基于QoS的智能配电通信无线传感器网络应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近期以来,中国国家自然科学基金、美国国家科学基金和欧盟第七期科研架构都对无线传感器网络在电力系统中应用研究给予了的重点资助。2010年,美国国家标准技术委员会所制定的《智能电网发展框架和路线图》中将无线传感器网络中的IEEE802.15.4标准协议明确列为推荐的通信标准之一,无线传感器网络在智能电网中的应用研究有着广阔的发展前景。
     将无线传感器网络应用于智能配电高性能数据通信,其实质是对一类具有不确定性过程和有确定实时性和可靠性数据传输QoS性能指标要求的多目标协调优化求解难题。其核心是:需改进IEEE802.15.4标准MAC协议信道抢占方式,在不提高网络开销情况下嵌入QoS功能;需增加数据流量和无线链路不确定性动态变化的预估功能,在保障QoS功能需求下构建具有控制机制的端到端路由协议;需规范网络节点布局和拓扑结构规划的设计方法,在满足配电网架构条件下优化无线传感器网络结构。针对上述问题,本文通过建立网络结构和链路质量、节点内和节点间竞争状态、数据性能分析的数学模型,从节点-网络-整体全面地对无线传感器网络在智能配电网高性能通信中的应用基础理论方法进行了研究,这对探索提高无线传感器网络性能提供了思路,对智能配电高性能通信应用具有很好的理论意义和实用价值。
     本文的主要研究工作如下:
     (1)给出了智能配电通信无线传感器网络节点布局和拓扑结构规划的理论计算公式和设计方法。依据智能配电网高性能数据通信网络需求和所处地形地貌通信环境不确定性特点,通过建立无线传感器网络链路质量数学模型和网络结构数学模型,给出网络拓扑结构设计中节点距离、密度、覆盖面积和节点规模的计算方法,为智能配电通信无线传感器网络节点布置和拓扑结构的规划设计提供了理论依据。
     (2)提出了基于不公平竞争的智能配电高性能通信无线传感器网络QoS-MAC协议算法。根据配电网通信对各类数据的不同实时性传输需求,在不增加网络开销情况下改进IEEE802.15.4标准MAC层协议,提出了一种嵌入QoS功能的QoS-MAC协议算法,仿真实验结果表明,该方法在保持了MAC层传输性能的同时,实现了满足各类不同实时性数据需求的高性能数据传输。
     (3)提出了智能配电通信无线传感器网络MAC层性能分析数学模型。建立节点随机数据不公平竞争的马尔科夫缓冲队列状态数学模型、邻节点间无线信道竞争状态数学模型,构建节点状态和信道状态分析算法,解决了多优先级数据传输QoS-MAC协议传输性能的数学描述问题。仿真实验结果表明,该方法可以用于无线传感网络传输性能的验证分析。
     (4)提出了智能配电通信无线传感器网络端到端传输QoS保障控制路由协议。基于“预测-决策-执行”分层协作的思想,对数据流量和无线链路不确定性动态变化预估,优化传输数据路径决策,通过分类、缓冲和调度管理,有效分配有限网络资源,避免网络数据拥塞。仿真实验结果表明,该方法解决了智能配电网各类数据业务有确定性服务质量要求的端到端数据传输路径优化求解问题。
     (5)构造了智能配电通信无线传感器网络的模拟仿真环境。基于QualNet网络仿真软件,构建提出的智能配电通信无线传感器网络整体结构,加入智能配电通信无线传感器网络QoS-MAC协议和QoS保障控制路由协议算法,给出仿真软件参数设置和协议修改方法。根据配电终端设备的数据通信速率要求,测试网络端到端各类数据传输的实时性和可靠性的QoS服务功能。仿真实验结果表明:本文研究的从节点-网络-整体的理论方法可满足配电通信规范对节点各类数据包传输时延和接收率性能需求。
     (6)实际工程实现范例。根据黄山市配电网数据通信实际工程的配电网台区的地形、地貌、通信环境和配电信息化管理的需求,设计了智能配电通信无线传感器网络优化拓扑结构,研制无线传感器网络终端/路由/协调器,在网络节点嵌入QoS-MAC协议和QoS保障控制路由协议软件,编制了网关管理软件并与配电自动化管理系统联接,实现智能配电通信无线传感器网络的工程应用。
     实际工程测试结果和仿真实验结果均验证表明,本文所做的应用基础理论研究和给出的设计方法可适应于配电网数据通信规范对数据传输QoS性能指标要求,达到了适用于智能配电网高性能数据通信的预期目标。
Recently, Researches on Wireless Sensor Networks (WSNs) in Power Grid communicationwere supported by National Natural Science Foundation of China, U.S. National Science Foundation,and European Seventh Framework Programme (FP7). In2010,“NIST Framework and Roadmap forSmart Grid Interoperability Standards” lists IEEE802.15.4as one of supported standards. WSNshave been widely recognized as a promising technology that brings signification advantage in SmartDistribution Grid (SDG) Communication.
