离(DS)和DA遗传距离,采用邻近结合法、主成分分析和群体遗传结构分析等方法,对24个中国地方鸭种的群体内的遗传变异进行了分析。研究结果如下:
     1.原产地调查显示,我国26个地方鸭品种中,文登黑鸭和中山麻鸭濒临灭绝,现存的24个地方鸭种中,建昌鸭和四川麻鸭处于危险状态,其他22个鸭品种均处于正常状态。
     2.进行了血样保存方法的比较,研究了乙醇保存家禽血样的效果,结果表明,利用75%的乙醇按4:1的体积比处理家禽血样,不仅操作简便快捷,常温保存较长的时间;而且,从该血样中可以提取高质量的DNA。
     3.检测了28个微卫星座位在24个地方鸭种中的等位基因数及多态信息含量。28个微卫星座位总共检测到236个等位基因,拥有的等位基因数量非常丰富(5-13),平均值为8.428;检测到134.4个有效等位基因,平均值为4.800。有效等位基因数小于实际观察等位基因数。除座位APL23和APL79的PIC为中度多态外,其它座位的PIC均具有较高的多态性。平均期望杂合度为0.7613,显示出丰富的遗传多样性和较高的选择潜力。各座位的有效等位基因数、平均多态信息含量和期望杂合度三者呈正相关的关系。从品种的角度看,贵州省的三穗鸭和兴义鸭在28个微卫星标记中的平均等位基因数最高,皆为4.25,而平均等位基因数最低出现在福建省的连城白鸭,平均等位基因数只有3.36。
     4.检测了24个地方鸭品种在同一微卫星座位上等位基因数目和频率的差异。结果显示:24个地方品种拥有27个特有等位基因以及数量相当的优势等位基因,28个微卫星基因座都有优势等位基因存在。24个品种中,三穗鸭的期望杂合度最高,0.6166;其次为微山麻鸭;杂合度最低的为金定鸭,0.5137。24个鸭群体的平均杂合度为0.569,遗传多样性较低,选择的潜力相对较小。
     5.群体间的遗传变异经F统计量分析,单个座位偏离Hardy-Weinberg平衡的群体数从0到8不等。对于整个群体而言存在着极显著的遗传分化,群体间遗传分化系数达到0.264(P<0.001),并且所有座位都显著地贡献于这一结果(P<0.001);杂合子缺失的水平很低。24个鸭群体之间的Nei氏标准遗传距离DS和DA遗传距离的结果一致。金定鸭和山麻鸭的遗传距离最近;四川麻鸭和汉中麻鸭的遗传距离最远。Nm值变异范围为从0.4620(四川麻鸭—汉中鸭)到1.3692(金定鸭—山麻鸭)。
     6.利用微卫星DNA标记分析24个中国鸭种遗传距离与地理距离的关联性,对于特定的群体而言,遗传距离与地理距离表现出相当程度的关联性,但24鸭个种间遗传距离和地理距离回归公式:FST/(1-FST) = 0.1976736 +0.0000578ln(d)以及Mantel’s检验的结果(P= 0.19192)并不能为两者间的显著联系提供足够的证据,表明在中国地方鸭品种的形成过程中,各自的地理分布可能并不是影响其群体遗传结构的决定因素
     7.利用28对微卫星标记基于DA遗传距离对24个群体的亲缘关系进行分析,结合中国地方鸭种的历史起源、地理位置、生态条件、特定性状以及形态特征等,NJ聚类法将24个中国地方鸭种分为5大类:恩施麻鸭、荆江麻鸭、沔阳麻鸭、建昌鸭、四川麻鸭、靖西大麻鸭和广西小麻鸭聚为一类群;三穗鸭、兴义鸭、云南麻鸭、、连城白鸭、莆田黑鸭、金定鸭和山麻鸭聚为一类群;绍兴鸭和高邮鸭聚为一类;巢湖鸭、汉中麻鸭和大余鸭聚类一类;攸县麻鸭、临武鸭、北鸭、微山麻鸭和淮南麻鸭聚为一类。
     8.群体结构分析表明24个地方鸭品种1440个个体的平均基因组分数在所属推断类别中的平均基因组分数都大于0.800,表明我国24个鸭群体各具有本品种的特征特性。
     9.根据实验数据,提出对现有中国地方鸭种的保种措施:可采集组织和血样,贮存DNA信息,分析评价遗传结构的动态变化;在活体保种中,要采取保种场和保种区相结合的保种措施。
China, as one of the largest duck producers in the world, is rich in duck genetic resources,and there are many indigenous breeds scattered throughout the country. These breeds vary in size, plumage color and other characteristics. In order to roundly find out the status of genetic resources, genetic diversity and genetic relationship of Chinese indigenous ducks, we had surveyed their numbers, conservation situation, utilization, performance, and collected 24 indigenous ducks from different original regions, examined the genotype of 1440 individuals based on 28 microsatellite loci. The genetic diversity was disclosed by calculating the allele frequency, heterozygosity(H),effective number of alleles, polymorphism information content (PIC), Nei's standard genetic distance and DA genetic distance. Phylogenetic Relationship was analyzed by the neighbor-joining method (NJ), principal components analysis (PCA), genetic structure analysis, and so on. Our main results were summarized as follows:
     (1) The survey of Chinese indigenous ducks from original regions showed that Wendeng black duck and Zhongshan duck breeds were at the verge of extinction.Among the existing 24 indigenous duck breeds, Jianchang duck and Sichuan duck breeds were at risk, and 22 others were in normal state.
     (2) This research had studied the effect of saving poultry’blood with ethanol and explored the method of extracting DNA from these blood samples. Dealing with the blood sample with 75% ethanol at 4:1 on volume, it was simple and rapid to operate and the samples could be saved for a long time at the normal temperature. Others, by the Method of Phenol-Chloroform, we could extract higher quality of DNA which could be used to further molecule biology research from blood.
