芴酮衍生物分子间弱键竞争诱导二维自组装纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芴酮类化合物是一种性能优良的有机发光材料,受到越来越多人的关注。芴酮分子中的羰基具有很强的极性,基团间可以产生偶极-偶极相互作用,也可以和其它供电子基团形成氢键。这种具有良好结构基元的分子在自组装研究中还未受到应有的重视。因此,我们提出设计合成一系列不同结构的芴酮衍生物分子,系统深入地研究这些化合物在高定向热解石墨(HOPG)表面的自组装结构。通过改变芴酮衍生物的分子结构、采用不同溶剂、调节不同溶液浓度等策略措施研究芴酮衍生物在石墨表面的自组装结构的形成与转变,实现从分子自组装组织到可控阵列,揭示分子间弱键的变化与结构的关系,建立弱键相互作用的协同机制。主要的研究工作和创新性结果如下:
     (1)利用STM研究了2,7-二-(10-乙氧基羰基葵氧基)-9-芴酮(BEF))分子在固/液界面的自组装结构。BEF分子中较短的碳链与芴酮基团间的偶极作用力导致分子形成密堆积的线型结构和随机的花型结构。在针尖的扰动下,两种不同的自组装结构可以在一定浓度下发生相互转变。另外,溶剂的极性并不影响BEF分子的自组装结构。比较实验结果和理论计算模拟结果,我们认为分子间作用力是自组装结构的形成和相互转换的主要因素。在线型结构中,范德华力相对于偶极-偶极作用力是主要的作用力;而在花形结构中,芴酮核和侧链酯基间的偶极-偶极作用起主导作用。
     (2)通过STM研究F-OC_(13)分子在HOPG表面上的吸附行为,考察分子在几种不同溶剂中的自组装结构。F-OC_(13)分子的组装结构和取向都存在明显的溶剂效应。研究发现:在辛苯溶液中,溶剂分子辛苯可以和溶质分子F-OC_(13)产生共吸附,当降低溶液浓度时分子自组装结构由线型转变为交替层状结构;在辛酸溶液中,溶剂分子的羧基与F-OC_(13)的羰基形成分子间氢键而使两种分子共吸附形成蝶状自组装结构。然而,在辛醇溶液中,溶剂不影响F-OC_(13)的自组装结构。在正十三烷和正十四烷溶剂中,由于溶剂-基底相互作用和空间限制,致使溶剂在F-OC_(13)单层膜中形成了共吸附。在挥发性溶剂中,随着时间的变化,分子单层膜由疏密相间的结构变为混合结构。由于分子的结构和溶剂分子的极性而导致组装结构的多形性,这为构筑和调控分子纳米结构提供了一种有效的途径。
     (3)系统地研究了一系列含不同长度烷氧基侧链的2,7-二-(n-烷基)-9-芴酮(F-OC_n,n=12-18)在HOPG/辛苯界面的超分子自组装结构。实验发现:芴酮基团的极性和侧链的长度决定了分子的组装方式,在F-OCn分子的自组装过程中出现明显的奇偶效应。F-OCeven分子随着碳原子数的减少从疏密相间的结构变到回形针结构,而F-OCodd分子形成的则是均一的线型结构。特别是溶剂效应对于F-OC_(14)分子的自组装结构具有明显的影响。在多数情况下,可以观察到F-OCn分子自组装形成的混合线型结构。多种因素如芴酮基团间的偶极-偶极作用力、侧链与石墨晶格之间范德华作用力、溶剂分子-溶质分子间作用力等决定了F-OCn分子自组装结构的多样化。
     (4)研究了烷氧基侧链上含不同数目碳原子的2-羟基-7-烷氧基-9-芴酮(HAF)分子在1-辛苯溶液中的二维自组装。在实验过程中发现:由于不同的氢键相互作用,HAF分子可以形成二种或三种结构,分别是有序性较低的结构、花型结构和Z字型结构。分子热力学、表面扩散以及针尖脉冲的扰动导致了结构的转变,Z字型结构是最稳定的结构。在HAF分子形成花状结构的形成过程中可观察到奇偶效应。这项研究将有助于发展一种通过具有较强极性的芴酮基团间氢键作用诱导分子二维自组装的新方法,为研究相转变的奇偶效应提供实验和理论依据。
     (5)研究了溶剂诱导的非分手性分子2-羟基-7-十五烷氧基-9-芴酮(OH-F-OC15)在不同浓度辛酸溶液里构筑手性对称的新型二维自组装结构。在低浓度下,由于分子间氢键的作用,OH-F-OC15分子可以形成双手性的玫瑰花型结构;而在中等浓度下,随着溶液浓度的提高,OH-F-OC15分子可以形成手性的四聚体结构。由于氢键的方向性和协同性,两种浓度下的自组装结构都会转变为Z字形结构。在高浓度下,OH-F-OC15分子可以形成密集度较高的八聚体结构,且没有观察到结构的转变,与其它两种结构不同的是,此结构中未发现手性对称现象。这种溶剂介导的手性诱导效应为采用非手性分子构筑手性表面的分子纳米构筑提供了一种简单、高效而又通用的方法。
Fluorenone derivatives are excellent organic light-emitting materials, which have beenreceived broad focus. The carbonyl group of fluorenone derivatives has a strong polarity, inwhich the dipole-dipole interactions can be produced between the groups and also can formhydrogen bonds with other electronic groups. The self-assembly research about suchmolecules has not yet received much attention. Therefore we designed and synthesized aseries of fluorenone derivatives and deeply observed the self-assembled structures on thegraphite surface. By changing the molecular structure, using different solvents, adjusting thesolution concentration, we investigated the structural formation and transformation of thefluorenone derivatives self-assembly on HPOG surfaces and realized from self-assemblyorganization to controlled array, and then revealed the relationship between the variousintermolecular weak bonds and the self-assembled structures. Meanwhile, the result fullyprovided a more powerful support for the weak bonds on the synergy mechanism. The mainresearch works and innovative results are as follows:
     (1) The self-assembly of2,7-bis(10-ethoxycarbonyl-decyloxy)-9-fluorenone (BEF) hasbeen investigated by scanning tunneling microscopy at the liquid/solid interface. Thecoexistence and reversible transformation of linear structure and cyclic network wereobserved. The observed structural transformation was found to be driven by voltage pulsesapplied to the STM tips. In addition, the solvent with different polarity had little effect on theself-assembly of BEF on the HOPG surface. On the basis of the comparative experiment andcalculation of the simulation results, we could conclude that for the linear structure, the vdWsforces between the molecules were more important than the dipole-dipole interactions; on thecontrary, the intermolecular dipole-dipole interactions induced the cyclic network.
     (2) Two-dimensional self-assembly of2,7-ditridecyloxy-9-fluorenone (F-OC_(13)) wasinvestigated by scanning tunneling microscopy (STM) in solvents with different polarities andfunctional groups on a high oriented pyrolytic graphite (HOPG) surface. The STM imagesrevealed that the self-assembly of F-OC_(13)was strongly solvent-dependent. The resultsdisplayed that1-Phenyloctane could coadsorb on the self-assembly of F-OC_(13), and thestructural transformation of the adlayer from the linear structure to alternate lamella could be observed with the decrease of the concentration. The intermolecular hydrogen bondingbetween the1-octanoic acid and the F-OC_(13)molecule was responsive for the formation ofbutterfly configuration. At the1-octanol/HOPG interface, only a well ordered linear patternwas obtained. When n-tridecane or n-tetradecane was used as solvent, a regular alternatepattern was formed under high concentrations, and a coadsorbed lamellar structure wasobserved under low concentrations. In the volatile solvent, with the increasing time, adenser-packed structure and a regular alternate pattern were formed, respectively. The solventinduced self-assembly polymorphism is discussed in terms of factors of the polarity of theF-OC_(13)molecule and the nature of the solvent. The results provide a new objective tofabricate and control molecular nanopatterns based on the polar group in the molecule.