     Actually, WSNs in SDG high-performance Communications is a kind of multi-objectiveharmonizing optimization problem of uncertainty process with Quality of Service(QoS)requirements, such as real-time and reliability. The main problems need to be resolved are:1.Improving IEEE802.15.4MAC layer protocols channel contention and embedded QoS functionwithout additional overhead traffic.2. Increasing uncertainty dynamic change of traffic and wirelesslinks estimate functions and building a QoS Guarantee Control routing protocol to satisfy therequirements of QoS.3. Specifying design method of network nodes layout and topological structureand optimizing WSNs structure to match with Distribution Grid architecture. To address theseproblems, Basic theory and method for the entire WSNs application in SDG High-performanceCommunications are researched by building network structure and link quality model, contentionstatement model either in node or between nodes, and network performance analysis model. Theresearches provide meaningful insights about exploring the improvement of WSNs performance, andalso have theoretical significance and practical value.
     The main works can be summarized as blow:
     (1) The theoretic computational formula and design method of nodes layout and topology forWSNs in SDG are given. According to the requirement of communication of SDG high-performanceCommunications and the uncertain environment feature in which SDG device located, the distance,density, number of nodes and network cover area computational formula are given by buildingWSNs link quality model and networks structure model. It provides theoretical basis of nodes layoutand topological for WSNs in SDG.
     (2) QoS-MAC protocol algorithm based on unfair competition of WSNs in SDG is proposed.According to the different kinds of real-time data requirement of SDG communication, an enhancedIEEE802.15.4MAC layer protocols embedded QoS feature are proposed without any overhead traffic. The simulation results show that the protocol satisfies all kinds of data with differentreal-time requirement, and in the meantime, MAC layer performance is kept.
     (3) The MAC layer performance analysis mathematical model is built for WSNs in SDG. Thenode and channel analysis method is setup by building Markov statement buffer and radio channelcompetition statement mathematical model, to resolve the mathematical description problem ofQoS-MAC protocol performance. Simulation results show that this model can be used for WSNsperformance analysis.
     (4) A QoS guarantee control routing protocol is proposed. Based on the “estimate, decision, andexecute” method, the network resource are effective distributed and the network congest is avoid byestimating uncertainty dynamic change of traffic and wireless links, optimizing routing path choose,and introducing Classification, Queuing and Scheduling management. The simulation result indicatethat the method can optimize routing protocol to satisfy the end-to-end transmission requirement ofall kinds SDG traffic.
     (5) The WSNs in SDG scenario is designed and simulated. In the QualNet network simulationsoftware, the scenario with the proposed WSNs structure, the QoS-MAC protocol and QoSguarantee control routing protocol is designed. The simulation parameter setting and protocolmodification method are also given. According to the SDG terminal device communication data rate,end-to-end communication QoS (delay and reliability) performances are tested. The simulationresults show that: the researches of entire theory method can satisfy the requirement of SDGcommunication.
     (6) The actual example of project realization. According to communication environment andrequirements of Distribution Information Management System (DIMS) in huangshan PowerCompany, the actual example of project is realized by designing the WSNs in SDG topology,developing the WSNs end-device, router and coordinator, embedding QoS-MAC protocol and QoSguarantee control routing protocol, and designing the gateway management software whichconnected with DIMS.
     The actual project test and simulation test results indicate that, the basic theory research and thegiven design method in this paper are adaptive to the QoS performance requirements of SDG datatransmission, and also achieved expected goal of WSNs high-performance communication in SDG.