     (3) The allele number and polymorphism information content of the 24 indigenous ducks were examined with 28 microsatellite DNA markers. The results showed that 236 alleles were identified, the allele number was abundant, which was from 5 to 13, and the mean allele number was 8.428 per locus.134.4 effective allele numbers was identified, which was less than the observed value actually, the mean effective allele number was 4.800. Except that the PIC of locus of APL23 and APL79 were of medium level genetic diversity, those of other loci were high. The overall average expected heterozygosity was 0.7613, which showed great genetic diversity and high select potentiality. The effective allele numbers, average polymorphism information content and expected heterozygosity per locus were positive correlation. From the breeds, Xingyi ducks and Sansui ducks in 28 microsatellite markers were of the highest average number of alleles,which were 4.25.And the average minimum number of alleles in the Liancheng white ducks, which were only 3.36.
     (4) The allele frequency differences of the 24 indigenous duck breeds in the same micro-satellite loci were examined. The results showed that,there were 27 private alleles and a large number of dominate alleles at the 28 microsatellite loci of 24 indigenous ducks. The expected heterozygosity of Sansui duck was the highest, which was 0.6166; the second was Weishan duck, and the least was Jingding Duck, which was 0.5137. The overall average heterozygosity of the 24 indigenous ducks was 0.569, which relatively reflected the lower genetic diversity and narrow potentiality of selection.
     (5) Genetic differences was analyzed by the F statistic analysis, the number of the populations deviated from HWE per locus ranged from 0 to 8. The genetic differentiation among populations had reached to 0.264 (P <0.001), which was very significant for the whole population, all loci were contributed significantly (P <0.001) to this differentiation. And the deficit of heterozygote was observed at a low level. The concrete values of two genetic distances of DA and DS among the 24 indigenous ducks were consistent. The Nm value ranged from 0.4620 (Sichuan duck-Hanzhong duck) to 1.3692 (Jingding duck-Shanma duck). The genetic distance between Jingding duck and Shanma duck was the nearest, and that of Sichuan duck and Hanzhong duck was the most distant.
     (6) The geographical elements may own to the close relationship for particular population pairs, however, the equation FST/ (1-FST) = 0.1976736 +0.0000578ln (d) and the result from Mantel’s test (P= 0.19192) did not provide enough support for a significant correlation between the genetic and geographical pair wise distances. It was no significant correlation between the genetic diversity of genetic distance and the distributing of these populations. The results concluded that the geographical distributing maybe not the determinant influence on the genetic structure of Chinese chicken populations during the course of their developed history.
     (7) Combining with the origin of indigenous duck breeds, geography, entironment, special traits, morphologic characteristic, and so on, the phylogenetic relationship based on DA among Chinese indigenous ducks were analyzed, an un-rooted consensus tree was constructed, and the 24 indigenous ducks and divided them into 5 groups. The first group, Ehshi sheldrake, Jingjiang sheldrake and Mianyang sheldrake clustered first, the three populations were all sampled in Hubei province, then clustered with Jianchang duck and Sichuang sheldrake, both in Sichuan province. At last, we clustered a larger colony with Jingxi big sheldrake and Guangxi small sheldrake both from Guangxi province. The second group, Sansui duck and Xingyi duck in Guizhou province, Yunnan sheldrake in Yunnan province and four excellence ducks Liancheng white duck, Putian black duck, Jinding duck and Shan sheldrake in Fujian province clustered a larger colony. The third group, Shaoxing duck in Zhejiang province and Gaoyou duck in Jiangsu province clustered despite a long genetic distance between them. The fourth group, Chaohu duck in Anhui province and Hanzhong sheldrake in Shangxi province clustered first, then clustered with Dayu duck in Jiangxi province. The fifth group, Youxian sheldrake in Hunan province and Linwu duck clustered first, then a larger colony with Beijing duck, Weishan sheldrake in Shandong province and Huainan sheldrake in Henan province clustered at last.
     (8) For the analysis of population structure from STRUCTURE, the average gene score of the 1440 individuals of the 24 local ducks was more than 0.800 in their concluded sorts respectively. And this reflected the 24 populations all held their own special characteristics respectively.
     (9) Based on the experiment data and the actuality of Chinese indigenous duck breeds, it is suggested that we should collect the sample of tissue and blood to reserve DNA, which can be used to analyze dynamic change of the genetic structure. During the conservation in vivo, it is necessary to take the measures of combinations of conservation farm with conservation area.
引文
[1]陈宽维,章明,张学余,等.我国家禽遗传多样性特点与保护[J].中国禽业导刊,2002, 19(23):12-14.
    [2]《中国畜禽遗传资源状况》编委会编.中国畜禽遗传资源状况[M].中国农业出版社,2004.
    [3]吴常信.畜禽遗传资源保存的理论与技术[J].家畜生态,2001,22(1):1-4.
    [4]杜立新.畜禽遗传资源冷冻保存中的取样方法探讨[J].生物数学学报,1992,7(1):22- 27.
    [5] Wright S. Evolution and the genetics of population variability within and among natural populations [M]. Chicago III: University of Chicago Press, 1978.
    [6]盛志廉.论保护家畜多样性[J].中国禽业导报, 2002,9(14):3-8.
    [7]张志武.近交系数与亲缘系数迭代算法[J].东北农学院学报,1991,22(3):231-235.
    [8]芒来.畜禽保种理论的研究[J].草食家畜,1993,(1):12-14.
    [9]陈瑶生.从达尔文到现代动物育种[J].东北农业大学学报,1994,25(4):405-410.
    [10]马月辉,陈幼春,冯维祺.中国家养动物多样性概况[J].畜牧兽医学报, 2000, 31(5): 393-399.
    [11]何远清.对我国地方鸡种遗传资源的保存和利用的建议[J].中国禽业导刊, 2003,20(3):22-23.
    [12]孙飞舟.采用微卫星DNA标记评估中国地方猪种遗传多样性[D].中国农业大学博士学位论文,2002.