     (3) Fluorenone derivatives (F-OC_n) with various lengths of peripheral alkyl chains (withcarbon numbers of n=12-18) was synthesized, and their self-assembled adlayers wereobserved in solvents with different polarities and functionalities by scanning tunnelingmicroscopy (STM) on HOPG surface in1-phenyloctane. The chain-length effect on theself-assembly of F-OCevenwas observed. With the decreasing of the chain-length, theself-assembled pattern changed from a dense-and-loose packed pattern to a clip-like structure.The self-assembly of F-OCoddshowed a uniform lamellar pattern. F-OC_(14)formed differentmorphologies on HOPG surface in different solvents due to the solvophilic effect andcoadsorption. In most cases, a mixed linear structure was observed. The self-assembledmorphologies at the interfaces are determined by various parameters, such as thedipole–dipole interaction between the fluorenone groups, the van der Waals interaction ofinterchains and side chain–graphite lattice, and molecule–solvent interaction.
     (4) The2D self-assembly of various2-hydroxy-7-alkoxy-9-fluorenone(HAF) moleculeshas been investigated by scanning tunneling microscopy(STM) in1-Phenyloctane. Asystematic study revealed that HAF molecules with different numbers of carbon atoms intheir alkoxy chainscould form two or three different kinds of nanostructures, that is,less-ordered, flower-like, and zig-zag patterns, owing to the formation of different types ofintermolecular hydrogen bonds. The observed structural transition was found to be driven bymolecular thermodynamics, surface diffusion, and the voltage pulse that was applied to theSTM tip. The zig-zag pattern was the most stable of these configurations. An odd–even effect on the flower-like structure, as induced by the odd and even number of carbon atoms in theside chain, was observed by STM. Our results are significant for understanding the influenceof hydrogen bonding interactions on the dominant adsorption behavior on the surface andprovide experimental and theoretical basis for observing the influence of the odd–even effecton the phase transition.
     (5) We investigated the emergence of chirality in2D supramolecular networks formed byachiral molecule of the2-hydroxy-7-pentadecyloxy-9-fluorenone (OH-F-OC15) in theinterface of an achiral solvent of1-octanoic acid at different concentrations. At lowconcentrations, the double-rosette pattern was observed with the double chirality resultingfrom the hydrogen bonding. At middle concentrations, owing to the increasing solubility ofthe solvent, OH-F-OC15molecules could form a chiral tetramer pattern. In addition, thedouble-rosette pattern and tetramer structures only existed for a period of time, which couldswitch to a zigzag structure finally, due to the directionality and cooperativity of hydrogenbonding. In high concentrations, OH-F-OC15molecules could form an octamer structure andthe structural transition was not obtained. Particularly, no chiral structure was observed. Thesolvent mediated chiral induction provides a simple, efficient, and versatile approach for thefabrication of homochiral surfaces using achiral building blocks.
引文
[1] Lehn J. Supramolecular chemistry concepts and perspectives, VCH,1995;(b) M. Fujita, D.Oguro, M. Miyazawa, H. Oka, K. Yamaguchi and K. Ogura[J]. Nature,1995,378:469
    [2]崔英敏;吕刚.超分子液晶[J].现代物理知识,2007,19(1):32-35
    [3]孙小强;分子化学.超分子化学导论:中国石化出版社;1997.
    [4]沈兴海.超分子化学--概念和展望(Supramolecular Chemistry: Concepts andPerspectives)[Type].北京:北京大学出版社(Beijing: Peking University Press);2002.
    [5] Lehn J.M. Supramolecular polymer chemistry—scope and perspectives[J]. PolymerInternational,2002,51(10):825-839
    [6] Lehn J.M. Supramolecular chemistry: from molecular information towardsself-organization and complex matter[J]. Reports on Progress in Physics,2004,67(3):249
    [7] Liu G.-Y.; Amro N.A. Positioning protein molecules on surfaces: a nanoengineeringapproach to supramolecular chemistry[J]. Proceedings of the National Academy ofSciences,2002,99(8):5165-5170
    [8] Sherrington D.C.; Taskinen K.A. Self-assembly in synthetic macromolecular systems viamultiple hydrogen bonding interactions[J]. Chemical Society Reviews,2001,30(2):83-93
    [9]任恕.膜受体与传感器[J].中国科学基金,1994,(3):216-218
    [10] Whitesides G.M.; Grzybowski B. Self-assembly at all scales[J]. Science,2002,295(5564):2418-2421
    [11] Jacobs H.O.; Tao A.R.; Schwartz A., et al. Fabrication of a cylindrical display bypatterned assembly[J]. Science,2002,296(5566):323-325
    [12] Zhang S. Emerging biological materials through molecular self-assembly[J].Biotechnology Advances,2002,20(5):321-339
    [13] Gibb C.L.; Gibb B.C. Estimating the efficiency of self-assemblies[J]. Journal ofSupramolecular Chemistry,2001,1(1):39-52
    [14] Lehn J.-M. Toward self-organization and complex matter[J]. Science,2002,295(5564):2400-2403
    [15] Hamley I. Nanotechnology with soft materials[J]. Angewandte Chemie InternationalEdition,2003,42(15):1692-1712
    [16] Yan D.; Zhou Y.; Hou J. Supramolecular self-assembly of macroscopic tubes[J]. Science,2004,303(5654):65-67
    [17] Ulman A. Formation and structure of self-assembled monolayers[J]. Chemical Reviews,1996,96(4):1533
    [18] De Feyter S.; De Schryver F.C. Self-assembly at the liquid/solid interface: STMreveals[J]. The Journal of Physical Chemistry B,2005,109(10):4290-4302
    [19] Giancarlo And L.C.; Flynn G.W. Scanning tunneling and atomic force microscopy probesof self-assembled, physisorbed monolayers: peeking at the peaks[J]. Annual Review ofPhysical Chemistry,1998,49(1):297-336
    [20] Wan L.-J. Fabricating and controlling molecular self-organization at solid surfaces:Studies by scanning tunneling microscopy[J]. Accounts of Chemical Research,2006,39(5):334-342
    [21] Zerkowski J.A.; Seto C.T.; Wierda D.A., et al. The design of organic structures in thesolid state: hydrogen-bonded molecular" tapes"[J]. Journal of the American ChemicalSociety,1990,112(24):9025-9026
    [22] Lehn J.M. Supramolecular chemistry—scope and perspectives molecules,supermolecules, and molecular devices (Nobel Lecture)[J]. Angewandte ChemieInternational Edition in English,1988,27(1):89-112
    [23] De Feyter S.; De Schryver F.C. Two-dimensional supramolecular self-assembly probedby scanning tunneling microscopy[J]. Chemical Society Reviews,2003,32(3):139-150
    [24] Barth J.V. Molecular architectonic on metal surfaces[J]. Annual Review of PhysicalChemistry,2007,58:375-407
    [25] Gong J.-R.; Wan L.-J.; Yuan Q.-H., et al. Mesoscopic self-organization of aself-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2005,102(4):971-974
    [26] Rabe J.P.; Buchholz S. Commensurability and mobility in2-dimensional molecularpatterns on graphite[J]. Science,1991,253(5018):424-427
    [27] Cyr D.M.; Venkataraman B.; Flynn G.W., et al. Functional group identification inscanning tunneling microscopy of molecular adsorbates[J]. The Journal of PhysicalChemistry,1996,100(32):13747-13759
