基于决策神经科学的风险决策机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
决策神经科学(decision neuroscience)是一门非常新兴的前沿学科,是管理科学新的学科生长点。它是在传统的行为决策科学研究的基础上发展起来的一门交叉学科,该学科试图利用神经科学的成像技术,结合认知科学和心理学的最近进展,与管理科学中的决策科学相结合,来研究人的决策行为背后的加工机制,打开大脑这个决策加工的“黑匣子”。通过对大脑水平决策加工过程的解读,在神经科学层面理解决策加工过程的机制,来重新审视传统的行为决策模型,为重塑决策模型的理论框架与规范基础提供实证依据。
     风险决策是决策科学研究的一个重要主题。2002年,行为决策科学家丹尼尔·卡尼曼因其在风险和不确定决策领域的重要贡献而获得了当年的诺贝尔经济学奖。而在决策神经科学领域,2007年,亚利桑那大学决策神经科学实验室主任Alan Sanfey在《决策神经科学:判断与决策研究的新方向》一文中,提出决策神经科学的两大主题:一是对个人决策机制的研究;二是对社会环境中的个体之间互动的研究;其中对个体决策机制最重要的研究领域就是对风险决策的研究。
     本研究以风险决策的加工处理过程为研究对象,利用功能核磁共振(functional magnetic resonance imaging, fMRI)和事件相关电位(event-related potential, ERP)两种神经成像技术为研究手段,开展了两个实验研究,来观察风险决策处理过程的神经基础。充分利用功能核磁共振高的高空间分辨率和事件相关电位的高时间分辨率特点来研究风险决策的预期、决策与反馈评估脑神经活动特征。本研究发现,预期情绪在决策的三个阶段——决策的预期、决策和结果的反馈中都起到了重要的作用,但是在三个阶段所起的作用又存在着差异,三个阶段的加工过程也存在不同。本研究在过去相关的决策科学、认知科学、神经科学和最近的行为决策科学等的研究成果的基础上,根据核磁磁共振空间定位和事件相关电位时间进程的信息,结合行为学数据的结果,从决策神经科学这一交叉学科的视角深入探讨了风险决策的加工机理,得到了如下的研究结论:
     (1)在风险决策的预期阶段,存在着预期的决策情感。利用功能核磁共振发现,无论是在获益还是损失线索下,都由奖赏相关的脑区中脑、腹、背侧纹状体的激活和惩罚相关脑区岛叶的同时激活来进行表征,而且随着线索唤醒度水平的增加,奖赏、惩罚脑区的信号也相应增加,体现了对未来大获益(小损失)的期望与小获益(大损失)的担心交织并存的预期情感状态,反映了决策者在决策预期阶段的决策动机。
     (2)在风险决策的反馈阶段,反馈结果的评估对效价敏感。与在决策预期阶段正负线索有类似的大脑激活模式不同,大脑对正负反馈不同的结果产生不同模式的应答,奖赏反馈结果主要由内侧前额叶和腹侧纹状体来进行表征,而损失反馈结果主要由岛叶和扣带回来体现。并且在预期阶段由腹、背侧纹状体的同时激活来表征对预期可能结果的期望,而在反馈阶段在正性反馈结果下由腹侧纹状体来表征预测奖赏偏差,说明预期与反馈阶段的加工是分离的。
     (3)与预期阶段存在预期的决策情感一样,在风险决策的决策阶段也存在着决策情感,这种情感帮助决策者协调决策情绪,高效、准确地完成风险决策的决策选择。利用事件相关电位发现在决策阶段错误相关负波(error realted negativity, ERN)与错误正波(error positivity, Pe)都参与了对风险情形和投资决策选择的调节,其中ERN反映了对未来可能风险与奖赏之间权衡利弊的预期情感评估,而之后的Pe成分反映了对决策阶段决策选择好坏的评价。起源于大脑前扣带回的ERN在决策阶段产生的对未来的预期情感使得决策者能够做出适应性的决策选择(adaptive choice),而且从大脑双系统理论的视角来看,这种加工可以在大脑意识水平下的系统1即可完成。
     (4)在风险决策的反馈阶段,对反馈结果的评估反映了决策者对决策预期的再评估,为决策的学习和下一次决策行为的调整做好准备。与决策阶段不同的是,与ERN一样同样起源于大脑前扣带回的反馈相关负波(feedback related negativity, FRN)没有参与对风险情形的调节,但是其对决策阶段选项概率大小非常敏感。决策阶段决策选项的概率越大,在反馈评估阶段诱发更加明显的FRN,反映了反馈阶段对决策阶段的决策预期与反馈实际结果之间差异的表征,即表征了预测情感偏差,与功能核磁共振研究中反馈阶段腹侧纹状体激活的研究结论相一致。
     本研究的创新点如下:
     (1)本研究发现预期阶段预期情感的存在,而且这种情感反映了对未来可能结果的动机。本研究利用功能核磁共振技术验证了过去Knutson & Greer提出的预期情感假说的基本结论,并发现在预期阶段大脑奖赏系统和惩罚系统同时参与了对获益和损失线索的加工,而且是唤醒度敏感的,反映了对不确定后果的担心和期望并存的预期情感状态,这种状态反映了在决策预期阶段的决策动机。这一结论进一步延伸了过去的研究报告奖赏系统如伏隔核的激活可以预测接下来的风险偏好的决策行为,而惩罚系统如岛叶的激活可以预测接下来的风险规避行为的研究结论。
     (2)本研究发现在决策阶段大脑的决策加工反映了决策者的适应性选择。本研究利用事件相关电位发现ERN参与了对风险决策情形与风险投资选择的动态加工,反映了对未来可能风险与奖赏权衡的预期情感评估,指引决策者在动态的风险决策环境中作出有利于自身的决策,为金融学的均值—方差模型提供了神经学水平的实证依据。起源于前扣带回的ERN对决策选择的表征说明情绪在个体决策者高效的决策中起到的关键作用,为Damasio提出的情绪对决策影响的躯体标记学说提供了支持,也从神经科学的层面验证了Kahneman总结的大脑决策加工的双系统模型,并说明其中的系统1在准确、快速的风险决策中起到了重要作用。
     (3)预期情感在风险决策的预期、决策的执行和反馈评估三阶段中都起到了重要作用。如创新点1所述,预期情感在决策的预期阶段起到了重要作用,反映了对未来奖惩结果的预期动机;而在决策的执行阶段前扣带回(通过ERN来反映)作为一个协调情绪的重要脑区,参与了对未来预期风险与奖赏之间协调的表征。而在反馈阶段,前扣带回(通过FRN来反映)参与了对预期违反的表征。因此,决策的预期情感参与了风险决策的预期阶段、决策阶段和反馈评估阶段的加工。预期情感不只是在预期阶段参与了对未来结果的预期和表征,同样在风险决策的决策阶段与反馈评估阶段起也扮演者重要的角色,进一步丰富了基于决策神经科学研究提出的预期情感假说的研究内容。
     (4)预期阶段、决策阶段与反馈阶段的加工存在差异,预期效用与体验效用是分离的,同样,决策效用与体验效用也是分离的。首先在预期阶段获益和损失的线索都表现为奖赏和惩罚系统的同时激活,反映了决策的动机;而在反馈阶段负性和正性的反馈结果有明显的区别,前者有奖赏系统的参与,而后者由惩罚相关脑区来表征,说明预期效用与体验效用是分离的。在决策阶段主要由协调奖赏和惩罚情绪的前扣带回来进行表征,反映对未来风险与奖赏预期的适应性表征;反馈阶段同样由起源于前扣带回的FRN参与对反馈结果表征,但是其与决策阶段ERN参与对风险情形的调节不同,FRN对风险情形不敏感,而是参与了对预期违反的表征。因此决策效用与体验效用也是分离的。从空间和时间的两个视角在神经科学的水平证实了Kahneman等提出的不同阶段的效用理论。
Decision neuroscience is an emerging frontier discipline and a new growing point in the field of management science. It is an interdisciplinary field that derives from the recent development of the research in traditional behavioral decision making. By combining with the recent advance of the decision science in management science, cognitive science as well as psychology, decision neuroscience trys to adopt the neuroimaging technique to study the processing mechanism of human being's decision behavior, thus opening the "black box" of the brain. By virtue of understanding the neural processing of the decision making to slove the mechanism of decision making on the level of neuroscience, decision neuroscience will revisit the traditional behavioral decision making model and provide some empirical evidence for the reconstruction of the theoretical framework and normative basis of the decision making model.