    [13]常万存.以冷冻配子和胚胎保存动物遗传资源的可行性[J].中国畜牧杂志,1998,1: 49-50.
    [14] Nei M,Tajima F,Tateno Y.1983.Accuracy of estimated phylogenetic trees from molecular data.J Mol Evol.19:153-170.
    [15] Kimura M, Crow J F. The number of alleles that can be maintained in a finite population [J]. Genetics, 1964, 49:725-738.
    [16] Jukes T H, Cantor C R. Evolution of protein molecules [A].In: Munro H N, ed. Mammalian Protein Metabolism [C], New York: Academic Press, 1969, 21-132.
    [17] Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences [J]. J Mol Evol, 1980, 16:111-120.
    [18] Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data [J]. J Mol Evol, 1983, 19:153-170.
    [19] Tamura K. Estimation of the number of nucleotide substitutions there are transition transversion and G+C-content biases [J]. Molecular Biology and Evolution, 1992, 9:678-687.
    [20] Hasegawa M, Kishino H, Yano K. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. [J]. J Mol Evol, 1985, 22:160-174.
    [21] Tamura K, Nei M.Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees [J].Mol Biol Evol,1993, 10(3):512-526.
    [22] Cavalli-Sforza L L, Edwards A W F.Phylogenetic analysis:Models and estimation procedures [J]. Amer J Hum Genet, 1967, 19:233-257.
    [23] Takezaki N,Nei M.Genetic distances and reconstruction of plylogenetic trees frommicrosatellite DNA [J]. Genetics, 1996, 144:389-399.
    [24] Nei M.Genetic distance between populations [J]. Amer Natur, 1972, 106:283-292.
    [25] Wright S.Evolution and the genetics of population variability within and among natural populations [M]. Chicago III:University of Chicago Press, 1978.
    [26] Slatkin M. Inbreeding coefficients and coalescence times [J]. Genet Res,1991,58:167- 175.
    [27] Nei M. Analysis of gene diversity in subdivided populations [J]. Proc. Natl. Acad. Sci. USA, 1973, 70:3321-3323.
    [28] Sneath P H A and Sokal R R.Numerical Taxonomy [M].San Francisco:Freeman,1973.
    [29] Cavalli-Sforza L L and A W F Edwards.Phylogenetic analysis:models and estimation procedures [J]. American Journal of Human Genetics, 1967,19:233-257.
    [30] Saitou N and M Nei.The neighbor-joining method:A new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4:406-425.
    [31] Fitch W M. Towards defining the course of evolution:Minimum change for a specific tree topology [J]. Systematic Zoology, 1971, 20:406- 416.
    [32] Hartigan J A. Minimum mutations fits to a given tree [J]. Biometrics, 1973, 29:53-65.
    [33] Felsenstein J. Evolutionary trees from DNA sequences:a maximum likelihood approach [J]. J Mol Evol, 1981,17:368-376.
    [34] Vaiman D, Pailhoux E, Payen E. Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene:mapping in sheep and cattle [J]. Cytogenet Cell Genet, 1995, 70: 112-115.
    [35] Debrauwere H, Gendrel C G, Leehat S. Differences and similarities between varioustandem repeat sequences: minisatellites and microsatellites [J]. Biochimie, 1997, 79:577-586.
    [36] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res, 1989, 17: 6463-6471.
    [37] Hamada H, Marianne G P, Kakunaga T. A Novel Repeated Element with Z-DNA- Forming Potential is Widely Found in Evolutionarily Diverse Eukaryotic Genomes [J]. PNAS, 1982, 79:6465-6469.
    [38] Gilmour D S, Thomas G H, Elgin S C R. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters [J]. Science, 1989, 245:1487-1490.
    [39] Hancock J M. The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution [J]. Journal of Molecular Evolution, 1995, 40:629-639.
    [40] Van Zeveren A, Peelman L, Van de Weghe A, et al. A genetic study of four Belgian pig populations by means of seven microsatellite loci [J]. J Anim Breed Genet,1995, 112: 191-204.
    [41] Van Schalkwyk S J, Cloete S W P, de Kock J A. Repeatability and phenotypic correlations for body weight and reprodution in commercial ostrich breeding pairs [J]. British Poultry Science, 1996,37:953-962.
    [42]牟彦双,李辉.鸡基因组研究新进展[J].遗传, 2006, 28(5):617-622.
    [43] Weber J L. Informativeness of human (dC-dA)n?(dG-dT)n polymorphisms [J]. Genomic, 1990, 7:523-530.
    [44] Estoup A, Tailliez C, Cornuet J M, et al. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae) [J]. Mol Biol Evol, 1995, 12:1073-1084.
    [45] Wilke K, Jung M, Chen Y, et al. Porcine (GT) n sequences: structure and association with dispersed and tandem repeats [J].Genomics, 1994, 21:63-70.
    [46] Moore S S, Sargeant L L, King T J, et al. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterogonous PCR primer pars in closely related species [J]. Genomics, 1991, 10:653-670.
    [47] Kim C H, Yoo C G, Han S K, et al. Genetic instability of microsatellite sequences in non-small cell lung cancers [J]. Lung Cancer, 1998, 21(1):21-25.
    [48]王丽娟.微卫星DNA及其PCR技术的进展[J].国外医学分子生物学分册,1996, 18(4): 169-173.
    [49] King T L, Lubinski B A, Spidle A P. Microsatellite DNA variation in atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplificaion in the Acipenseridae [J]. Conservation Genetics, 2001, 2:103-119.
    [50] Levinson G, Gutman G A. Slipped-strand mispairing:a major mechanism for DNA sequence evolution [J]. Mol Biol Evol, 1987, 4:203-221.
    [51] Jeffreys A J, Tamaki K, MacLeod A, et al. Complex gene conversion events in germ line mutation at human minisatellites [J]. Nature Genetics, 1994, 6:136-145.