    [28] Venkataraman B.; Breen J.J.; Flynn G.W. Scanning tunneling microscopy studies ofsolvent effects on the adsorption and mobility of triacontane/triacontanol moleculesadsorbed on graphite[J]. The Journal of Physical Chemistry,1995,99(17):6608-6619
    [29] Claypool C.L.; Faglioni F.; Goddard W.A., et al. Source of image contrast in STMimages of functionalized alkanes on graphite: a systematic functional group approach[J].The Journal of Physical Chemistry B,1997,101(31):5978-5995
    [30]陈永军;赵汝光;杨威生.长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究[J].物理学报,2005,54(1):284-290
    [31] Herwig K.; Newton J.C.; Taub H. Structure and growth of butane films adsorbed ongraphite[J]. Physical Review B,1994,50(20):15287
    [32] Zhang H.M.; Yan J.W.; Xie Z.X., et al. Self‐assembly of alkanols on Au (111)surfaces[J]. Chemistry-a European Journal,2006,12(15):4006-4013
    [33] Chen Q.; Chen T.; Pan G.-B., et al. Structural selection of graphene supramolecularassembly oriented by molecular conformation and alkyl chain[J]. Proceedings of theNational Academy of Sciences,2008,105(44):16849-16854
    [34] Tomba G.; Stengel M.; Schneider W.-D., et al. Supramolecular self-assembly driven byelectrostatic repulsion: the1D aggregation of rubrene pentagons on Au (111)[J]. ACSNano,2010,4(12):7545-7551
    [35] Fernandez-Torrente I.; Monturet S.; Franke K., et al. Long-range repulsive interactionbetween molecules on a metal surface induced by charge transfer[J]. Physical ReviewLetters,2007,99(17):176103
    [36] Stadler C.; Hansen S.; Kr ger I., et al. Tuning intermolecular interaction inlong-range-ordered submonolayer organic films[J]. Nature Physics,2009,5(2):153-158
    [37] Fahlman M.; Crispin A.; Crispin X., et al. Electronic structure of hybrid interfaces forpolymer-based electronics[J]. Journal of Physics: Condensed Matter,2007,19(18):183202
    [38] Griessl S.; Lackinger M.; Edelwirth M., et al. Self-assembled two-dimensional molecularhost-guest architectures from trimesic acid[J]. Single Molecules,2002,3(1):25-31
    [39] Lackinger M.; Griessl S.; Heckl W.M., et al. Self-assembly of trimesic acid at theliquid-solid interface a study of solvent-induced polymorphism[J]. Langmuir,2005,21(11):4984-4988
    [40] Xiao W.; Feng X.; Ruffieux P., et al. Self-assembly of chiral molecular honeycombnetworks on Au (111)[J]. Journal of the American Chemical Society,2008,130(28):8910-8912
    [41] Linares M.; Scifo L.; Demadrille R., et al. Two-dimensional self-assemblies ofthiophene-fluorenone conjugated oligomers on graphite: a joint STM and molecularmodeling study[J]. The Journal of Physical Chemistry C,2008,112(17):6850-6859
    [42] Mu Z.; Shao Q.; Ye J., et al. Effect of intermolecular dipole dipole interactions oninterfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronenederivatives [J]. Langmuir,2010,27(4):1314-1318
    [43] Mu Z.; Shao Q.; Ye J., et al. Effect of intermolecular dipole dipole interactions oninterfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronenederivatives [J]. Langmuir,2010,27(4):1314-1318
    [44] Ruben M.; Rojo J.; Romero‐Salguero F.J., et al. Grid‐type metal ionarchitectures:functional metal iosupramolecular arrays[J]. Angewandte ChemieInternational Edition,2004,43(28):3644-3662
    [45] Semenov A.; Spatz J.P.; M ller M., et al. Controlled arrangement of supramolecularmetal coordination arrays on surfaces[J]. Angewandte Chemie International Edition,1999,38(17):2547-2550
    [46] Dmitriev A.; Spillmann H.; Lin N., et al. Modular assembly of two‐dimensional metal–organic coordination networks at a metal surface[J]. Angewandte Chemie,2003,115(23):2774-2777
    [47] Spillmann H.; Dmitriev A.; Lin N., et al. Hierarchical assembly of two-dimensionalhomochiral nanocavity arrays[J]. Journal of the American Chemical Society,2003,125(35):10725-10728
    [48] Lingenfelder M.A.; Spillmann H.; Dmitriev A., et al. Towards surface‐supportedsupramolecular architectures: tailored coordination assembly of1,4‐benzenedicarboxylate and Fe on Cu (100)[J]. Chemistry-an European Journal,2004,10(8):1913-1919
    [49] Stepanow S.; Lingenfelder M.; Dmitriev A., et al. Steering molecular organization andhost–guest interactions using two-dimensional nanoporous coordination systems[J].Nature Materials,2004,3(4):229-233
    [50] Yokoyama T.; Yokoyama S.; Kamikado T., et al. Selective assembly on a surface ofsupramolecular aggregates with controlled size and shape[J]. Nature,2001,413(6856):619-621
    [51] Yuan Q.-H.; Wan L.-J.; Jude H., et al. Self-organization of a self-assembledsupramolecular rectangle, square, and three-dimensional cage on Au (111) surfaces[J].Journal of the American Chemical Society,2005,127(46):16279-16286
    [52] Yang Z.-Y.; Zhang H.-M.; Pan G.-B., et al. Effect of the bridge alkylene chain on adlayerstructure and property of functional oligothiophenes studied with scanning tunnelingmicroscopy and spectroscopy[J]. ACS Nano,2008,2(4):743-749
    [53] Xu L.-P.; Yan C.-J.; Wan L.-J., et al. Light-induced structural transformation inself-assembled monolayer of4-(Amyloxy)cinnamic acid investigated with scanningtunneling microscopy[J]. The Journal of Physical Chemistry B,2005,109(31):14773-14778
    [54] Wan L.J.; Noda H.; Wang C., et al. Controlled orientation of individual molecules byelectrode potentials[J]. ChemPhysPhem,2001,2(10):617-619
    [55] Mougous J.D.; Brackley A.J.; Foland K., et al. Formation of uniaxial molecular films byliquid-crystal imprinting in a magnetic field[J]. Physical Review Letters,2000,84(12):2742-2745
    [56] Xu H.; Minoia A.; Tomovi., et al. Amultivalent hexapod: conformational dynamics ofsix-legged molecules in self-assembled monolayers at a solid liquid interface[J]. ACSNano,2009,3(4):1016-1024
    [57] Yang Y.; Wang C. Solvent effects on two-dimensional molecular self-assembliesinvestigated by using scanning tunneling microscopy[J]. Current Opinion in Colloid&Interface Science,2009,14(2):135-147
    [58] Lackinger M.; Heckl W.M. Carboxylic acids: versatile building blocks and mediators fortwo-dimensional supramolecular self-assembly[J]. Langmuir,2009,25(19):11307-11321
    [59] Lei S.; Tahara K.; De Schryver F.C., et al. One building block, two differentsupramolecular surface‐confined patterns: concentration in control at the solid–liquidinterface[J]. Angewandte Chemie,2008,120(16):3006-3010
    [60] Huang Y.L.; Chen W.; Li H., et al. Tunable two‐dimensional binary molecularnetworks[J]. Small,2009,6(1):70-75
    [61] Gutzler R.; Sirtl T.; Dienstmaier J.F., et al. Reversible phase transitions in self-assembledmonolayers at the liquid solid interface: temperature-controlled opening and closing ofnanopores[J]. Journal of the American Chemical Society,2010,132(14):5084-5090