     Risk decision making or decision making under risk is an important theme of decision science research. Behavioral decision making scientist Daniel Kahneman won the 2002's Nobel Laureate for his great contribution to the risk and uncertainty study. In the field of decision neuroscience, the director of the decision neuroscience lab in Unviersity of Arizona, America put forward in the "Decision neuroscience: New directions in studies of judgment and decision making" that there are two topics that deserve exhaustive exploration, one is the individual decision making and the other is social decision making, and the risk decision making is the main topic for individual decisions.
     The current studies take the processing procedure of the risk decision making as an object and utlize two neuroimaging techniques, the functional magnetic resonance imaging and even-related potential as the methods. These studies trys to observe the neural basis of the risk decision making by carrying out two experimental studies. The studies make full use of fMRI that possesses a high spatial resolution and the ERP with a high temporal resolution to explore the neural characteristics of the three stages of risk decision making—anticipation, decision making and outcome evaluation. This study found that the anticipation affect plays a key role in all three stages:anticipation, the decision choice and outcome evaluation. But the role it plays is not the same across the three stages and the processing procedures of these three stages per se are different from each other.
     The studies were carried out on the basis of the recent advance of decision science, cognitive science, neuroscience and etc. to intensively investigate the principle of the risk decision making according to the fMRI's spatial data, ERP's temporal information as well as the behavioral results.
     It draws the conclusion as follows:
     (1) At the stage of anticipation, the anticipatory affect exsits. With the method of functional magnetic resonance imaging, we observed that both gain and loss cues could induce the activation of reward-related regions including ventral, dorsal striatum and midbrain as well as the punishment-related areas insula at the same time. The signal of both reward and punishment areas increase with the raise of the cue levels. Such an activation mode indicate the complicated anticipatory affect consists of both the hope for large gain (small loss) and fear of small gain (large loss), reflecting the motivation of the decision maker.
     (2) At the stage of outcome evaluation, the brain is sensitive to the valence of the outcome. The positive and negative results have a discrepant activation, the medial prefrontal cortex and ventral striatum represent the win outcome, while the insula and cingulate cortex represent the loss results, different from the similar activation mode toward both gain and loss cues at the stage of anticipation. In addition, both the ventral and dorsal parts of the striatum is engaged in the process of the hope for possible gain in the stage of anticipation, but only the ventral striatum is involved in the positive outcome evaluation in representing the reward prediction error, further supporting the distinct processing of the anticipation and outcome evaluation.
     (3) Similar with the exsitence of the anticipatory affect at the stage of the anticipation, the decision affect exist at the decision stage, which helps the decision makers coordinate the affect to finish the decision making rapidly and effectively. With the adoption of the event-related potential, we observed both the ERN and Pe are involved in the modulation of the risky situation and investment choice. The ERN reflects the ancipatory affect evaluation that derives from the tradeoff the possible risk and reward in near future, and the subsequent Pe indicate the goodness or badness of the choice option. The ancipatory affect for the future that the ERN which orgined from anterior cingulate cortex conveys made the subject do the adaptive decisions. Additionally, such a processing is accomplished at the sysem 1 subconsciously from the perspective of the dual system hypothesis.
     (4) At the stage of outcome evaluation, the outome results reflect the re-evaluation of the decision anticipation, which makes a preparation for the learning and behavioral adjustment for the next round of decision making. Different from the processing that happened at the stage of decision making, although same as the ERN that is also orgined from ACC, the FRN is not engaged in the modulation of the risky situation,instead it's sensitive to the probability of choice at the stage of decision making. The larger the probability of the choice at the stage of decision making, the more obvious the FRN is at the stage of outcome evaluation, which represents the discrepancy between the decision anticipation at the stage of decision and the revealed results at the outcome stage. Again, the FRN represent the reward prediction error, consistent with the conclusion draw from the fMRI's ventral striatum activation at the outcome evaluation stage. The innovation points of this study are as follows:
     (1) In this study, we observe the existence of the anticipatory affect which reflects the motivaition toward the possible outcome in future. This study validates the basic conclusion of Knutson & Greer's anticipatory affect hypothesis with the fMRI technique. This study observe that both the reward and punishment-related system simultaneously involved in the processing of the gain and loss cues and such an engagement is sensitive to the arousal of the cues. This activation mode reflects the anticipatory affect for the fear and hope for the uncertain outcome and further embodys the decision motivation of the anticipation stage. Such a conclusion further extends the recent reports that the activation of the reward related system such as the necleus accumbens could predict the risk taking behavior while the activation of the punishement related system such as insula could predict the loss aversion behavior.