引文
[1] F. Rahimi, A. Ipakchi. Demand Response as a Market Resource Under the Smart GridParadigm[J]. IEEE Transactions on Smart Grid,2010,1(1):82-88.
    [2] NIST Framework and Roadmap for Smart Grid Interoperability Standards Release1.0[S].
    [3]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8.
    [4] European Commission. European smart grids technology platform: vision and strategy forEurope’s electricity networks of t he future [S].
    [5] Office of Electricity Delivery and Energy Reliability, United States Department of Energy.Smart grid investment program[S].
    [6]刘振亚.大力发展特高压技术推动能源利用方式创新与变革[N],科技日报,2009-05-22(3).
    [7]倪敬敏,何光宇,沈沉等.美国智能电网评估综述[J].电力系统自动化,2010,34(8):9-13,66.
    [8]胡婧.坚强智能电网的战略跃升[J].国家电网,2011(1):25.
    [9]黄绪勇,刘沛,苗世洪等.无线传感自组网在电力监控中的应用动态[J].电力系统自动化,2007,31(7):99-103.
    [10]张强,孙雨耕,杨挺等.无线传感器网络在智能电网中的应用[J].中国电力,2010,43(6):31-36
    [11] B. Lu, T. G. Habetler, R. G. Harley, et al. Energy evaluation goes wireless[J], IEEE IndustryApplications Magazine,2007,13(2):17-23.
    [12] V. C. Gungor, F. C. Lambert. A survey on communication networks for electric systemautomation[J]. Computer Network,2006,50(7):877-897.
    [13] GB/T13730-2002,地区电网调度自动化系统[S].
    [14] GB/T13729-2002,远动终端设备[S].
    [15] GB50613-2010,城市配电网规划设计规范[S].
    [16] DLT814-2002,配电自动化系统功能规范[S].
    [17] G ran N. Ericsson. Cyber security and power system communication-essential parts of a SmartGrid Infrastructure[J]. IEEE Transactions on Power Delivery,2010,25(3):1501-1507.
    [18] G ran N. Ericsson. On requirements specifications for a power system communicationssystem[J]. IEEE Transactions on Power Delivery,2005,20(2):1357-1362.
    [19] G ran N. Ericsson. Classification of power systems communications needs and requirements:experiences from case studies at Swedish National Grid[J]. IEEE Transactions on PowerDelivery,2002,17(2):345-348.
    [20]陆一鸣,刘东,柳劲松等.智能配电网信息集成需求及模型分析[J].电力系统自动化,2010,34(8):1-4,96.
    [21]孟昭勇,梁军,李仁俊等.基于地理信息的配电网SCADA系统的研究[J].继电器,1998,26(5):18-21.
    [22]高鸣燕,陆军.电网SCADA/EMS/DMS平台建设技术[J].电力系统自动化,1999,23(14):41-44.
    [23]张岚.配电网自动化通信方式综述[J].电力系统通信,2008,29(186):42-46.
    [24]蔺丽华,刘健.配电自动化系统的混合通信方案[J].电力系统自动化,2001,25(23):52-55.
    [25]刘落飞,韩水保.关于建立华中电力调度系统数据网络的技术探讨[J].电力系统自动化,1996,20(12):50-54.
    [26]徐正山,石玉衡,刘铁铮.华北电网电能计费系统概要及今后发展[J].电力系统自动化,1995,19(9):49-42.
    [27]吴福保,朱金大,白义传. PSTN在农网调度自动化中的应用[J].电力系统自动化,2004,28(22):91-94.
    [28]林功平,王开斌.光纤通信技术在配电网自动化系统中的应用[J].电力系统自动化,1998,22(8):64-66.
    [29]张东华,阮玉,黄晓方.电力配电自动化系统光通信网络设计[J].激光与光电子学进展,1999(S9),41-43.
    [30]吴福保,徐石明,赵勇等.CDPD在配电自动化系统中的应用[J].电力系统自动化,2001,25(10):45-46.