    [62] Li C.-J.; Zeng Q.-D.; Wang C., et al. Solvent effects on the chirality in two-dimensionalmolecular assemblies[J]. The Journal of Physical Chemistry B,2003,107(3):747-750
    [63] Li Y.; Ma Z.; Qi G., et al. Solvent effects on supramolecular networks formed by racemicstar-shaped oligofluorene studied by scanning tunneling microscopy[J]. The Journal ofPhysical Chemistry C,2008,112(23):8649-8653
    [64] Gong J.-R.; Lei S.-B.; Wan L.-J., et al. Structure and dynamic process oftwo-dimensional monodendron assembly[J]. Chemistry of Materials,2003,15(16):3098-3104
    [65] Zhang X.; Chen T.; Chen Q., et al. One solvent induces a series of structural transitions inmonodendron molecular self‐assembly from lamellar to quadrangular to hexagonal[J].Chemistry-an European Journal,2009,15(38):9669-9673
    [66] Zhang X.; Chen Q.; Deng G.-J., et al. Structural diversity of a monodendron moleculeself-assembly in different solvents investigated by scanning tunneling microscopy: fromdispersant to counterpart[J]. The Journal of Physical Chemistry C,2009,113(36):16193-16198
    [67] Katsonis N.; Kudernac T.; Walko M., et al. Reversible conductance switching of singlediarylethenes on a gold surface[J]. Advanced Materials,2006,18(11):1397-1400
    [68] Chiaravalloti F.; Gross L.; Rieder K.-H., et al. A rack-and-pinion device at the molecularscale[J]. Nature Materials,2006,6(1):30-33
    [69] Shirai Y.; Osgood A.J.; Zhao Y., et al. Directional control in thermally drivensingle-molecule nanocars[J]. Nano Letters,2005,5(11):2330-2334
    [70] Mamdouh W.; Uji-i H.; Ladislaw J.S., et al. Solvent controlled self-assembly at theliquid-solid interface revealed by STM[J]. Journal of the American Chemical Society,2005,128(1):317-325
    [71] Tao F.; Goswami J.; Bernasek S.L. Competition and coadsorption of di-acids andcarboxylic acid solvents on HOPG[J]. The Journal of Physical Chemistry B,2006,110(39):19562-19569
    [72] Mamdouh W.; Uji-i H.; Ladislaw J.S., et al. Solvent controlled self-assembly at theliquid-solid interface revealed by STM[J]. Journal of the American Chemical Society,2006,128(1):317-325
    [73] Miao X.; Xu L.; Li Z., et al. Solvent-induced structural transitions of a1,3,5-Tris(10-ethoxycarbonyldecyloxy) benzene assembly revealed by scanning tunnelingmicroscopy[J]. The Journal of Physical Chemistry C,2011,115(8):3358-3367
    [74] De Feyter S.; Grim P.; Rücker M., et al. Expression of chirality by achiral coadsorbedmolecules in chiral monolayers observed by STM[J]. Angewandte Chemie InternationalEdition,1998,37(9):1223-1226
    [75] Brunsveld L.; Schenning A.P.H.J.; Broeren M.A.C., et al. Chiral amplification incolumns of self-assembled N,N ',N ''-tris((S)-3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in dilute solution[J]. Chemistry Letters,2000,(3):292-293
    [76] Rohde D.; Yan C.J.; Yan H.J., et al. From a lamellar to hexagonal self‐assembly of bis(4,4′‐(m, m′‐di (dodecyloxy) phenyl)‐2,2′‐difluoro‐1,3,2‐dioxaborin)molecules: A trans‐to‐cis‐Isomerization‐induced structural transition studied withSTM[J]. Angewandte Chemie,2006,118(24):4100-4104
    [77] Shen Y.-T.; Guan L.; Zhu X.-Y., et al. Submolecular observation of photosensitivemacrocycles and their isomerization effects on host guest network[J]. Journal of theAmerican Chemical Society,2009,131(17):6174-6180
    [78] Kumar A.S.; Ye T.; Takami T., et al. Reversible photo-switching of single azobenzenemolecules in controlled nanoscale environments[J]. Nano letters,2008,8(6):1644-1648
    [79] Berna J.; Leigh D.A.; Lubomska M., et al. Macroscopic transport by synthetic molecularmachines[J]. Nature Materials,2005,4(9):704-710
    [80] Comstock M.J.; Levy N.; Kirakosian A., et al. Reversible photomechanical switching ofindividual engineered molecules at a metallic surface[J]. Physical Review Letters,2007,99(3):038301
    [81] Miwa J.A.; Weigelt S.; Gersen H., et al. Azobenzene on Cu (110): adsorptionsite-dependent diffusion[J]. Journal of the American Chemical Society,2006,128(10):3164-3165
    [82] Yoshimoto S.; Honda Y.; Ito O., et al. Supramolecular pattern of fullerene on2Dbimolecular―chessboard‖consisting of bottom-up assembly of porphyrin andphthalocyanine molecules[J]. Journal of the American Chemical Society,2007,130(3):1085-1092
    [83] Binnig G.; Rohrer H.; Gerber C., et al. Surface studies by scanning tunnelingmicroscopy[J]. Physical Review Letters,1982,49(1):57-61
    [84] Tersoff J.; Hamann D. Theory and application for the scanning tunneling microscope[J].Physical Review Letters,1983,50(25):1998-2001
    [85]张超.不同衬底上分子的扫描隧道显微镜诱导发光研究:中国科学技术大学;2011.
    [86] Joachim C.; Gimzewski J.; Aviram A. Electronics using hybrid-molecular andmono-molecular devices[J]. Nature,2000,408(6812):541-548
    [87] Goel A.; Chaurasia S.; Dixit M., et al. Donor acceptor9-uncapped fluorenes andfluorenones as stable blue light emitters,[J]. Organic Letters,2009,11(6):1289-1292
    [88] Ahn J.H.; Wang C.; F.Perepichka I., et al. Blue organic light emitting devices withimproved colour purity and efficiency through blending of poly(9,9-dioctyl-2,7-fluorene)with an electron transporting material[J]. Journal of Materials Chemistry,2007,17:2996–3001
    [89] Roth K.M.; Yasseri A.A.; Liu Z., et al. Measurements of electron-transfer rates ofcharge-storage molecular monolayers on Si(100). toward hybridmolecular/semiconductor information storage devices[J]. Journal of the AmericanChemical Society,2002,125(2):505-517
    [90] St hr M.; Wahl M.; Galka C.H., et al. Controlling molecular assembly in two dimensions:the concentration dependence of thermally induced2D aggregation of molecules on a metalsurface[J]. Angewandte Chemie,2005,117(45):7560-7564
    [91] Dong X.S.; Dao Z.Q.; Hong Q.Y. Effect of length of substituted alkyl chain on2-Dnanostructure[J]. Chemical Journal of Chinese Universities-Chinese,2002,24(6):1085-1088
    [92] Heininger C.; Kampschulte L.; Heckl W.A., et al. Distinct differences in self-assembly ofaromatic linear dicarboxylic acids[J]. Langmuir,2009,25(2):968-972
    [93] Gao A.M.; Miao X.R.; Liu J., et al. Two-dimensional self-assembly of aporphyrin-polypyridyl ruthenium(II) hybrid on HOPG surface through metal-ligandinteractions [J]. ChemPhysChem,2010,11:1951-1955
    [94] Liu B.; Ran Y.-F.; Li Z., et al. A Scanning Probe microscopy study of annulatedredox-active molecules at a liquid/solid interface: The overruling of the alkyl chainparadigm[J]. Chemistry–an European Journal,2010,16(17):5008-5012
    [95] Chen Q.; Chen T.; Wang D., et al. Structure and structural transition of chiral domains inoligo (p-phenylenevinylene) assembly investigated by scanning tunneling microscopy[J].Proceedings of the National Academy of Sciences,2010,107(7):2769-2774
    [96] Li Y.; Deng K.; Wu X., et al. Molecular arrays formed in anisotropically rearrangedsupramolecular network with molecular substitutional asymmetry[J].Journal of MaterialsChemistry,2010,20(41):9100-9103