     (2) In this study, we observe the neural processing at the decision stage reflect the decision makers' adaptive choice. This study observe the ERN is involved in the dynamic processing of the risky decision situation and the risky investment choices, which reflects the ancipatory evaluation of the tradeoff of risk and reward, guiding the decision maker make the optimal choice in the dynamic risky settings. The guidance of the ERN that origned from the anterior cingulate cortex indicates that the affect play a key role at the efficient decision making of the individual decision maker, which gives a direct support for Damasio's somatic marker hypothesis and dual system model that Kahneman summarized in behavioral decision making from the neuroscience level. So from the perspective of the dual system model of the brain, the study suggests that the system 1 is quite important in the quick and accurate decision makings.
     (3) The ancipatory affect plays an important role at all the three stage of decision making:ancipation, decision selection and outcome evaluation stage. As mentiond in the first innovation point, ancipatory affect play a vital part at the anticipation stage, reflecting the anticipation motivation toward future reward and punishment outcome. At the decision selection stage, the anterior cingulate cortex worked as an important part to coordinate the emotion to represent the anticipated risk and reward through ERN. At the outcome evaluation stage, anterior cingulate cortex represents the anticipatory violation through the FRN. Therefore, the ancipatory affect involves in all three stage of decision making. The anticipatory affect not only play a role at the stage of the anticipation, but also at the stage of decision making and outcome evaluation, further enrich the content of the anticipatory affect hypothesis put forward by the decision neuroscientists.
     (4) The processing of anticipation, decision making and outcome evaluation are different, not only the anticipated and experienced utility are dissociated, but also the decision and experienced one. First, at the stage of the anticipation, the gain and loss anticipation activate both the reward and punishment-related systems at the same time reflect the decision motivation. At the stage of outcome evaluation, the positive and negative outcome has respective activation; the former has the reward related regions engaged, while the later has the punishment related regions involved. Therefore, the anticipated and experienced utilities are not the same. The decision stage is mainly represented by the activation of the ACC to reconcile the reward and risk tradeoff, suggesting the adaptive representation of the decision making. The outcome evaluation stage is also represented by the ACC orgined component, FRN. But different from the ERN that is sensitive to the risky situation, the FRN is not sensitive to the risky situation, but merely response to the anticipation violation. Therefore, decision and experienced utilities are distributed. In general, from the spatial and temporal levels of neuroscience, this study validates the difference of the utility at different stage of decision that was initially put forward by Kahneman & Wakker.
引文
[1]Aharon, I., Etcoff, N.& Ariely, D. et al. Beautiful faces have variable reward value:fMRI and behavioral evidence. Neuron,2001,32(3),537-551.
    [2]Amiez, C., Joseph, J. P.& Procyk, E. Reward encoding in the monkey anterior cingulate cortex. Cerebral Cortex,2006,16(7),1040-1055.
    [3]Ariely, D.& Berns, G. S. Neuromarketing:the hope and hype of neuroimaging in business. Nature Review Neuroscience,2010,11(4),284-292.
    [4]Ariely, D.& Loewenstein, G. The heat of the moment:The effect of sexual arousal on sexual decision making. Journal of Behavioral Decision Making, 2006,19(2),87-98.
    [5]Bechara, A.& Damasio, A. R. The somatic marker hypothesis:A neural theory of economic decision. Games and Economic Behavior,2005,52(2),336-372.
    [6]Bechara, A., Damasio, A. R.& Damasio, H. et al. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition,1994, 50(1-3),7-15.
    [7]Bechara, A., Damasio, H.& Damasio, A. R. et al. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience,1999,19(13):5473-5481.
    [8]Bechara, A., Damasio, H.& Tranel, D. et al. Deciding advantageously before knowing the advantageous strategy. Science,1997,275(5304):1293.
    [9]Bechara, A., Damasio, H.& Tranel, D. et al. The Iowa Gambling Task and the somatic marker hypothesis:some questions and answers. Trends in Cognitive Science,2005,9(4):159-162,162-164.
    [10]Behrens, T. E. J., Woolrich, M. W.& Walton, M. E. et al. Learning the value of information in an uncertain world. Nature Neuroscience,2007,10(9), 1214-1221.
    [11]Bellebaum, C.& Daum, I. Learning-related changes in reward expectancy are reflected in the feedback-related negativity. European Journal of Neuroscience, 2008,27(7),1823-1835.
    [12]Bellebaum, C., Kobza, S.& Thiele, S. et al. It was not MY fault:event-related brain potentials in active and observational learning from feedback. Cerebral Cortex,2010,20(12),2874-2883.
    [13]Bellebaum, C., Polezzi, D.& Daum, I. It is less than you expected:the feedback-related negativity reflects violations of reward magnitude expectations. Neuropsychologia,2010,48(11),3343-3350.
    [14]Berns, G. S., Capra, C. M.& Chappelow, J. et al. Nonlinear neurobiological probability weighting functions for aversive outcomes. Neuroimage,2008, 39(4),2047-2057.
    [15]Berns, G. S., McClure, S. M.& Pagnoni, G. et al. Predictability modulates human brain response to reward. Journal of Neuroscience,2001,21(8), 2793-2798.
    [16]Bolla, K. I., Eldreth, D. A.& London, E. D. et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage,2003,19(3),1085-1094.
    [17]Botvinick, M. M., Braver, T. S.& Barch, D. M. et al. Conflict monitoring and cognitive control. Psychological Review,2001,108(3),624-652.
    [18]Bray, S., Rangel, A.& Shimojo, S. et al. The neural mechanisms underlying the influence of pavlovian cues on human decision making. Journal of Neuroscience,2008,28(22),5861-5866.
    [19]Breiter, H. C., Aharon, I.& Kahneman, D. et al. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 2001,30(2),619-639.
    [20]Brischoux, F., Chakraborty, S.& Brierley, D. I. et al. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of National Academy of Science of United States of America,2009,106(12),4894-4899.
    [21]Bruhin, A., Fehr Duda, H.& Epper, T. Risk and rationality:Uncovering heterogeneity in probability distortion. Econometrica,2010,78(4),1375-1412.
    [22]Bush, G., Vogt, B. A.& Holmes, J. et al. Dorsal anterior cingulate cortex:a role in reward-based decision making. Proceedings of National Academy of Science of United States of America A,2002,99(1),523-528.
    [23]Camara, E., Rodriguez-Fornells, A.& Miinte, T. F. Functional connectivity of reward processing in the brain. Frontiers in Human Neuroscience,2008,2.
    [24]Camerer, C. Behavioral game theory:Experiments in strategic interaction. New Jersey:Princeton University Press,2003.