    [52] Levinson G, Gutman G A. High frequencies of short frameshift in poly-CA/GT tandem repeats borne by bacteriophage M13 in Escherichia coli K-12 [J]. Nucleic Acids Res, 1987, 15:5323-5338.
    [53] Henderson S T, Petes T D. Instability of simple sequence DNA in Saccharomyces cerevisiae [J]. Mol. Cell. Biol, 1992, 12:2749-2757.
    [54] Ma R Z, Russ I, Park C, et al. Isolation and characterization of 45 polymorphic microsatellites from the bovine genome [J]. Animal Genetics, 1996, 27:43-47.
    [55] Cheng H H, Crittenden L B. Microsatellite markers for genetic mapping in the chicken [J]. Poultry Science, 1994, 73:539-546.
    [56] Dettman J R, Taylor J W. Mutation and Evolution of Microsatellite Loci in Neurospora [J]. Genetics, 2004, 168:1231-1248.
    [57] Rohrer G A, Alexander L J, Keele J W, et al. A microsatellite linkage map of the porcine genome [J]. Genetics, 1994, 136:231-245.
    [58] Sekine I, Yokose T, Ogura T, et al. Microsatellite instability in lung cancer patients 40 years of age or younger [J]. Jpn J Cancer Res, 1997, 88(6):559-63.
    [59] Karran P. Microsatellite instability and DNA mismatch repair in human cancer [J]. Semin Cancer Biology, 1996, 7:15-24.
    [60] Vaiman D, Pailhoux E, Payen E, et al. Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene: mapping in sheep and cattle [J]. Cytogenet Cell Genet, 1995, 70:112-115.
    [61] Reed K M, Mendoza K M, Beattie C W. Comparative analysis of microsatellite loci in chicken and turkey [J]. Genome, 2000, 43:796-802.
    [62] Levin I, Cheng H H, Baxter-Jones C, et al. Turkey microsatellite DNA loci amplified by chicken-specific primers [J]. Animal Genetics, 1995, 26:107-110.
    [63] Callen D F, Thompson A D, Shen Y, et al. Incidence and origin of“null”alleles in the(AC)n microsatellite markers [J]. Am J Hum Gene, 1993, 52:922-927.
    [64] Paetkau D, Strobeck C. The molecular basis and evolutionary history of a microsatellite null allele in bears [J]. Mol Ecol, 1995, 4:519-520.
    [65] Ginot F, Bordelais I, Nguyen S, et al. Correction of some genotyping errors in automated flurescent microsatellite analysis by enzymatic removal of one base overhangs [J]. Nucleic Acid Res, 1996, 24:540-541.
    [66] Fontana F, Lanfredi M, Rossi R, et al. Karyotypic characterization of Acipenser gueldenstaedti with C-, Ag-NO3 and fluorescence banding techniques [J]. Ital J Zool, 1996, 63:113-118.
    [67] Viard F, Franck P, Dupois MP, et al. Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species [J]. J Mol Evol, 1998, 47: 42-51.
    [68] Taylor J S, Sanny P, Breden F. Microsatellite alleles size homoplasy in the guppy (Poecilia reticulata) [J]. J Mol Evol, 1999, 48:245-247.
    [69] Archibald A L, Burt D W, Williams J L. Gene mapping in farm animals and birds a overview [J]. Proc.5th world Conger Genet. Appli Livest Prod, 1994, 21:3-4.
    [70] Crooijmans R P, Dijkhof R J, van der Poel J J, et al. New microsatellite markers in chicken optimized for automated fluorescent genotyping [J]. Animal Genetics, 1997, 28:427-437.
    [71] Lyman B Crittenden, Leonard Provencher, Lisa Santangelo, et al. Characterization of a Red Jungle Fowl by White Leghorn Backcross reference population for Molecular Mapping of the chicken Genome [J] Poultry Science, 1993, 72:333-348.
    [72] Rooijmans R P M A, Dijkhof R J M, Vaander Poel J J, et al. New microsatellite markers in chicken optimized for automated fluorent genotyping [J]. Anim Genet, 1997, 48:427-437.
    [73] Crooijmans R P, van Oers P A, Strijk J A, et al. Preliminary linkage map of the chicken genome based on microsatellite markers: 77 new markers mapped [J]. Poult Sci, 1996, 75(6):746-754.
    [74] Bumstead N, Palyga J. A preliminary linkage map of the chicken genome [J]. Genomics, 1992, 13, 72:333-348.
    [75] Cheng H H, Levin I, Vallejjo R L, et al. Development of a genetic map of the chicken with markers of high utility [J]. Poult Sci, 1995, 74(11):1855-1874.
    [76] Groenen M A, Cheng H H, Bumstead N, et al.A consensus linkage map of the chicken genome [J]. Genome Res, 2000, 10(1):137-147.
    [77] Schmid M,Nenda I,Guttenbach M, et al. First report on chicken genes and chromo -somes[J]. Cytogenet Cell Cenet, 2000, 90(34):169-218.
    [78] Takahashi H, Tsudzuki M, Sasaki O, et al. A chicken linkage map based on micro- satellite markers genotyped on a Japanese Large Game and White Leghorn cross [J]. Anim Genet, 2005, 36(6):463-467.
    [79] Jacobsson L, Park H B, Wahlberg P, et al. Assignment of fourteen microsatellite markers tothe chicken linkage map [J]. Poult Sci, 2004, 83(11):1825-1831.
    [80] Primmer C R, Raudsepp T, Chowdhery B P, et al. Low frequency of microsatellites in the avian genome [J]. Genorne Res, 1997, 7(5): 471-482.
    [81] Ponsuksili S, Wimmers K, Horst P. Evaluation of genetic variation within andbetween different chicken lines by DNA fingerprinting [J]. J Hered, 1998, 89(1):17-23.
    [82]黄海根,孟安民.DNA指纹图带与鸡的蛋重性状的遗传相关性分析[J].遗传,1998, 20(3):13-15.