    [97] Xu X.; Yin J.; Li H., et al. Self-assembly of benzodithiophene derivatives on graphite:effects of substitution alkoxy chain number and location[J]. The Journal of PhysicalChemistry C,2009,113(20):8844-8852
    [98] Adisoejoso J.; Tahara K.; Okuhata S., et al. Two‐dimensional crystal engineering: a four‐component architecture at a liquid–solid interface[J]. Angewandte Chemie,2009,121(40):7489-7493
    [99] Józefowicz M.; Heldt J.R. Dipole moments studies of fluorenone and4-hydroxyfluorenone[J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2007,67(2):316-320
    [100] Ivanov A.; Lyakhov S.; Yarkova M.Y., et al. Synthesis and liquid crystal properties of2,7-dialkoxy-9-fluorenones[J]. Russian Journal of General Chemistry,2002,72(9):1435-1438
    [101] Weber U.; Burlakov V.; Perdigao L., et al. Role of interaction anisotropy in theformation and stability of molecular templates[J]. Physical Review Letters,2008,100(15):156101
    [102] Tahara K.; Furukawa S.; Uji-i H., et al. Two-dimensional porous molecular networks ofdehydrobenzo[12]annulene derivatives via alkyl chain interdigitation[J]. Journal of theAmerican Chemical Society,2006,128(51):16613-16625
    [103] Omori K.; Kikkawa Y.; Kanesato M., et al. Fabrication and transformation of noveltwo-dimensional tripod structures: structural modulation by alkyl chain length andtandem Claisen rearrangement[J]. Chemical Communications,2010,46(42):8008-8010
    [104] Uemura S.; Sengupta S.; Würthner F. Cyclic self‐assembled structures of chlorophylldyes on HOPG by the dendron wedge effect[J]. Angewandte Chemie,2009,121(42):7965-7968
    [105] Zhang X.; Chen T.; Yan H.-J., et al. Engineering of linear molecular nanostructures by ahydrogen-bond-mediated modular and flexible host guest assembly[J]. ACS Nano,2010,4(10):5685-5692
    [106] Li Y.; Wan J.; Deng K., et al. Transformation of self-assembled structure by the additionof active reactant[J]. The Journal of Physical Chemistry C,2011,115(14):6540-6544
    [107] Miao X.; Chen C.; Zhou J., et al. Influence of hydrogen bonds and double bonds on thealkane and alkene derivatives self-assembled monolayers on HOPG surface: STMobservation and computer simulation[J]. Applied Surface Science,2010,256(14):4647-4655
    [108] Giancarlo L.; Cyr D.; Muyskens K., et al. Scanning tunneling microscopy of molecularadsorbates at the liquid solid interface: functional group variations in imagecontrast [J]. Langmuir,1998,14(6):1465-1471
    [109] De Feyter S.; Gesquière A.; Abdel-Mottaleb M.M., et al. Scanning tunnelingmicroscopy: a unique tool in the study of chirality, dynamics, and reactivity inphysisorbed organic monolayers[J]. Accounts of Chemical Research,2000,33(8):520-531
    [110] Otero R.; Gallego J.M.; de Parga A.L.V., et al. Molecular self‐assembly at solidsurfaces[J]. Advanced Materials,2011,23(44):5148-5176
    [111] Lei S.; Surin M.; Tahara K., et al. Programmable hierarchical three-component2Dassembly at a liquid solid interface: recognition, selection, and transformation[J]. NanoLetters,2008,8(8):2541-2546
    [112] Takami T.; Mazur U.; Hipps K.W. Solvent-induced variations in surface structure of a2,9,16,23-tetra-tert-butyl-phthalocyanine on graphite[J]. The Journal of PhysicalChemistry C,2009,113(40):17479-17483
    [113] Kampschulte L.; Lackinger M.; Maier A.-K., et al. Solvent induced polymorphism insupramolecular1,3,5-benzenetribenzoic acid monolayers[J]. The Journal of PhysicalChemistry B,2006,110(22):10829-10836
    [114] Wasserfallen D.; Fischbach I.; Chebotareva N., et al. Influence of hydrogen bonds onthe supramolecular order of hexa‐peri‐hexabenzocoronenes[J]. Advanced FunctionalMaterials,2005,15(10):1585-1594
    [115] De Feyter S. Surface patterning: from2D to3D[J]. Nature Chemisty,2011,3(1):14-15
    [116] Miao X.; Xu L.; Liao C., et al. Two-dimensional self-assembly of esters with differentconfigurations at the liquid–solid interface[J]. Applied Surface Science,2011,257(10):4559-4565
    [117] Cockroft S.L.; Hunter C.A.; Lawson K.R., et al. Electrostatic control of aromaticstacking interactions[J]. Journal of the American Chemical Society,2005,127(24):8594-8595
    [118] Tong W.; Wei X.; Zimmt M.B. Dipolar control of monolayer morphology on graphite:self-assembly of anthracenes with odd length diether side chains[J]. The Journal ofPhysical Chemistry C,2009,113(39):17104-17113
    [119] Tong W.; Wei Y.; Armbrust K.W., et al. Dipolar side chain control of monolayermorphology: symmetrically substituted1,5-(mono-and diether) anthracenes at thesolution HOPG Interface[J]. Langmuir,2009,25(5):2913-2923
    [120] Gao A.; Miao X.; Liu J., et al. Two‐dimensional self‐assembly of a porphyrin–polypyridyl ruthenium (II) hybrid on HOPG surface through metal–ligandinteractions[J]. ChemPhysChem,2010,11(9):1951-1955
    [121] Zhang J.; Podoprygorina G.; Brusko V., et al. Functionalized calix[8]arenes, synthesisand self-assembly on graphite[J]. Chemistry of Materials,2005,17(9):2290-2297
    [122] Severin N.; Sokolov I.; Miyashita N., et al. Self-sorting of polyelectrolyte-amphiphilecomplexes on a graphite surface[J]. Macromolecules,2007,40(14):5182-5186
    [123] Zhang X.; Chen T.; Yan H.-J., et al. Hydrogen bond partner reorganization in thecoadsorption of a monodendron and pyridylethynyl derivatives [J]. Langmuir,2010,27(4):1292-1297
    [124] Miao X.; Xu L.; Li Z., et al. Solvent-induced structural transitions of a1,3,5-Tris(10-ethoxycarbonyldecyloxy)benzene assembly revealed by scanningtunneling microscopy[J]. The Journal of Physical Chemistry C,2011,115(8):3358-3367
    [125] Meier C.; Roos M.; Kunzel D., et al. Concentration and coverage dependent adlayerstructures: from two-dimensional networks to rotation in a bearing[J]. The Journal ofPhysical Chemistry C,2009,114(2):1268-1277
    [126] Thi Ngoc Ha N.; Gopakumar T.G.; Hietschold M. Polymorphism driven byconcentration at the solid–liquid Interface[J]. The Journal of Physical Chemistry C,2011,115(44):21743-21749
    [127] Xu L.; Miao X.; Ying X., et al. Two-dimensional self-assembled molecular structuresformed by the competition of van der waals forces and dipole–dipole interactions[J].The Journal of Physical Chemistry C,2011,116(1):1061-1069
    [128] Shen Y.T.; Zhu N.; Zhang X.M., et al. A foldamer at the liquid/graphite interface: theeffect of interfacial interactions, solvent, concentration, and temperature[J].Chemistry-an European Journal,2011,17(25):7061-7068
    [129] Elemans J.A.A.W.; De Cat I.; Xu H., et al. Two-dimensional chirality at liquid-solidinterfaces[J]. Chemical Society Reviews,2009,38(3):722-736
    [130] Ilan B.; Florio G.M.; Werblowsky T.L., et al. Solvent effects on the self-assembly of1-bromoeicosane on graphite. part II. theory[J]. The Journal of Physical Chemistry C,2009,113(9):3641-3649
    [131] Vanoppen P.; Grim P.C.M.; R cker M., et al. Solvent codeposition and cis transisomerization of isophthalic acid derivatives studied by STM[J]. The Journal ofPhysical Chemistry,1996,100(50):19636-19641