    [25]Camerer, C., Loewenstein, G.& Prelec, D. Neuroeconomics:How neuroscience can inform economics. Journal of Economic Literature,2005,43(1),9-64.
    [26]Camus, M., Halelamien, N.& Plassmann, H. et al. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. European Journal of Neuroscience,2009, 30(10),1980-1988.
    [27]Carter, C. S., Braver, T. S.& Barch, D. M. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science,1998,280(5364), 747.
    [28]Carter, R. M., Macinnes, J. J.& Huettel, S. A. et al. Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontier in Behavioral Neuroscience,2009,3:21.
    [29]Chandrasekhar, P. V., Capra, C. M.& Moore, S. et al. Neurobiological regret and rejoice functions for aversive outcomes. Neuroimage,2008,39(3), 1472-1484.
    [30]Christopoulos, G. I., Tobler, P. N.& Bossaerts, P. et al. Neural correlates of value, risk, and risk aversion contributing to decision making under risk. Journal of Neuroscience,2009,29(40),12574-12583.
    [31]Chua, H. F., Gonzalez, R.& Taylor, S. F. et al. Decision-related loss:regret and disappointment. Neuroimage,2009,47(4),2031-2040.
    [32]Clark, L., Bechara, A.& Damasio, H. et al. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain,2008, 131(5),1311.
    [33]Cohen, J. D. The vulcanization of the human brain:A neural perspective on interactions between cognition and emotion. The Journal of Economic Perspectives,2005,19(4),3-24.
    [34]Cohen, M. X. Neurocomputational mechanisms of reinforcement-guided learning in humans:a review. Cognitive Affective Behavioral Neuroscience, 2008,8(2),113-125.
    [35]Cohen, M. X. Error-related medial frontal theta activity predicts cingulate-related structural connectivity. Neuroimage,2011,55(3),1373-1383.
    [36]Cohen, M. X.& Ranganath, C. Reinforcement learning signals predict future decisions. Journal of Neuroscience,2007,27(2),371-378.
    [37]Cohen, M. X., Elger, C. E.& Ranganath, C. Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage,2007,35(2), 968-978.
    [38]Cooper, J. C.& Knutson, B. Valence and salience contribute to nucleus accumbens activation. Neuroimage,2008,39(1),538-547.
    [39]Craig, A. D. Once an island, now the focus of attention. Brain Structrual Function,2010,214(5-6),395-396.
    [40]Crisan, L. G., Pana, S.& Vulturar, R. et al. Genetic contributions of the serotonin transporter to social learning of fear and economic decision making. Social Cognitive Affective Neuroscience,2009,4(4),399-408.
    [41]Critchley, H. D., Mathias, C. J.& Dolan, R. J. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron,2001, 29(2),537-545.
    [42]Damasio, A. R. Descartes' Error:Emotion, GP Putnam,1994.
    [43]Damasio, H., Grabowski, T.& Frank, R. et al. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science,1994, 264(5162),1102.
    [44]De Martino, B., Camerer, C. F.& Adolphs, R. Amygdala damage eliminates monetary loss aversion. Proceedings of National Academy of Science of United States of America,2010,107(8),3788-3792.
    [45]De Martino, B., Kumaran, D.& Holt, B. et al. The neurobiology of reference-dependent value computation. Journal of Neuroscience,2009,29(12), 3833-3842.
    [46]De Martino, B., Kumaran, D.& Seymour, B. et al. Frames, biases, and rational decision-making in the human brain. Science,2006,313(5787),684-687.
    [47]Debener, S., Ullsperger, M.& Siegel, M. et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 2005,25(50),11730.
    [48]Deco, G., Jirsa, V. K.& McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Review Neuroscience, 2011,12(1),43-56.
    [49]Delgado, M. R., Locke, H. M.& Stenger, V. A. et al. Dorsal striatum responses to reward and punishment:effects of valence and magnitude manipulations. Cognitive Affective Behavioral Neuroscience,2003,3(1),27-38.
    [50]Delgado, M. R., Nystrom, L. E.& Fissell, C. et al. Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology,2000,84(6),3072-3077.
    [51]Dimoka, A., Banker, R. D.& Benbasat, I. et al. On the Use of Neurophysiological Tools in IS Research:Developing a Research Agenda for NeuroIS. MIS Quarterly,2011,in press.
    [52]Dimoka, A., Pavlou, P. A.& Davis, F. D. Neuro-IS:The potential of cognitive neuroscience for information systems research,2007:9-12.
    [53]Dreher, J. C.& Tremblay, L. Handbook of reward and decision making: Academic Press, Elsevier,2009.
    [54]Duncan-Johnson, C. C.& Donchin, E. On quantifying surprise:the variation of event-related potentials with subjective probability. Psychophysiology,1977, 14(5),456-467.
    [55]Dunn, B. D., Dalgleish, T.& Lawrence, A. D. The somatic marker hypothesis: A critical evaluation. Neuroscience & Biobehavioral Reviews,2006,30(2), 239-271.
    [56]Edmans, A., Garcia, D.& Norli. Sports sentiment and stock returns. The Journal of Finance,2007,62(4),1967-1998.
    [57]Endrass, T., Reuter, B.& Kathmann, N. ERP correlates of conscious error recognition:aware and unaware errors in an antisaccade task. European Journal of Neuroscience,2007,26(6),1714-1720.
    [58]Ernst, M., Bolla, K.& Mouratidis, M. et al. Decision-making in a risk-taking task:a PET study. Neuropsychopharmacology,2002,26(5),682-691.
    [59]Falkenstein, M., Hohnsbein, J.& Hoormann, J. et al. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. Psychophysiological brain research,1990,1:192-195.
    [60]Falkenstein, M., Hoormann, J.& Christ, S. et al. ERP components on reaction errors and their functional significance:a tutorial. Biological Psychology,2000, 51(2-3),87-107.
    [61]Fellows, L. K.& Farah, M. J. Ventromedial frontal cortex mediates affective shifting in humans:evidence from a reversal learning paradigm. Brain,2003, 126(Pt8),1830-1837.
    [62]Forbes, C. E.& Grafman, J. The role of the human prefrontal cortex in social cognition and moral judgment. Annual Review of Neuroscience,2010,33: 299-324.
    [63]Frangou, S., Kington, J.& Raymont, V. et al. Examining ventral and dorsal prefrontal function in bipolar disorder:a functional magnetic resonance imaging study. European Psychiatry,2008,23(4),300-308.
    [64]Fugate, D. L. Neuromarketing:a layman's look at neuroscience and its potential application to marketing practice. Journal of Consumer Marketing,2007,24(7), 385-394.