    [83]王金玉,龚允陈.鸡的DAN指纹与屠宰性能的相关性研究[J].遗传学报,1999, 26(4): 323-328.
    [84]高玉时,李慧芳,陈国宏,等.苏禽黄鸡微卫星DNA指纹分析[J].扬州大学学报(农业与生命科学版), 2004, 25(4):39-43.
    [85]高玉时,李慧芳,陈国宏,等.地方鸡种微卫星DNA指纹图谱建立与遗传多样性研究[J].云南农业大学学报, 2005, 20(3):313-318.
    [86] Hutt F B. Sex-linked dwarfism in the fowl [J]. J Hered, 1959, 50: 209-221.
    [87] Valliejo et al. Current reseach on Mardk’s Disease [J]. Proceedings of the 5th international symposium, 1996:13-23.
    [88] Ruyter-Spira C P, de Groof A J, van der Poel J J, et al. The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken [J]. The Journal of Heredity, 1998, 89(4):295-300.
    [89] N Yonash, Cheng H H, Hillel D E, et al. DNA microsatellite linked to QTL affecting antibody response and survival rate in meat-type chicken [J]. Poul Sci, 2001, 80:22-28.
    [90]邓学梅,李俊英,李宁等.基于F-2群体的鸡重要生长性状遗传分析[J].遗传学报, 2001, 28(9):801-807.
    [91] M Tuiskula-Haavisto, Honkatukia M,Vilkki J, et al. Use of microsatellite markers forlocalizing genes affecting egg quality in chicken [J]. 2000, 2:56-61.
    [92] van kaam J B C H M, van Arendonk J A M, Groene M A M, et al. Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design [J]. Livestock Production Science, 1998, 54:133-50.
    [93] Tatsuda K, Fujinaka K, Yamasaki T. Gentic mapping of a body weight trait in chicken [J]. Animal science journal, 2000, 71(2):130-136.
    [94] K Tatsuda, K Fujinaka. Genetic mapping of the QTL affecting body weight in chickens using a F2 family [J]. British Poultry Science, 2001, 42(3):333-337.
    [95] Kerje S, Carlborg O, Schutz K, et al. The two-fold difference in adult size between Red Junglefowl and White Leghorn chickens is largely explained by a limited number of QTL [J]. Animal Genetics, 2003, 34:263-274.
    [96] Siwek M, Cornelissen S J B, Nieuwland M G B, et al. Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cell [J]. Poultry Science, 2004, 83:853-859.
    [97] Van Kaam J B C H M, Groenen M A M, Bovenhuis H, et al. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency [J]. Poultry Science, 1999, 78:15-23.
    [98] Sewalem A, Morrice D M, Law A, et al. Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross [J]. Poultry Science, 2002, 81: 1775-1781.
    [99]杜志强.利用基因组扫描定位鸡的重要性状基因座.[学位论文][D].北京:中国农业大学, 2003.
    [100] McElroy J P, Dekkers J C, Fulton J E, et al. Microsatellite markers associated with resistance to Marek's disease in commercial layer chickens [J]. Poult Sci, 2005, 84(11): 1678-1688.
    [101] McElroy J P, Kim J J, Harry D E, et al. Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens [J]. Poult Sci, 2006, 85(4):593-605.
    [102] Abasht B, Pitel F, Lagarrigue S, et al. Fatness QTL on chicken chromosome 5 and interaction with sex [J]. Genet Sel Evol, 2006, 38(3):297-311.
    [103] Gao Y, Hu X X, Du Z Q, et al. A genome scan for quantitative trait loci associated with body weight at different developmental stages in chickens [J]. Anim Genet, 2006, 37(3):276-278.
    [104] Atzmon G, Ronin Y I, Korol A, et al. QTLs associated with growth traits and abdominal fat weight and their interactions with gender and hatch in commercial meat-type chickens [J]. Anim Genet, 2006, 37(4):352-358.
    [105]李红霞,朱庆,李亮,等.黄羽肉鸡微卫星多态性与体重的相关分析[J].遗传,2004, 26(6): 853-858.
    [106]沈立权.微卫星DNA标记与新扬州鸡蛋用性状的相关研究.[学位论文][D].扬州:扬州大学, 2004.
    [107]周海龙,朱庆.丝羽乌骨鸡月产蛋性能与微卫星标记关系的研究[J].四川农业大学学报, 2005, 23(4):450-453.
    [108]高玉时,王克华,陈国宏,等.鸡微卫星DNA标记与屠宰性状的关系[J].江苏农业学报, 2006a, 22(3):258-264.
    [109]高玉时,王克华,陈国宏,等.鸡微卫星DNA标记与肉品质性状关系研究[J].畜牧兽医学报, 2006b, 37(7):650-655.
    [110]包文斌,周群兰,吴信生,等.微卫星标记与仙居鸡体重的相关性研究[J].安徽农业科学, 2005, 33(4):652-654.
    [111]周群兰,吴信生,包文斌,等.微卫星标记与鹿苑鸡体重的相关初探[J].扬州大学学报(农业与生命科学版), 2005, 26(2):25-28.
    [112]包文斌,束婧婷,张红霞,等.29个微卫星标记与淮南麻黄鸡体重的相关性分析[J].中国家禽, 2006, 28(5):17-19.
    [113]包文斌,陈国宏,王克华,等.微卫星DNA标记与肉鸡腹脂率的相关分析[J].中国畜牧杂志, 2006, 42(9):5-6.
    [114]朱庆,张义正,刘继霞,等.黄羽肉鸡群体遗传变异的微卫星分析及其与体重杂种优势的关系[J].畜牧与兽医, 2006, 38(3):8-10.
    [115] Ellegren H, Johansson M, Sandberg K, et al. Cloning of highly polymorphic microsatellites in the horse [J]. Anim. Genet, 1992, 23:133-42.