    [132] Shao X.; Luo X.; Hu X., et al. Solvent effect on self-assembled structures of3,8-bis-hexadecyloxy-benzo[c]cinnoline on highly oriented pyrolytic graphite[J]. TheJournal of Physical Chemistry B,2005,110(3):1288-1293
    [133] J ckel F.; Ai M.; Wu J., et al. Solvent molecules in an epitaxially grown scaffold ofstar-shaped nanographenes[J]. Journal of the American Chemical Society,2005,127(42):14580-14581
    [134] Lackinger M.; Griessl S.; Heckl W.M., et al. Self-assembly of trimesic acid at theliquid solid interfacea study of solvent-induced oolymorphism[J]. Langmuir,2005,21(11):4984-4988
    [135] Tobe Y.; Utsumi N.; Kawabata K., et al. M-diethynylbenzene macrocycles: synthesesand self-association behavior in solution[J]. Journal of the American Chemical Society,2002,124(19):5350-5364
    [136] Kastler M.; Pisula W.; Wasserfallen D., et al. Influence of alkyl substituents on thesolution-and surface-organization of hexa-peri-hexabenzocoronenes[J]. Journal of theAmerican Chemical Society,2005,127(12):4286-4296
    [137] Shao X.; Luo X.; Hu X., et al. Chain-length effects on molecular conformation in andchirality of self-assembled monolayers of alkoxylated benzo [c] cinnoline derivativeson highly oriented pyrolytic graphite[J]. The Journal of Physical Chemistry B,2006,110(31):15393-15402
    [138] Dienstmaier J.r.F.; Mahata K.; Walch H., et al. On the scalability of supramolecularnetworks high packing density vs optimized hydrogen bonds in tricarboxylic acidmonolayers[J]. Langmuir,2010,26(13):10708-10716
    [139] Lincker F.; Delbosc N.; Bailly S., et al. Fluorenone‐based molecules for bulk‐heterojunction solar cells: synthesis, characterization, and photovoltaic properties[J].Advanced Functional Materials,2008,18(21):3444-3453
    [140] Lincker F.; Heinrich B.; De Bettignies R., et al. Fluorenone core donor–acceptor–donorπ-conjugated molecules end-capped with dendritic oligo (thiophene) s: synthesis, liquidcrystalline behaviour, and photovoltaic applications[J]. Journal of Materials Chemistry,2011,21(14):5238-5247
    [141] Picard L.; Lincker F.d.r.; Kervella Y., et al. Composites of double-walled carbonnanotubes with bis-quaterthiophene-fluorenone conjugated oligomer:spectroelectrochemical and photovoltaic properties[J]. The Journal of PhysicalChemistry C,2009,113(40):17347-17354
    [142] Jaramillo-Isaza F.; Turner M.L. Synthesis and properties of conjugated oligomerscontaining fluorene, fluorenone, thiophene and cyclopentadithiophenone units[J].Journal of Materials Chemistry.,2005,16(1):83-89
    [143] Odoi M.Y.; Hammer N.I.; Rathnayake H.P., et al. Single‐molecule studies of amodelfluorenone[J]. ChemPhysChem,2007,8(10):1481-1486
    [144] Becker K.; Lupton J.M.; Feldmann J., et al. On‐chain fluorenone defect emission fromsingle polyfluorene molecules in the absence of intermolecular interactions[J].Advanced Functional Materials,2005,16(3):364-370
    [145] Józefowicz M.; Heldt J.; Heldt J. Solvent effects on electronic transitions of fluorenoneand4-hydroxyfluorenone[J]. Chemical Physics,2006,323(2):617-621
    [146] Chan K.L.; Sims M.; Pascu S.I., et al. Understanding the nature of the states responsiblefor the green emission in oxidized poly (9,9‐dialkylfluorene) s: photophysics andstructural studies of Linear dialkylfluorene/fluorenone model ompounds[J]. AdvancedFunctional Materials,2009,19(13):2147-2154
    [147] Schwab M.G.; Qin T.; Pisula W., et al. Molecular triangles: synthesis, self‐assembly,and blue emission of cyclo‐7,10‐tris‐triphenylenyl macrocycles[J]. Chemistry–AnAsian Journal,2011,6(11):3001-3010
    [148] Xue Y.; Zimmt M.B. Tetris in monolayers: patterned self-assembly using side chainshape[J]. Chemical Communications,2011,47(31):8832-8834
    [149] Tahara K.; Yamaga H.; Ghijsens E., et al. Control and induction of surface-confinedhomochiral porous molecular networks[J]. Nature Chemistry,2011,3(9):714-719
    [150] Miao X.; Xu L.; Li Y., et al. Tuning the packing density of host molecularself-assemblies at the solid–liquid interface using guest molecule[J]. ChemicalCommunications,2010,46(46):8830-8832
    [151] Tao F.; Bernasek S.L. Understanding odd—even effects in organic self‐assembledmonolayers[J]. ChemInform,2007,38(31): no-no
    [152] Hibino M.; Sumi A.; Tsuchiya H., et al. Microscopic origin of the odd-even effect inmonolayer of fatty acids formed on a graphite surface by scanning tunnelingmicroscopy[J]. The Journal of Physical Chemistry B,1998,102(23):4544-4547
    [153] Tao F.; Goswami J.; Bernasek S.L. Self-assembly and odd-even effects ofcis-unsaturated carboxylic acids on highly oriented pyrolytic graphite[J]. The Journal ofPhysical Chemistry B,2006,110(9):4199-4206
    [154] Yablon D.G.; Wintgens D.; Flynn G.W. Odd/even effect in self-assembly of chiralmolecules at the liquid-solid interface: An STM investigation of coadsorbate control ofself-assembly[J]. The Journal of Physical Chemistry B,2002,106(21):5470-5475
    [155] Thomas L.K.; Ku hnle A.; Rode S., et al. Monolayer structure of arachidic acid ongraphite[J]. The Journal of Physical Chemistry. C, Nanomaterials and interfaces,2010,114(44):18919
    [156] Schneider J.; Messerschmidt C.; Schulz A., et al. Odd-even effects in supramolecularassemblies of diamide bolaamphiphiles[J]. Langmuir,2000,16(23):8575-8584
    [157] Jonkheijm P.; van der Schoot P.; Schenning A.P., et al. Probing the solvent-assistednucleation pathway in chemical self-assembly[J]. Science,2006,313(5783):80-83
    [158] Wei Y.; Kannappan K.; Flynn G.W., et al. Scanning tunneling microscopy of prochiralanthracene derivatives on graphite: chain length effects on monolayer morphology[J].Journal of the American Chemical Society,2004,126(16):5318-5322
    [159] Kikkawa Y.; Koyama E.; Tsuzuki S., et al. Bipyridine derivatives at a solid/liquidinterface: effects of the number and length of peripheral alkyl chains[J]. Langmuir,2009,26(5):3376-3381
    [160] Xu L.; Miao X.; Zha B., et al. Self-Assembly polymorphism: solvent-responsivetwo-dimensional morphologies of2,7-ditridecyloxy-9-fluorenone by scanning tunnelingmicroscopy[J]. The Journal of Physical Chemistry C,2012,116(30):16014-16022
    [161] Kaneda Y.; Stawasz M.E.; Sampson D.L., et al. STM investigations of thetwo-dimensional ordering of perylenetetracarboxylic acid n-alkyl-diimides on HOPGand MoS2Surfaces[J]. Langmuir,2001,17(20):6185-6195
    [162] Ahn S.; Matzger A.J. Six different assemblies from one building block:two-dimensional crystallization of an amide amphiphile[J]. Journal of the AmericanChemical Society,2010,132(32):11364-11371
    [163] Tahara K.; Inukai K.; Hara N., et al. Self‐assembled monolayers of alkoxy‐substituted octadehydrodibenzo [12] annulenes on a graphite surface: attempts at peri‐benzopolyacene formation by on‐surface polymerization[J]. Chemistry-an EuropeanJournal,2010,16(28):8319-8328