    [65]Fukushima, H.& Hiraki, K. Perceiving an opponent's loss:gender-related differences in the medial-frontal negativity. Social Cognitive Affective Neuroscience,2006,1(2),149-157.
    [66]Fukushima, H.& Hiraki, K. Whose loss is it? Human electrophysiological correlates of non-self reward processing. Social Neuroscience,2009,4(3), 261-275.
    [67]Gehring, W. J.& Willoughby, A. R. The medial frontal cortex and the rapid processing of monetary gains and losses. Science,2002,295(5563),2279-2282.
    [68]Gehring, W. J., Goss, B.& Coles, M. et al. A neural system for error detection and compensation. Psychological science,1993,4(6),385.
    [69]Gianotti, L. R., Knoch, D.& Faber, P. L. et al. Tonic activity level in the right prefrontal cortex predicts individuals' risk taking. Psychological Science,2009, 20(1),33-38.
    [70]Glimcher, P. W.& Lau, B. Rethinking the thalamus. Nature Neuroscience,2005, 8(8),983-984.
    [71]Glimcher, P. W.& Rustichini, A. Neuroeconomics:The consilience of brain and decision. Science,2004,306(5695),447-452.
    [72]Glimcher, P. W., Kable, J.& Louie, K. Neuroeconomic Studies of Impulsivity: Now or Just as Soon as Possible? The American Economic Review,2007,97(2), 142-147.
    [73]Gonzalez, R.& Wu, G. On the shape of the probability weighting function. Cognitive Psychology,1999.
    [74]Greicius, M. D., Krasnow, B.& Reiss, A. L. et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proceeding of National Academy of Science of United States of America,2003,100(1), 253-258.
    [75]Grosenick, L., Greer, S.& Knutson, B. Interpretable classifiers for FMRI improve prediction of purchases. Neural Systems and Rehabilitation Engineering, IEEE Transactions on,2009,16(6),539-548.
    [76]Gui, X. U. E., Chuansheng, C.& Zhong-Lin, L. U. et al. Brain imaging techniques and their applications in decision-making research. Acta psychologica Sinica,2010,42(1),120.
    [77]Haber, S. N.& Knutson, B. The reward circuit:linking primate anatomy and human imaging. Neuropsychopharmacology,2010,35(1),4-26.
    [78]Hajcak, G., McDonald, N.& Simons, R. F. To err is autonomic:error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology,2003,40(6),895-903.
    [79]Hajcak, G., McDonald, N.& Simons, R. F. Error-related psychophysiology and negative affect. Brain and Cognition,2004,56(2),189-197.
    [80]Hajcak, G., Moser, J. S.& Holroyd, C. B. et al. The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology,2006,71(2),148-154.
    [81]Hampton, A. N.& O'Doherty, J. P. Decoding the neural substrates of reward-related decision making with functional MRI. Proceedings of the National Academy of Sciences,2007,104(4),1377.
    [82]Hare, T. A., Camerer, C. F.& Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science,2009,324(5927), 646-648.
    [83]Hare, T. A., O'Doherty, J.& Camerer, C. F. et al. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. Journal of Neuroscience,2008,28(22),5623-5630.
    [84]He, Q., Xue, G.& Chen, C. et al. Serotonin transporter gene-linked polymorphic region (5-HTTLPR) influences decision making under ambiguity and risk in a large Chinese sample. Neuropharmacology,2010.
    [85]Hedgcock, W. M., Crowe, D. A.& Leuthold, A. C. et al. A magnetoencephalography study of choice bias. Experimental brain research, 2010,202(1),121-127.
    [86]Hester, R., Foxe, J. J.& Molholm, S. et al. Neural mechanisms involved in error processing:a comparison of errors made with and without awareness. Neuroimage,2005,27(3),602-608.
    [87]Hewig, J., Trippe, R.& Hecht, H. et al. Decision-making in blackjack:an electrophysiological analysis. Cerebral Cortex,2007,17(4),865.
    [88]Hirshleifer, D.& Shumway, T. Good day sunshine:Stock returns and the weather. The Journal of Finance,2003,58(3),1009-1032.
    [89]Holroyd, C. B.& Coles, M. G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review,2002,109(4),679-709.
    [90]Holroyd, C. B.& Coles, M. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review,2002,109(4),679-708.
    [91]Hsee, C. K.& Rottenstreich, Y. Music, pandas, and muggers:On the affective psychology of value. Journal of Experimental Psychology-General,2004,133(1), 23-29.
    [92]Hsu, M, Bhatt, M.& Adolphs, R. et al. Neural systems responding to degrees of uncertainty in human decision-making. Science,2005,310(5754), 1680-1683.
    [93]Hsu, M., Krajbich, I.& Zhao, C. et al. Neural response to reward anticipation under risk is nonlinear in probabilities. Journal of Neuroscience,2009,29(7), 2231-2237.
    [94]Huettel, S. A. Ten Challenges for Decision Neuroscience. Frontiers in Neuroscience,2010,4.
    [95]Isnard, J., Magnin, M.& Jung, J. et al. Does the insula tell our brain that we are in pain? Pain,2011.
    [96]James, W. What is an Emotion? Mind,1884,9(34),188-205.
    [97]Jensen, J., Smith, A. J.& Willeit, M. et al. Separate brain regions code for salience vs. valence during reward prediction in humans. Human Brain Mapping,2007,28(4),294-302.
    [98]Joshua, M., Adler, A.& Mitelman, R. et al. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. Journal of Neuroscience,2008,28(45),11673.
    [99]Kable, J. W.& Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nature Neuroscience,2007,10(12),1625-1633.
    [100]Kahneman, D. Experienced utility and objective happiness:A moment-based approach. Ch.37 in Kahneman, D. and Tversky, A.(Eds.) Choices, Values, and Frames:New York:Cambrige University Press and the Russell Sage Foundation,2000:673-692.
    [101]Kahneman, D. Maps of bounded rationality:A perspective on intuitive judgment and choice. Nobel Prize Lecture, December,2002,8,1449-1475.
    [102]Kahneman, D.& Tversky, A. Prospect theory-analysis of decision under risk. Econometrica,1979,47(2),263-291.
    [103]Kahneman, D., Wakker, P.& Sarin, R. Back to Bentham? Explorations of experienced utility. The Quarterly Journal of Economics,1997(112),375-406.
    [104]Kalenscher, T.& Pennartz, C. M. Is a bird in the hand worth two in the future? The neuroeconomics of intertemporal decision-making. Progress in Neurobiology,2008,84(3),284-315.
    [105]Kalenscher, T., Tobler, P. N.& Huijbers, W. et al. Neural signatures of intransitive preferences. Frontier in Human Neuroscience,2010,4.