    [116] Rosenberg N A, Burke T E, Marcus W F, et al. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds [J].Genetics, 2001, l59: 699-713.
    [117]张丽娟,杨长锁,陈宏,等.微卫星标记在白壳蛋鸡品系鉴定中的应用[J].农业生物技术学报, 2005, 13(1):72-76.
    [118] Nakamura A, Kino K, Minezawa M, et al. A method for discriminating a Japanese chicken, the Nagoya breed, using microsatellite markers [J]. Poult Sci, 2006, 85(12): 2123-2129.
    [119]李显耀,张龙超,曲鲁江,等.静宁鸡和固原鸡品种划分的分子遗传基础[J].农业生物技术学报, 2005, 13(5):663-667.
    [120] Hillel J, Schaap T, Haberfeld A, et al. DNA fingerprints applied to gene introgression in breeding programs [J]. Genetics, 1990, 124(3):783-789.
    [121]李军林,张思河,魏弘.用微卫星引物对近交系小鼠进行遗传监测[J].西北农业学报,2001, 10(1):1-3.
    [122]曲鲁江,吴桂琴,李显耀,等.采用微卫星DNA标记分析部分地方鸡种保种场的保种效果[J].遗传学报, 2004, 31(6):591-595.
    [123]高玉时,杨宁,李慧芳,等.我国地方鸡品种保种群微卫星多态性分析与分子标记档案的建立[J].遗传, 2004, 26(6):859-864.
    [124]李慧芳,高玉时,苏一军,等.中国地方鸡种资源不同保种方法的分子检测[J].云南农业大学学报, 2006, 21(2):228-230.
    [135] Baker J S F. A global protocol for determining genetic distance among domestic livestock breeds [J]. In: Proceedings of the 5th world congress on genetics applied to livestock production, 1994, 21:501-508.
    [126]张细权,杨关福,施振旦,等.用微卫星多态性研究家鸡品种的遗传结构及亲缘关系[J]. Animal Biotechnology Bulletin, 1996, 5:53-59.
    [127] Zhou H J, Lamont S J. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite marker [J]. Animal Genetics, 1999,30:256-264.
    [128] Wimmers K, Ponsuksill S, Hardge T, et al. Genetic distinctness of African, Asian and South American local chickens [J]. Anim Genet, 2000, 31:159-165.
    [129] Romanov M N, Weigend S. Analysis of genetic relationships between variouspopulations of domestic and jungle fowl using microsatellite markers [J]. Poult Sci, 2001, 80:1057-1063.
    [130]朱庆,李亮.不同地方乌骨鸡种群遗传多样性的微卫星DNA分析[J].畜牧兽医学报, 2003, 34(3):213-216.
    [131]胡晓湘,黄银花,高宇,等.对中国农业大学鸡资源群进行基因组扫描的初步分析[J].遗传学报, 2003, 30(12):1101-1106.
    [132]陈红菊,岳永生,樊新忠,等.利用微卫星标记分析山东地方鸡品种的遗传多样性[J].遗传学报, 2003, 30(9): 855-860.
    [133]杜志强,曲鲁江,李显耀,等.藏鸡群体遗传多样性研究[J].遗传, 2004, 26(2): 167-171.
    [134]陈红菊,岳永生,樊新忠,等.山东地方鸡种遗传距离与聚类分析方法比较研究[J].畜牧兽医学报, 2004, 36(1):33-36.
    [135]吴信生,陈国宏,王得前,等.利用微卫星技术分析中国部分地方鸡种的遗传结构[J].遗传学报, 2004, 31(1):43-50.
    [136]李慧芳,陈宽维,章双杰,等.中国受威胁地方鸡品种的遗传多样性[J].南京农业大学学报, 2005, 28(3):68-70.
    [137]李慧芳,陈宽维,汤青萍,等.利用微卫星标记分析云南6个地方鸡品种的遗传多样性[J].江苏农业学报, 2006, 22(I):33-37.
    [138]张勇,肖礼华,陈祥,等.利用微卫星标记分析贵州地方鸡种的遗传多样性及亲缘关系[J].畜牧兽医学报,2006,37(12):l273-1281.
    [139]邓雪娟,孙桂荣,康相涛,等.固始鸡不同品系及部分外来鸡种遗传多样性的微卫星分析[J].中国畜牧杂志,2006,42(21):1-3.
    [140]陈宽维,李慧芳,王金玉,等.华东27个地方鸡品种(品系)的遗传变异[J].畜牧兽医学报, 2006,37(1):7-11.
    [141] Tadano R, Sekino M, Nishibori M, et al. Microsatellite marker analysis for the genetic relationships among Japanese long-tailed chicken breeds [J]. Poult Sci, 2007, 86(3): 460-469.
    [142] Shahbazi S, Mirhosseini S Z, Romanov M N. Genetic diversity in five Iranian native chicken populations estimated by microsatellite markers [J]. Biochem Genet, 2007, 45(1-2):63-75.
    [143]曲鲁江,李显耀,徐桂芳,等.利用微卫星标记分析中国地方鸡种的遗传多样性[J].中国科学(C辑), 2006, 36(1):17-26.
    [144]陈国宏,季从亮,王敏强,等.12个地方鸡种群体遗传结构及遗传多样性分析[J].畜牧兽医学报, 2006,1:1-6.
    [145]村松晋著,郭荣昌译.动物染色体[M].哈尔滨:黑龙江人民出版社,1988.
    [146]熊淑慧,邱祥聘,曾凡同.建昌鸭、北京鸭与绿头鸭(Anas platyrhynchos)的核型及G-带带型[J].四川农业大学学报, 1986, 4(1):119-127.
    [147]熊淑慧,邱祥聘,曾凡同.四川麻鸭染色体组型分析[J].四川农业大学学报,1987, 5(2): 99-104 .
    [148]程光潮,吴丽城.番鸭、连城鸭及其属间杂种的体细胞染色体比较[J].遗传学报, 1982, 9(4):303-307.