    [164] Imrie C.T.; Luckhurst G.R. Liquid crystal trimers. The synthesis and characterisation ofthe4,4′-bis [ω-(4-cyanobiphenyl-4′-yloxy) alkoxy] biphenyls[J].Journal ofMaterials Chemistry,1998,8(6):1339-1343
    [165] Pardey R.; Zhang A.; Gabori P.A., et al. Monotropic liquid crystal behavior in two poly(ester imides) with even and odd flexible spacers[J]. Macromolecules,1992,25(19):5060-5068
    [166] Wiederrecht G.P.; Yoon B.A.; Wasielewski M.R. High photorefractive gain in nematicliquid crystals doped with electron donor and acceptor molecules[J]. Science,1995,270:1794-1797
    [167] Miyake Y.; Nagata T.; Tanaka H., et al. Entropy-controlled2D supramolecularstructures of N,N′-bis(n-alkyl)naphthalenediimides on a HOPG surface[J]. ACS Nano,2012,6(5):3876-3887
    [168] Florio G.M.; Werblowsky T.L.; Ilan B., et al. Chain-length effects on the self-assemblyof short1-bromoalkane and n-alkane monolayers on graphite[J]. The Journal ofPhysical Chemistry C,2008,112(46):18067-18075
    [169] Zang L.; Che Y.; Moore J.S. One-dimensional self-assembly of planar π-conjugatedmolecules: adaptable building blocks for organic nanodevices[J]. Accounts of ChemicalResearch,2008,41(12):1596-1608
    [170] Kampschulte L.; Lackinger M.; Maier A.-K., et al. Solvent induced polymorphism insupramolecular1,3,5-benzenetribenzoic acid monolayers[J]. The Journal of PhysicalChemistry B,2006,110(22):10829-10836
    [171] Lackinger M.; Griessl S.; Heckl W.M., et al. Self-assembly of trimesic acid attheliquid-solid interface a study of solvent-induced polymorphism[J]. Langmuir,2005,21(11):4984-4988
    [172] Mamdouh W.; Dong M.; Xu S., et al. Supramolecular nanopatterns self-assembled byadenine thymine quartets at the liquid/solid interface[J]. Journal of the AmericanChemical Society,2006,128(40):13305-13311
    [173] Zhao J.-F.; Li Y.-B.; Lin Z.-Q., et al. Molecule length directed self-assembly behavior oftetratopic oligomeric phenylene ethynylenes end-capped with carboxylic groups byscanning tunneling microscopy[J]. The Journal of Physical Chemistry C,2010,114(21):9931-9937
    [174] Xie Z.; Xu X.; Mao B., et al. Self-assembled binary monolayers of n-alkanes onreconstructed Au (111) and HOPG surfaces[J]. Langmuir,2002,18(8):3113-3116
    [175] Miao X.; Gao A.; Li Z., et al. First self-assembly study of large π-conjugated corroledimers on solid substrates[J]. Applied Surface Science,2009,255(11):5885-5890
    [176] Zhang X.; Yan C.-J.; Pan G.-B., et al. Effect of CH---F and OH---O hydrogen bondingin forming self-assembled monolayers of BF2-substituted β-dicarbonyl derivatives onHOPG: STM investigation[J]. The Journal of Physical Chemistry C,2007,111(37):13851-13854
    [177] Kampschulte L.; Lackinger M.; Maier A.K., et al. Solvent induced polymorphism insupramolecular1,3,5-benzenetribenzoic acid monolayers[J]. The Journal of PhysicalChemistry B,2006,110(22):10829-10836
    [178] Porzio W.; Destri S.; Pasini M., et al. Suitability of3,4-dialkyl substitution in molecularcrystal based on thiophene-fluorenone for organic field effect transistors[J]. SyntheticMetals,2009,159(5-6):513-517
    [179] Puigmartí-Luis J.; Minoia A.; Uji-i H., et al. Noncovalent control for bottom-upassembly of functional supramolecular wires[J]. Journal of the American ChemicalSociety,2006,128(39):12602-12603
    [180] Linares M.; Scifo L.; Demadrille R., et al. Two-dimensional self-assemblies ofthiophene fluorenone conjugated oligomers on graphite: a joint STM and molecularmodeling study[J]. The Journal of Physical Chemistry C,2008,112(17):6850-6859
    [181] Brun M.; Demadrille R.; Rannou P., et al. Multiscale scanning tunneling microscopystudy of self‐assembly phenomena in two‐dimensional polycrystals of π‐conjugated polymers: the case of regioregular poly (dioctylbithiophene‐alt‐fluorenone)[J]. Advanced Materials,2004,16(23‐24):2087-2092
    [182] El Malah T.; Ciesielski A.; Piot L., et al. Conformationally pre-organized andpH-responsive flat dendrons: synthesis and self-assembly at the liquid–solid interface[J].Nanoscale,2012,4(2):467-472
    [183] Elemans J.A.; Wezenberg S.J.; Coenen M.J., et al. Axial ligand control over monolayerand bilayer formation of metal-salophens at the liquid–solid interface[J]. ChemicalCommunications,2010,46(15):2548-2550
    [184] Clarke S.; Thomas R. The structure of a bromomethane monolayer adsorbed ongraphite[J]. Molecular Physics,1991,72(2):413-423
    [185] Ciesielski A.; Schaeffer G.; Petitjean A., et al. STM insight into hydrogen‐bondedbicomponent1D supramolecular polymers with controlled geometries at the liquid–solid interface[J]. Angewandte Chemie,2009,121(11):2073-2077
    [186] Huang T.; Hu Z.; Wang B., et al. Observation of hierarchical chiral structures in8-nitrospiropyran monolayers[J]. The Journal of Physical Chemistry B,2007,111(25):6973-6977
    [187] Tao F.; Bernasek S.L. Complexity in the self-assembly of bifunctional molecules onHOPG: The influence of solvent functionality on self-assembled structures[J].Langmuir,2007,23(7):3513-3522
    [188] Weigelt S.; Busse C.; Bombis C., et al. Covalent interlinking of an aldehyde and anamine on a Au (111) surface in ultrahigh vacuum[J]. Angewandte Chemie,2007,119(48):9387-9390
    [189] Cunha F.; Tao N.; Wang X., et al. Potential-induced phase transitions in2,2'-bipyridineand4,4'-bipyridine monolayers on Au (111) studied by in situ scanning tunnelingmicroscopy and atomic force microscopy[J]. Langmuir,1996,12(26):6410-6418
    [190] Lackinger M.; Griessl S.; Kampschulte L., et al. Dynamics of grain boundaries in two‐dimensional hydrogen‐bonded molecular networks[J]. Small,2005,1(5):532-539
    [191] Padowitz D.F.; Sada D.M.; Kemer E.L., et al. Molecular tracer dynamics in crystallineorganic films at the solid-liquid interface[J]. The Journal of Physical Chemistry B,2002,106(3):593-598
    [192] Xu L.P.; Wan L.J. STM investigation of the photoisomerization ofanazobis-(benzo-15-crown-5) molecule and Its self-assembly on Au (111)[J]. TheJournal of Physical Chemistry B,2006,110(7):3185-3188
    [193] Mali K.S.; Lava K.; Binnemans K., et al. Hydrogen bonding versus van der waalsinteractions: competitive influence of noncovalent interactions on2D self‐assembly atthe liquid–solid interface[J]. Chemistry-an European Journal,2010,16(48):14447-14458
    [194] Wei Y.; Kannappan K.; Flynn G.W., et al. Scanning tunneling microscopy of prochiralanthracene derivatives on graphite: chain length effects on monolayer morphology[J].Journal of the American Chemical Society,2004,126(16):5318-5322
    [195] Wintgens D.; Yablon D.G.; Flynn G.W. Packing of HO(CH2)14COOH andHO(CH2)15COOH on graphite at the liquid solid interface observed by scanningtunneling microscopy: methylene unit direction of self-assembly structures[J]. TheJournal of Physical Chemistry B,2002,107(1):173-179