    [31]高锋,董亚波.低压电力线载波通信中信号传输特性分析[J].电力系统自动化,2000,24(9):36-40
    [32]何海波,周拥华,吴昕等.低压电力线载波通信研究与应用现状[J].继电器,2001,29(7):12-16
    [33]赵洪山,刘力丰,杨奇逊.低压电力线扩频载波通信方案[J].电力系统自动化,2001,26(12):49-52
    [34]黄兵,吴成东,曾乃鸿.一个国外已运行的配电自动化系统[J].电力系统自动化,1999,23(18):39-41.
    [35]李惠宇,罗小莉,于盛林.一种基于GPRS的配电自动化系统方案[J].电力系统自动化,2003,27(24):63-66.
    [36]李海滨,冯杏心,冯守沛. GPRS技术在配电变压器通信中的应用[J].电力系统通信,2010,31(211):32-35.
    [37] ZhiXin Tie, ZhaoQing Wang. GPRS-based Fault Monitoring For Distribution Grid [C].2010IEEE/ASME International Conference on Mechatronic and Embedded Systems andApplications, New York:IEEE Press,2010:99-102.
    [38] Zhang Guozhong, Wu Jun, Liu Yi.GSM/GPRS-based real-time monitoring system for electricpower distribution transformer [J]. Process Automation Instrumentation,2009,30(1):42-44.
    [39]徐丙垠,李天友,薛永端.智能配电网与配电自动化[J].电力系统自动化,2009,33(17):38-41,55.
    [40]余贻鑫.面向21世纪的智能配电网[J].南方电网技术研究,2006,2(6):14-16.
    [41] F.J. Molina, et al., Automated Meter Reading and SCADA Application for Wireless SensorNetwork[C], Proceeding of ADHOC-NOW, New York:IEEE Press,2003:223-234.
    [42] P. Rodriguez, et al., Flexible Active Power Control of Distributed Power Generation SystemsDuring Grid Faults[J]. IEEE Trans. on Industrial Electronics,2007,54(5):2583-2592.
    [43] Liu Y, Schulz N.N. Knowldege-Based System for Distribution System Outage Locating UsingComprehensive Information [J]. IEEE Power Engineering Review,2006,22(5):68.
    [44] Guilin Zheng, Yichuan Gao, Lijuan Wang. Realization of Automatic Meter Reading SystemBased on ZigBee with Improved Routing Protocol[C], Proceeding of Power and EnergyEngineering Conference,2010,28-31.
    [45] T. Roberts, Update on Advanced Metering for California’s Large Utilities, in Energy DivisionCalifornia Public Utilities Commission’s presentation[C].Proceeding of CEC Workshop onAdvanced Metering Infrastructure, New York:IEEE Press,2008:1-8.
    [46] S.K. Joo, et al.,Empirical Analysis of the Impact of2003Blackout on Security Values of U.S.Utilities and Electrical Equpipment Manufacturing Firms[J]. IEEE Trans. on Power Sysems,2007,22(3):1012-1018.
    [47] S. Grubic, J. M. Aller, B. Lu, and T. G. Habetler, A Survey on Testing and Monitoring Methodsfor Stator Insulation Systems of Low-Voltage Induction Machines Focusing on Turn InsulationProblems[J], IEEE Trans. on Industrial Electronics,2008,55(12):4127-4135.
    [48] V.C. Gungor, O.B. Akan, I.F. Akyildiz, A Real-Time and Reliable Transport Protocol forWireless Sensor and Actor Networks[J]. in IEEE/ACM Trans. on Networking,2008,16(2):359-370.
    [49] M Di Santo, A Vaccaro, D Villacci, et al. A Distributed Architecture for Online Power SystemsSecurity Analysis[J]. IEEE Trans. on Industrial Electronics,2004,51(6):1238-1248.
    [50] H Ukai, K Nakamura. DSP-and GPS-based synchronized measurement system of harmonics inwide-area distribution system[J]. IEEE Trans. on Industrial Electronics,2003,50(6):1159-1164.
    [51] M. M. Nordman, M. Lehtonen, A Wireless Sensor Concept for Managing ElectricalDistribution Networks[C], Proceeding of Power Systems Conference and Exposition, NewYork:IEEE Press,2004:11198-1206.
    [52] Moghe R., Yi Yang, Lambert F.. Design of a low cost self powered Stick-on current andtemperature wireless sensor for utility assets[C]. IEEE Energy Conversion Congress andExposition. New York:IEEE Press,2010,4453-4460.