    [106]Kennerley, S. W., Walton, M. E.& Behrens, T. E. et al. Optimal decision making and the anterior cingulate cortex. Nature neuroscience,2006,9(7), 940-947.
    [107]Kim, H., Shimojo, S.& O'Doherty, J. P. Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. PLoS Biology,2006,4(8), e233.
    [108]Kim, H., Shimojo, S.& O'Doherty, J. P. Overlapping Responses for the Expectation of Juice and Money Rewards in Human Ventromedial Prefrontal Cortex. Cerebral Cortex,2011, in press.
    [109]King-Casas, B., Tomlin, D.& Anen, C. et al. Getting to know you:reputation and trust in a two-person economic exchange. Science,2005,308(5718),78.
    [110]Knight, F. H. Risk, Uncertainty, and Profit:Boston:Houghton Mifflin Company, 1921.
    [111]Knutson, B.& Cooper, J. C. Functional magnetic resonance imaging of reward prediction. Current Opinion Neurology,2005,18(4),411-417.
    [112]Knutson, B.& Gibbs, S. E. Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology (Berl),2007,191(3),813-822.
    [113]Knutson, B.& Greer, S. M. Anticipatory affect:neural correlates and consequences for choice. Philos Trans R Soc Lond B Biol Sci,2008,363(1511), 3771-3786.
    [114]Knutson, B.& Peterson, R. Neurally reconstructing expected utility. Games and Economic Behavior,2005,52(2),305-315.
    [115]Knutson, B.& Wimmer, G. E. Splitting the difference:how does the brain code reward episodes? Annals of New York Academy of Science,2007,1104: 54-69.
    [116]Knutson, B., Adams, C. M.& Fong, G. W. et al. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience,2001,21(16), C159.
    [117]Knutson, B., Bhanji, J. P.& Cooney, R. E. et al. Neural responses to monetary incentives in major depression. Biological Psychiatry,2008,63(7),686-692.
    [118]Knutson, B., Fong, G. W.& Bennett, S. M. et al. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes:characterization with rapid event-related fMRI. Neuroimage,2003,18(2),263-272.
    [119]Knutson, B., Rick, S.& Wimmer, G. E. et al. Neural predictors of purchases. Neuron,2007,53(1),147-156.
    [120]Knutson, B., Taylor, J.& Kaufman, M. et al. Distributed neural representation of expected value. Journal of Neuroscience,2005,25(19),4806-4812.
    [121]Knutson, B., Westdorp, A.& Kaiser, E. et al. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage,2000,12(1), 20-27.
    [122]Knutson, B., Wimmer, G. E.& Kuhnen, C. M. et al. Nucleus accumbens activation mediates the influence of reward cues on financial risk taking. Neuroreport,2008,19(5),509-513.
    [123]Kuhnen, C. M.& Chiao, J. Y. Genetic determinants of financial risk taking. PLoS One,2009,4(2),4362.
    [124]Kuhnen, C. M.& Knutson, B. The neural basis of financial risk taking. Neuron, 2005,47(5),763-770.
    [125]Lane, S. D., Steinberg, J. L.& Ma, L. et al. Diffusion tensor imaging and decision making in cocaine dependence. PLoS One,2010,5(7), el 1591.
    [126]Lawrence, N. S., Jollant, F.& O'Daly, O. et al. Distinct roles of prefrontal cortical subregions in the Iowa Gambling Task. Cerebral Cortex,2009,19(5), 1134-1143.
    [127]Lerner, J. S.& Keltner, D. Fear, anger, and risk. Journal of Personality and Social Psychology,2001,81(1),146-159.
    [128]Lerner, J. S., Small, D. A.& Loewenstein, G. Heart strings and purse strings. Psychological Science,2004,15(5),337.
    [129]Levin, I. P.& Hart, S. S. Risk preferences in young children:Early evidence of individual differences in reaction to potential gains and losses. Journal of Behavioral Decision Making,2003,16(5),397-413.
    [130]Levita, L., Hare, T. A.& Voss, H. U. et al. The bivalent side of the nucleus accumbens. Neuroimage,2009,44(3),1178-1187.
    [131]Liu, X., Hairston, J.& Schrier, M. et al. Common and distinct networks underlying reward valence and processing stages:A meta-analysis of functional neuroimaging studies. Neuroscience Biobehavioral Review,2011, in press.
    [132]Ljungberg, T., Apicella, P.& Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of neurophysiology, 1992,67(1),145.
    [133]Loewenstein, G. Out of control:Visceral influences on behavior. Organizational behavior and human decision processes,1996,65(3),272-292.
    [134]Loewenstein, G., Rick, S.& Cohen, J. D. Neuroeconomics. Annual Review Psychology,2008,59:647-672.
    [135]Loewenstein, G., Weber, E. U.& Hsee, C. K. Risk as feelings. Psychological bulletin,2001,127.
    [136]Logothetis, N. K., Pauls, J.& Augath, M. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature,2001,412(6843),150-157.
    [137]Luce, D. R. Individual choice behavior. New York:Wiley,1959.
    [138]Luck, S. J. An introduction to the event-related potential technique. Cambridge Mass:The MIT Press,2005.
    [139]Manes, F., Sahakian, B.& Clark, L. et al. Decision-making processes following damage to the prefrontal cortex. Brain,2002,125(Pt 3),624-639.
    [140]Markowitz, H. The utility of wealth. The Journal of Political Economy,1952, 60(2),151-158.
    [141]Matsumoto, K., Suzuki, W.& Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science,2003,301(5630),229-232.
    [142]McClure, S. M., Laibson, D. I.& Loewenstein, G. et al. Separate neural systems value immediate and delayed monetary rewards. Science,2004,306(5695), 503-507.
    [143]Miltner, W., Braun, C. H.& Coles, M. Event-related brain potentials following incorrect feedback in a time-estimation task:Evidence for a generic" neural system for error detection. Journal of Cognitive Neuroscience,1997,9(6), 788-798.
    [144]Minamimoto, T., Hori, Y.& Kimura, M. Complementary process to response bias in the centromedian nucleus of the thalamus. Science,2005,308(5729), 1798-1801.
    [145]Mohr, P. N., Biele, G.& Heekeren, H. R. Neural processing of risk. Journal of Neuroscience,2010,30(19),6613-6619.
    [146]Myerson, J.& Green, L. Discounting of delayed rewards:Models of individual choice. Journal of the Experimental Analysis of Behavior,1995,64(3),263.