    [196] Thalladi V.R.; N sse M.; Boese R. The melting point alternation in a,ω-alkanedicarboxylic acids[J]. Journal of the American Chemical Society,2000,122(38):9227-9236
    [197] Mizuno M.; Hirai A.; Matsuzawa H., et al. Study of ddd-even effect of flexible spacerlength on the chain dynamics of main-chain thermotropic liquid-crystalline polymersusing high-resolution solid-state13C nuclear magnetic resonance spectroscopy[J].Macromolecules,2002,35(7):2595-2601
    [198] Tamaoki N.; Kruk G.; Matsuda H. Optical and thermal properties of cholesteric solidfrom dicholesteryl esters of diacetylenedicarboxylic acid[J]. Journal of MaterialsChemistry,1999,9(10):2381-2384
    [199] Kim K.; Plass K.E.; Matzger A.J. Structure of and competitive adsorption in alkyldicarbamate two-dimensional crystals[J]. Journal of the American Chemical Society,2005,127(13):4879-4887
    [200] Morishige K.; Kato T. Chain-length dependence of melting of n-alcohol monolayersadsorbed on graphite: n-hexanol, n-heptanol, n-octanol, and n-nonanol [J]. The Journalof Chemical Physics,1999,111:7095
    [201] Piot L.; Silly F.; Tortech L., et al. Long-range alignments of single fullerenes bysite-selective inclusion into a double-cavity2D open network[J]. Journal of theAmerican Chemical Society,2009,131(36):12864-12865
    [202] Shen Y.-T.; Guan L.; Zhu X.-Y., et al. Submolecular observation of photosensitivemacrocycles and their isomerization effects on host guest network[J]. Journal of theAmerican Chemical Society,2009,131(17):6174-6180
    [203] Samori P. Exploring supramolecular interactions and architectures by scanning forcemicroscopies[J]. Chemical Society Reviews,2005,34(7):551-561
    [204] Reinhoudt D.; Crego-Calama M. Synthesis beyond the molecule[J]. Science,2002,295(5564):2403-2407
    [205] Mulder A.; Jukovic A.; Lucas L.N., et al. A dithienylethene-tethered β-cyclodextrindimer as a photoswitchable host[J]. Chemical Communications,2002,(22):2734-2735
    [206] Maly K.E.; Gagnon E.; Maris T., et al. Engineering hydrogen-bonded molecular crystalsbuilt from derivatives of hexaphenylbenzene and related compounds[J]. Journal of theAmerican Chemical Society,2007,129(14):4306-4322
    [207] Lin N.; Langner A.; Tait S.L., et al. Template-directed supramolecular self-assembly ofcoordination dumbbells at surfaces[J]. Chemical Communications,2007,0(46):4860-4862
    [208] Gutzler R.; Lappe S.; Mahata K., et al. Aromatic interaction vs. hydrogen bonding inself-assembly at the liquid-solid interface[J]. Chemical Communications,2009,0(6):680-682
    [209] Barth J.V.; Costantini G.; Kern K. Engineering atomic and molecular nanostructures atsurfaces[J]. Nature,2005,437(7059):671-679
    [210] De Feyter S.; De Schryver F.C. Self-assembly at the liquid/solid interface: STMreveals[J]. The Journal of Physical Chemistry B,2005,109(10):4290-4302
    [211] Pokrifchak M.; Turner T.; Pilgrim I., et al. Scanning tunneling microscopy andorbital-mediated tunneling spectroscopy study of1,5-di(octyloxy)anthracene adsorbedon highly ordered pyrolytic graphite from various solvents and indifferentenvironments[J]. The Journal of Physical Chemistry C,2007,111(21):7735-7740
    [212] Liu J.; Zhang X.; Yan H.-J., et al. Solvent-controlled2D host guest(2,7,12-trihexyloxytruxene/coronene) molecular nanostructures at organic liquid/solidinterface investigated by scanning tunneling microscopy[J]. Langmuir,2009,26(11):8195-8200
    [213] Pineider F.; Mannini M.; Sessoli R., et al. Solvent effects on the adsorption andself-organization of Mn12on Au(111)[J]. Langmuir,2007,23(23):11836-11843
    [214] Katsonis N.; Xu H.; Haak R.M., et al. Emerging solvent‐induced homochirality by theconfinement of achiral molecules against a solid surface[J]. Angewandte ChemieInternational Edition,2008,47(27):4997-5001
    [215] Liu J.; Chen T.; Deng X., et al. Chiral hierarchical molecular nanostructures ontwo-dimensional surface by controllable trinary self-assembly[J]. Journal of theAmerican Chemical Society,2011,133(51):21010-21015
    [216] Lorenzo M.O.; Baddeley C.; Muryn C., et al. Extended surface chirality fromsupramolecular assemblies of adsorbed chiral molecules[J]. Nature,2000,404(6776):376-379
    [217] Attard G.A. Electrochemical studies of enantioselectivity at chiral metal surfaces[J]. TheJournal of Physical Chemistry B,2001,105(16):3158-3167
    [218] Barlow S.M.; Raval R. Complex organic molecules at metal surfaces: bonding,organisation and chirality[J]. Surface Science Reports,2003,50(6):201-341
    [219] Knudsen M.M.; Kalashnyk N.; Masini F., et al. Controlling chiral organization ofmolecular rods on Au(111) by molecular design[J]. Journal of the American ChemicalSociety,2011,133(13):4896-4905
    [220] Fasel R.; Parschau M.; Ernst K.-H. Amplification of chirality in two-dimensionalenantiomorphous lattices[J]. Nature,2006,439(7075):449-452
    [221] Chen Q.; Richardson N. Enantiomeric interactions between nucleic acid bases andamino acids on solid surfaces[J]. Nature Materials,2003,2(5):324-328
    [222] B hringer M.; Morgenstern K.; Schneider W.D., et al. Separation of a racemic mixtureof two‐dimensional molecular clusters by scanning tunneling microscopy[J].Angewandte Chemie International Edition,1999,38(6):821-823
    [223] Weigelt S.; Busse C.; Petersen L., et al. Chiral switching by spontaneous conformationalchange in adsorbed organic molecules[J]. Nature Materials,2006,5(2):112-117
    [224] Teugels L.G.; Avila-Bront L.G.; Sibener S.J. Chiral domains achieved by surfaceadsorption of achiral nickel tetraphenyl-or octaethylporphyrin on smooth and locallykinked Au(111)[J]. The Journal of Physical Chemistry C,2011,115(6):2826-2834
    [225] Tirrell M.; Kokkoli E.; Biesalski M. The role of surface science in bioengineeredmaterials[J]. Surface Science,2002,500(1):61-83
    [226] Elemans J.A.; Rowan A.E.; Nolte R.J. Mastering molecular matter. Supramoleculararchitectures by hierarchical self-assembly[J]. Journal of Materials Chemistry,2003,13(11):2661-2670
    [227] Newkome G.R.; Wang P.; Moorefield C.N., et al. Nanoassembly of a fractal polymer: amolecular" sierpinski hexagonal gasket"[J]. Science,2006,312(5781):1782-1785
    [228] Sarikaya M.; Tamerler C.; Jen A.K.-Y., et al. Molecular biomimetics: nanotechnologythrough biology[J]. Nature Materials,2003,2(9):577-585
    [229] Ye Y.; Sun W.; Wang Y., et al. A unified model: self-assembly of trimesic acid on gold[J].The Journal of Physical Chemistry C,2007,111(28):10138-10141
    [230] Spillmann H.; Dmitriev A.; Lin N., et al. Hierarchical assembly of two-dimensionalhomochira lnanocavity arrays[J]. Journal of the American Chemical Society,2003,125(35):10725-10728
    [231] Xiao W.; Feng X.; Ruffieux P., et al. Self-assembly of chiral molecular honeycombnetworks on Au(111)[J]. Journal of the American Chemical Society,2008,130(28):8910-8912

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700