    [149] Mayr B, Lambrou M, Schweizer D. et al. An inversion polymorphism of a DA/DA PI-positive chromosome pair in Anas platyrhynchos (Aves). Cytogenetics and Cell Genetics, 1989, 50:132-134.
    [150] Denjean B, Ducos A, DarréA. et al. Caryotypes des canards commun (Anas platyrhynchos),Barbarie (Cairina moschata) et de leur hybride. Revue Méd Vét, 1996, 148:695-704.
    [151]陈瑞羡,等.鸭的染色体研究I-中国习见野鸭和家鸭品种的核型和C带.第18届世界家禽会议分科讨论会-国际水禽生产学术会议论文集.北京, 1988, 37-42.
    [152]檩俊秩,等.莆田黑鸭血清前白蛋白表现型与产蛋性能的关系(初报)[A].国际水禽生产学术会议论文集[C].北京:中国畜牧兽医学会, 1988,120-122.
    [153]郑文竹,等.几种家鸭血清无机磷含量及AKP同工酶谱的比较[A].国际水禽生产学术会议论文集[C].北京:中国畜牧兽医学会, 1992,65-73.
    [154] TanabeY, HetzolDJS, KizakiT, etal. Proc. 18th World's Poultry Congress [M]. Beijing, China:Interna-tional Academic Publishers, 1988. 3-8.
    [155]赖垣忠,张松踪.福建家鸭地方品种血清前白蛋白表现型研究[J].畜牧兽医学报, 1985, 16(1):145-148.
    [156]赖垣忠,张松踪.鸭血清前白蛋白研究[J].畜牧兽医学报,1989, 20(2):129~133.
    [157]郑文竹,潘丽娉.北京鸭、金定鸭及其杂种酯酶同工酶的研究[J].动物学杂志, 1997, 32(1), 45-47.
    [158]宋建捷,陈晖.几种鸭及其杂交后代AKP同工酶分析[J],福建畜牧兽医,1994,16 (3):1-3.
    [159]肖千均,吴可林,项可宁,等.家禽(鹅、鸭、鸡)血清多态性比较血型学的初步研究[J].遗传,1997,19(2):220-223.
    [160]张汤杰.绍兴蛋鸭血清酯酶多态性研究[J].中国家禽,1998, 20(12):8-9.
    [161]卢立志,赵爱珍,沈军达等.青壳Ⅰ系、白壳Ⅰ系和绍鸭(RE)系产蛋初期及高峰期某些血液生化指标变化规律的观察[J].畜牧兽医杂志,1997,16(2):5-6.
    [162]吴鹤龄,等.鸭类mtDNA限制性酶切图谱的比较研究[J].遗传学报,14(3):230 -236.
    [163]陈奕欣,赵扬,赖垣忠等.福建两种家鸭品种和常见野鸭线粒体DNA(mt DNA)限制性酶切图谱的比较[J].厦门大学学报(自然科学版),1999, 38(1):108-111.
    [164]黄海根.用牛的小卫星探针BM6.21A进行鸭的DNA指纹分析[J].畜牧兽医学报, 1997, 28(1):6-10.
    [165] S Maak, K Neumann, G von Lengerken, R Gattermann. First seven microsatellites developed for the Peking duck (Anas platyrhynchos) [J]. Anim. Genet. 2000, 31(3): 228-241.
    [166]吴艳,侯水生,刘小林,黄苇,姜飞.4个微卫星标记分析6个鸭群体之间的遗传关系[J].畜牧兽医学报, 2003, 34(3):213-216.
    [167]黄银花,程雪波.8个鸭微卫星DNA的克隆、筛选及特性分析,陈遥生主编.中国动物遗传育种进展[M].北京:中国农业科学技术出版社, 2003, 491-494.
    [168]赵旭庭,段修军,杨廷桂等.11个鸭种(群)遗传变异的微卫星标记分析[J].扬州大学学报(农业与生命科学版), 2005, 26(4):33-38.
    [169]龚道清.运用微卫星标记分析11个鸭种(群)的亲缘关系[J].畜牧兽医学报, 2005,36 (12):1256-1260.
    [170]肖天放.福建不同生态类型鸭种(群)的遗传多样性研究[J].应用生态学报, 2004,15(5):879-882.
    [171]左正宏.金定鸭遗传多样性及分子标记的研究[J].厦门大学学报(自然科学版),2004, 43(2):256-259.
    [172]郑丽桢,王锋.鸭不同品种的随机扩增多态性DNA分析[J].福建畜牧兽医, 1999,21(3):1-2.
    [173]陈奕欣,正宏.RAPD技术探讨几种家鸭与野鸭遗传多样性及亲缘关系[J].厦门大学学报(自然科学版), 2001, 40(1):141-145.
    [174]王光瑛,吴旭.几种肉鸭亲缘关系的RAPD分析,陈遥生主编.中国动物遗传育种进展.北京:中国农业科学技术出版社, 2003, 483-487.
    [175] 1969-1977年殷墟西区墓葬发掘报告[J].考古学报,1979:1.
    [176]卫斯.我国养鸭起始时期小考[J].山西农业科学,1987,1.
    [177]邱祥聘主编.中国家禽品种志[M].上海:上海科技出版社,1988:3-16.
    [178]常洪主编.家畜遗传资源学纲要(第一版)[M].北京:中国农业出版社,1995: 99-123, 143~146.
    [179]厉朝龙主编.生物化学与分子生物实验技术[M].杭州:浙江大学出版社,2000.
    [180]凯勃G H,马纳克著.M M,孙士勇,汪洛,邹卫,王培京译.DNA探针技术[M].北京:科学出版社,1989.
    [181]赵书红,李奎,刘平华.从固定的猪白细胞中提取DNA的方法研究[A].第7次全国畜禽遗传育种学术讨论会论文集[C].长沙:中国农业出版社,1993.