    [53]黄绪勇,苗世洪,刘沛等.基于无线传感器网络的配电线路的故障监测的可行性研究[J].继电器,2008,36(8):11-15.
    [54]苗世洪,谌小莉,刘沛等.基于无线传感器网络的配电线路故障定位方案[J].电力系统自动化,2008,32(20):61-66,82.
    [55]苗世洪,谌小莉,黄绪勇等.无线自组传感器网络在变电站自动化中的应用[J].电网技术,2007,31(s2):256-259.
    [56] Y.-K. Huang, A.-C. Pang, and H.-N. Hung, A Comprehensive Analysis of Low-powerOperation for Beacon-Enabled IEEE802.15.4Wireless Networks[J]. IEEE Transactions onWireless communications,2009,8(11):5601–5611.
    [57]郑国强,李建东,周志立.无线传感器网络MAC协议研究进展[J].自动化学报.2008,34(3):305-316.
    [58] Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocols for wireless sensornetworks[C]. Proceeding of the21st Annual Joint Conference of the IEEE Computer andCommunications Societies. New York:IEEE Press,2002:1567-1576.
    [59] S. Singh and C.S. Raghavendra. PAMAS: Power aware multi-access protocol with signallingfor ad hoc networks[J], ACM Computer Communication Review,1998,28(3):5–26.
    [60] Van Dam T, Langendoen K, An adaptive energy-efficient MAC protocol for wireless sensornetworks[C]. Proceedings of the1st International Conference on Embedded Networked SensorSystems. New York:IEEE Press,2003:171-180.
    [61] Olastre J, Hill J, Culler D. Versatile low power media access for wireless sensor networks[C].Proc. of the2nd ACM Conf. on Embedded Networked Sensor Systems,2004:95-107.
    [62] EI-Hoiydi A, Decotignie JD, WiseMAC: An ultra low power MAC Protocol for the downlinkof infrastructure wireless sensor networks[C]. Proceeding of the9th IEEE InternationalSymposium on Computers and Communications, New York:IEEE Press,2004:244-251.
    [63] Rhee N, Warrier A, Aia M, et al. A hybrid MAC for wireless sensor networks[C]. Proceedingof the3th ACM Conference on Embedded Networked Sensor Systems. New York:ACM Press,2005:90-101.
    [64] Liu Y,Elhanany I, Qi H. An energy-efficient QoS-aware media access control protocol forwireless sensor networks[C]. Proceedings of2005IEEE International Conference on MobileAd-hoc and Sensor Systems. New York:IEEE Press,2005:191-193.
    [65] Saxena N, Roy A, Shin J. Dynamic duty cycle and adaptive contention window basedQoS-MAC protocol for wireless multimedia sensor networks[J]. Computer Network.2008,52:2532-2542.
    [66] Kim H, Min S.G. Priority-based QoS MAC protocol for wireless sensor networks[C].Proceedings of IEEE International Symposium on Parallel Distributed Processing. NewYork:IEEE Press,2009:1-8.
    [67] K. Sohrabi, J. Gao, V. Ailawadhi, et al. Protocols for self-organization of a wireless sensornetwork[J]. IEEE Personal Communications,2000,7(5):16-27.
    [68] Qun Li, Aslam J., Rus D. Distributed energy-conserving routing protocols[C]. Proceeding of36th Hawaii International Conference on Systems Sciences,2003,1-10.
    [69] E. W. Dijkstra. A note on two problems in connexion with graphs[J]. Numerische Mathematik.1959,1:269-271.
    [70] Akkaya K, Younis M. Energy and QoS aware routing in wireless sensor networks[J]. ClusterComputing The Journal of Networks Software Tools and Applications,2005,8:179-188.
    [71] Wang X, Ma JJ, Wang S. Distributed particle swarm optimization and simulated annealing forenergy-efficient coverage in wireless sensor networks[J]. Sensors,2007,7(5):628-648.
    [72] Wenzhong Li, Chan, E.Hamdi M.Communication Cost Minimization in Wireless Sensor andActor Networks for Road Surveillance[J]. IEEE Transactions on Vehicular Technology,2011,60(2):618-631.