    [147]Naqvi, N., Shiv, B.& Bechara, A. The role of emotion in decision making. Current Directions in Psychological Science,2006,15(5),260.
    [148]Nieuwenhuis, S., Aston-Jones, G.& Cohen, J. D. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin,2005, 131(4),510-532.
    [149]Nieuwenhuis, S., Ridderinkhof, K. R.& Blom, J. et al. Error-related brain potentials are differentially related to awareness of response errors:evidence from an antisaccade task. Psychophysiology,2001,38(05),752-760.
    [150]Nieuwenhuis, S., Yeung, N.& Holroyd, C. B. et al. Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex,2004,14(7),741-747.
    [151]Northoff, G., Grimm, S.& Boeker, H. et al. Affective judgment and beneficial decision making:ventromedial prefrontal activity correlates with performance in the Iowa Gambling Task. Human Brain Mapping,2006,27(7),572-587.
    [152]O'Doherty, J., Kringelbach, M. L.& Rolls, E. T. et al. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature neuroscience,2001,4(1),95-102.
    [153]Ogawa, S., Lee, T. M.& Kay, A. R. et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of National Academy of Science of United States of America,1990,87(24),9868-9872.
    [154]Olds, J.& Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Brian Physiology and Psychology, 1954,47(3),419-427.
    [155]Overbeek, T. J., Nieuwenhuis, E.& Ridderinkhof, K. R. Dissociable Components of Error Processing On the Functional Significance of the Pe Vis-a-vis the ERN/Ne. Journal of Psychophysiology,2005,19(4),319-329.
    [156]Paulus, M. P.& Frank, L. R. Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects. Neuroimage,2006,30(2), 668-677.
    [157]Paulus, M. P., Rogalsky, C.& Simmons, A. et al. Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage,2003,19(4),1439-1448.
    [158]Pessiglione, M., Seymour, B.& Flandin, G. et al. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature,2006, 442(7106),1042-1045.
    [159]Peters, J.& Buchel, C. Neural representations of subjective reward value. Behavioral Brain Research,2010,213(2),135-141.
    [160]Pfabigan, D. M, Alexopoulos, J.& Bauer, H. et al. Manipulation of feedback expectancy and valence induces negative and positive reward prediction error signals manifest in event-related brain potentials. Psychophysiology,2011, in press.
    [161]Plous, S. The psychology of judgment and decision making. McGraw-Hill, 1993.
    [162]Polezzi, D., Sartori, G.& Rumiati, R. et al. Brain correlates of risky decision-making. Neuroimage,2010,49(2),1886-1894.
    [163]Preuschoff, K., Bossaerts, P.& Quartz, S. R. Neural differentiation of expected reward and risk in human subcortical structures. Neuron,2006,51(3),381-390.
    [164]Preuschoff, K., Quartz, S. R.& Bossaerts, P. Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience,2008,28(11), 2745-2752.
    [165]Rangel, A.& Hare, T. Neural computations associated with goal-directed choice. Current Opinion Neurobiology,2010,20(2),262-270.
    [166]Rangel, A., Camerer, C.& Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nature Review Neuroscience, 2008,9(7),545-556.
    [167]Read, D. Experienced utility:Utility theory from Jeremy Bentham to Daniel Kalmeman. Thinking & Reasoning,2007,13(1),45-61.
    [168]Reimann, M.& Bechara, A. The somatic marker framework as a neurological theory of decision-making:Review, conceptual comparisons, and future neuroeconomics research. Journal of Economic Psychology,2010,31:767-776.
    [169]Rick, S.& Loewenstein, G. The role of emotion in economic behavior. The Handbook of Emotion,2008:138-155.
    [170]Rigoni, D., Polezzi, D.& Rumiati, R. et al. When people matter more than money:an ERPs study. Brain Research Bulletin,2010,81(4-5),445-452.
    [171]Roiser, J. P., de Martino, B.& Tan, G. C. et al. A genetically mediated bias in decision making driven by failure of amygdala control. Journal of Neuroscience, 2009,29(18),5985-5991.
    [172]Rottenstreich, Y.& Hsee, C. K. Money, kisses, and electric shocks:On the affective psychology of risk. Psychological Science,2001,12(3),185-190.
    [173]Rushworth, M. F. S.& Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature neuroscience,2008,11(4),389-397.
    [174]Rushworth, M. F.& Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience,2008,11(4),389-397.
    [175]Salimpoor, V. N., Benovoy, M.& Larcher, K. et al. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience,2011.
    [176]Samanez-Larkin, G. R., Gibbs, S. E.& Khanna, K. et al. Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience,2007, 10(6),787-791.
    [177]Sanfey, A. G. Decision neuroscience:New directions in studies of judgment and decision making. Current Directions in Psychological Science,2007,16(3), 151-155.
    [178]Sanfey, A. G.& Chang, L. J. Multiple systems in decision making. Annals of New York Academy of Science,2008,1128:53-62.
    [179]Sanfey, A. G., Rilling, J. K.& Aronson, J. A. et al. The neural basis of economic decision-making in the Ultimatum Game. Science,2003,300(5626), 1755-1758.
    [180]Savage, L. J. The foundations of statistics. New York:Wiley,1954.
    [181]Schonberg, T., Fox, C. R.& Poldrack, R. A. Mind the gap:bridging economic and naturalistic risk-taking with cognitive neuroscience. Trends in Cognitive Science,2010.
    [182]Schultz, W., Dayan, P.& Montague, P. R. A neural substrate of prediction and reward. Science,1997,275(5306),1593-1599.
    [183]Seymour, B., Daw, N.& Dayan, P. et al. Differential encoding of losses and gains in the human striatum. Journal of Neuroscience,2007,27(18),4826-4831.
    [184]Seymour, B., O'Doherty, J. P.& Koltzenburg, M. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neuroscience,2005,8(9),1234-1240.
    [185]Seymour, B., Singer, T.& Dolan, R. The neurobiology of punishment. Nature Review Neuroscience,2007,8(4),300-311.
    [186]Shalgi, S., O'Connell, R. G.& Deouell, L. Y. et al. Absent minded but accurate: delaying responses increases accuracy but decreases error awareness. Experimental Brain Research,2007,182(1),119-124.
    [187]Shiv, B., Bechara, A.& Levin, I. et al. Decision neuroscience. Marketing Letters,2005,16(3-4),375-386.
    [188]Shiv, B., Loewenstein, G.& Bechara, A. et al. Investment behavior and the negative side of emotion. Psychological Science,2005,16(6),435.
    [189]Shiv, B., Loewenstein, G.& Bechara, A. The dark side of emotion in decision-making:when individuals with decreased emotional reactions make more advantageous decisions. Cognitive Brain Research,2005,23(1),85-92.