    [182]李慧芳,李碧春,陈宽维,等.中国地方鸭品种资源的分子遗传多样性.畜牧兽医学报,2006,37(11):1107-1113.
    [183] Sambrook J,Fritsch EF,Maniatis T. Molecular Cloning: A Laboratory Manual.2nd Ed.Plainview,NY:Cold Spring Harbor Laboratory Press. 1989.
    [184] Maak S,Neumann K,von Lengerken G, et al. First seven microsatellites developedfor the Peking duck (Anas platyrhynchos) .Anim Genet, 2000, 31(3):233.
    [185] Paulus B K,Tiedemann R. Ten polymorphic autosomal microsatellite loci for the Eider duck Somateria mollissima and their cross-species applicability among waterfowl species(Anatidae). Molecular Ecology, 2003, 3:250-252.
    [186]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].北京:科学出版社, 2002.
    [187] Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980, 32: 313-331.
    [188] Kimura M, Crow J F. The number of alleles that can be maintained in a finite population [J]. Genetics, 1964, 49: 725-738.
    [189] Felsentein J. Confidence limits on phylogenies: an approach using the bootstrap [J]. Evolution, 1985, 39(4): 783-791.
    [190] Rousset F. Genetic differentiation and gene flow from F- statistics under isolation by distance [J]. Genetics, 1997, 145: 1219-1228.
    [191] Park S D E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection: [Ph.D. thesis] [D]. University of Dublin, 2001.
    [192] Goudet J. FSTAT version 2.9.3.2. Switzerland: Department of Ecology & Evolution, University of Lausanne, LAUSANNE, 2002.
    [193] Raymond M, Rousset F. Population genetics software for exact test and ecumenicism [J]. Journal of Heredity, 1995, 86: 248-249.
    [194] Felsentein J. PHYLIP (Phylogeny inference package) version 3.57c. USA: Department of Genetics, University of Washington, Seattle, 1995.
    [195] Saitou N and Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol, 1987, 4: 406-425.
    [196] Prichad J K, Stephens M, Donnely P. Inference of population structure using multilocus genotype data [J]. Genetics, 2000, 155: 945-959.
    [197] Rosenberg N A, Pritchard J K, Weber J L, et al. Genetic structure of human populations [J]. Science, 2002, 298: 2981-2985.
    [198] Rosenberg N A. Distruct: a program for the graphical display of population structure [J]. Molecular Ecology Notes, 2004, 4: 137-138.
    [199] Maudet C, Miller C, Bassano B, et al. Microsatellite DNA and recent statistical methods in wild conservation management: application in Alpine ibex Capra ibex (ibex) [J]. Molecular Ecology, 2002, 11: 421-436.
    [200]陈幼春.关于分子水平下遗传距离检测的模型和适宜样本数的讨论[C].第五次全国畜禽遗传标记研讨会论文集,1996:130-132.
    [201]张继全,于汝梁.Nei氏标准遗传距离的估测精度[J].畜牧兽医学报,1998,29(1): 27-32.
    [202] Roberta C, Katayoun Mouzami~Goudarzi, et al. Individual multilocus genotypes using microsatellite polymorphisms to permit the analysis of the genetic variability within and between Italian beef cattle breeds [J]. Journal of Animal Science, 1995, 73:3259-3268.
    [203] Arranze J J Y, Bayon F, Primitivo S. Comparison of protein markers and microsatellites in differentiation of cattle populations [J]. Animal Genetics, 1996, 27:4 15-419.
    [204] Tajima F. Evolutionary relationship of DNA sequences in finite populations [J]. Genetics, 1983, 105:437-460.
    [205] Barker J.S.F. A globle protocol for determining genetic distances among domestic Livestock breeds.Proc.5th World Genet Appl.livest.Prod [A]. 1994.21:501-508.
    [206]李俊雅,陈德全.中国西门塔尔牛蛋白转化效率的遗传因素分析[J].畜牧兽医学报,1998,29(5):385-391.
    [207] Meglecz E, Pecsenye K, Varge Z, et al. Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (lipidstera) populations [J]. Hereditas, 1998, 128(2):95-103.
    [208]张爱玲.中国6个山羊品种微卫星遗传多样性分析[D].西北农林科技大学, 2004.
    [209] Maudet C, Miller C, Bassano B, et al. Microsatellite DNA and recent statistical methods in wild conservation management: application in Alpine ibex Capra ibex (ibex) [J]. Molecular Ecology, 2002, 11:421-436.
    [210] Jurg Ott. Analysis of Human Genetic Linkage [M]. Revised edition, Baltimore: Johns Hopkins University Press, 2001.
    [211] rranze J J, Bayon Y, San Primitivo F, et al. Genetic variation at five microsatellite loci in four breeds of cattle [J]. The Journal of Agricultural Science, 1996, 27:533-538.
    [212] Crawford R J, Massie M D, Sleper D A, et al. Use of an experimental high magnesium tall fescue to reduce grass tetany in cattle [J]. J. Prod. Agric, 1998, 11:491-496.
    [213] Sneath P H A, Sokal R R. Numerical taxonomy. Freeman, San Francisco,1973,CA.
    [214] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylo- genetic trees [J]. Mol. Biol, 1987, 4:406-425.
    [215]常青,周开亚.分子进化研究中系统发生树的重建[J].生物多样性,1998, 6(1): 55-62.
    [216]文胜勇,徐友文.攸县麻鸭与高邮鸭的杂交试验报告[J].湖南畜牧兽医.2002,1: 5-6.
    [217]陈红菊,岳永生,樊新忠,等.山东地方鸡种遗传距离与聚类分析方法比较研究[J].畜牧兽医学报,2004,35(1):33-36.
    [218]罗永发.中国地方牛种遗传距离测定[D].西北农林科技大学,2007.
    [219]盛连喜,何春光,万忠娟.中国水禽的保护生物学研究进展[J].湿地科学, 2003, 1(1):26-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700