    [190]Singer, T., Seymour, B.& O'Doherty, J. et al. Empathy for pain involves the affective but not sensory components of pain. Science,2004,303(5661), 1157-1162.
    [191]Smith, D. V., Hayden, B. Y.& Truong, T. K. et al. Distinct value signals in anterior and posterior ventromedial prefrontal cortex. Journal of Neuroscience, 2010,30(7),2490-2495.
    [192]Takahashi, H., Matsui, H.& Camerer, C. et al. Dopamine D1 Receptors and Nonlinear Probability Weighting in Risky Choice. Journal of Neuroscience, 2010,30(49),16567.
    [193]Tanabe, J., Thompson, L.& Claus, E. et al. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Human Brain Mapping,2007,28(12),1276-1286.
    [194]Tobler, P. N., Christopoulos, G. I.& O'Doherty, J. P. et al. Neuronal distortions of reward probability without choice. Journal of Neuroscience,2008,28(45), 11703-11711.
    [195]Tobler, P. N., Christopoulos, G. I.& O'Doherty, J. P. et al. Risk-dependent reward value signal in human prefrontal cortex. Proceeding of National Academy of Science United States of America,2009,106(17),7185-7190.
    [196]Tom, S. M., Fox, C. R.& Trepel, C. et al. The neural basis of loss aversion in decision-making under risk. Science,2007,315(5811),515-518.
    [197]Tzieropoulos, H., de Peralta, R. G.& Bossaerts, P. et al. The impact of disappointment in decision making:inter-individual differences and electrical neuroimaging. Frontier Human Neuroscience,2011,4:235.
    [198]Ullsperger, M., Harsay, H. A.& Wessel, J. R. et al. Conscious perception of errors and its relation to the anterior insula. Brain Structrual Function,2010, 214(5-6),629-643.
    [199]Ungless, M. A. Dopamine:the salient issue. Trends in Neuroscience,2004, 27(12),702-706.
    [200]Ungless, M. A., Argilli, E.& Bonci, A. Effects of stress and aversion on dopamine neurons:implications for addiction. Neuroscience Biobehavioral Review,2010,35(2),151-156.
    [201]Ungless, M. A., Magill, P. J.& Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science,2004, 303(5666),2040-2042.
    [202]Van T Wout, M., Kahn, R. S.& Sanfey, A. G. et al. Affective state and decision-making in the Ultimatum Game. Experimental Brain Research,2006, 169(4),564-568.
    [203]van Veen, V., Holroyd, C. B.& Cohen, J. D. et al. Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex. Brain and Cognition,2004,56(2),267-276.
    [204]Vasile, D.& Sebastian, T. C. Neurofinance-Geting an insight into the trader's mind. Neuroscience,2007,27(31),8159-8160.
    [205]von Neumann J, M. O. Theory of games and economic behavior. Princeton: Princeton UP,1944.
    [206]Walton, M. E., Croxson, P. L.& Behrens, T. E. et al. Adaptive decision making and value in the anterior eingulate cortex. Neuroimage,2007,36 Suppl 2: T142-T154.
    [207]Weller, J. A., Levin, I. P.& Shiv, B. et al. Neural correlates of adaptive decision making for risky gains and losses. Psychological Science,2007,18(11), 958-964.
    [208]Weller, J. A., Levin, I. P.& Shiv, B. et al. The effects of insula damage on decision-making for risky gains and losses. Social Neuroscience,2009,4(4), 347-358.
    [209]Windmann, S., Kirsch, P.& Mier, D. et al. On framing effects in decision making:linking lateral versus medial orbitofrontal cortex activation to choice outcome processing. Journal of Cognitive Neuroscience,2006,18(7), 1198-1211.
    [210]Wu, Y.& Zhou, X. The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research,2009,1286,114-122.
    [211]Xu, L., Liang, Z. Y.& Wang, K. et al. Neural mechanism of intertemporal choice:from discounting future gains to future losses. Brain Research,2009, 1261,65-74.
    [212]Xue, G., Lu, Z.& Levin, I. P. et al. Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cerebral Cortex,2009,19(5), 1019-1027.
    [213]Yeung, N.& Sanfey, A. G. Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience,2004,24(28),6258-6264.
    [214]Yu, R.& Zhou, X. Brain responses to outcomes of one's own and other's performance in a gambling task. Neuroreport,2006,17(16),1747-1751.
    [215]Yu, R.& Zhou, X. To bet or not to bet? The error negativity or error-related negativity associated with risk-taking choices. Journal of Cognitive Neuroscience,2009,21(4),684-696.
    [216]Zink, C. F., Pagnoni, G.& Chappelow, J. et al. Human striatal activation reflects degree of stimulus saliency. Neuroimage,2006,29(3),977-983.
    [217]Zink, C. F., Pagnoni, G.& Martin, M. E. et al. Human striatal response to salient nonrewarding stimuli. Journal of Neuroscience,2003,23(22),8092.
    [218]陈昭燃,张蔚婷和韩济生.经颅磁刺激:生理,心理,脑成像及其临床应用.生理科学进展,2004,35(2),102-106.
    [219]董志勇.行为经济学原理:Principles of behavioral economics.北京:北京大学出版社,2006.
    [220]高利苹,李纾和时勘.框架效应的分析看风险.心理科学进展,2006,14(6),859-865.
    [221]蒋军和陈安涛.错误正波的神经发生源与功能意义解释.心理科学进展,2010,18(4),569-577.
    [222]刘亚,王振宏和孔风.情绪具身观:情绪研究的新视角.心理科学进展,2011,19(1),50-59.
    [223]刘长江和李纾.神经经济学:迈向脑科学的决策科学.心理科学,2007,30(2),482-484.
    [223]马庆国.管理统计.北京:科学出版社,2002.
    [224]马庆国和王小毅.认知神经科学、神经经济学与神经管理学.管理世界,2006a,(10),139-149.
    [225]马庆国和王小毅.从神经经济学和神经营销学到神经管理学.管理工程学报,2006b,20(3),129-132.
    [226]西蒙.管理行为.北京:北京经济学院出版社,1988.
    [227]徐丽娟,梁竹苑和王坤等.跨期选择的神经机制:从折扣未来获益到折扣未来损失.中国基础科学,2009,11(6),25-27.
    [228]余荣军和周晓林.神经经济学:打开经济行为背后的“黑箱”.科学通报,2007,52(9),992-998.
    [239]赵小虎,王培军和唐孝威.静息状态脑活动及其脑功能成像.自然科学进展,2005,15(10),1160-1166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700