    [73] T. He, J. Stankovic, C. Lu, et al. SPEED: A Stateless Protocol for Real-Time Communication inSensor Networks[C]. Proceeding of IEEE International Conference Distributed ComputingSystems, New York:IEEE Press,2003:46-55.
    [74] E. Felemban, L. Chang-Gun, E. Ekici. MMSPEED: Multi-path Multi-SPEED protocol for QoSguarantee of reliability and timeliness in wireless sensor networks[J]. IEEE Transactions onMobile Computing,2006,5(6):738-754.
    [75] Zhao L, Kan BQ, Xu YJ, et al. FT-SPEED: A fault-tolerant, real-time routing protocol forwireless sensor networks[C]. Proceedings of2007International Conference on WirelessCommunications, Networking and Mobile Computing. New York:IEEE Press,2007:2531-2534.
    [76] H. Xiaoxia, F. Yuguang. Multi-constrained QoS multi-path routing in wireless sensornetworks[J]. Wireless Networks,2008,14(4):465-478.
    [77] Dhurandher SK, Misra S, Obaidat. MS, et al. An ant colony optimization approach forreputation and quality-of-service-based security in wireless sensor networks[J]. Security andCommunication Networks,2009,2(2):215-224.
    [78] L. Cobo, A. Quintero, S. Pierre. Ant-based routing for wireless multimedia sensor networksusing multiple QoS metrics[J]. Computer Netwroks,2010,54(17):2991-3010.
    [79]王寅,尚购军,任东海.一种基于自适应蚁群系统的传感器网络QoS路由算法[J].传感技术学报,2010,23(2):239-244.
    [80]赵湘宁.无线传感器网络中地理信息路由算法的研究[R].中南大学,2008.
    [81] Zhao J, Govindan R. Understanding packet delivery performance in dense wireless sensornetworks[C]. ACM Sensys'03, New York:ACM Press,2003:1-9.
    [82] Zuniga M, Krishnamachari B. Analyzing the transitional region in low power wirelesslinks[C].Santa Clara,CA,USA: First IEEE International Conference on Sensor and Ad-hocCommunications and Networks,2004:517-526.
    [83] K. Zeng, K. Ren, W. Lou, et al., Energy Aware Efficient Geographic Routing in Lossy WirelessSensor Networks with Environmental Energy Supply[J] Wireless Networks,2009,15(1):39-51.
    [84] Chipara, Z. He, G. Xing, et al. Real-Time Power-Aware Routing in Sensor Networks[C]. Proc.IEEE Int’l Workshop Quality of Service,2006.
    [85] M.M. Or-Rashid, Md.A. Razzaque, M.M. Alam, et al. Multi-Constrained QoS GeographicRouting for Heterogeneous Traffic in Sensor Networks[J]. Inst. of Electronics,Information andComm. Engineers Trans. Comm.2010,91B(8):2589-2601.
    [86]郝晓辰,窦晶晶,刘彬.基于路径损耗的无线传感器网络分布式拓扑控制算法[J].软件学报,2009,20(12):3213-3222.
    [87]孙佩刚,陈燕,王琳.基于链路质量的无线传感器网络路由量度研究[J].系统仿真学报,2008,20(7):1928-1944.
    [88]黄盛.智能配电网通信业务需求分析及通信方案[J].电力系统通信,2010,31(212):10-13.
    [89] Wireless Medium Access Control and Physical Layer Specifications for Low-Rate WirelessPersonal Area Networks, IEEE Std.802.15.4[S].
    [90]但刚,赵云龙.城市中压配电网接线方式及配电自动化探讨[J].华北电力技术,2007(1):18-21.
    [91]何仰赞,温增银.电力系统分析(上册)(M).华中科技大学出版社.2002.1.
    [92] B. latre, PD Mil, I Moerman. Throughput and Delay Analysis of Unslotted IEEE802.15.4[J].Journal of Networks,2006,1(1):20-28.
    [93] C.Y. Jung, H.Y. Hwang, D.K. Sung, et al. Enhanced Markov Chain Model and ThroughputAnalysis of the Slotted CSMA/CA for IEEE802.15.4Under Unsaturated Traffic Conditions[J].IEEE Trans. on Vehicular Technology,2009,58(1):473-378.
    [94] J He, Z Tang, HH Chen, et al. An accurate and scalable analytical model for IEEE802.15.4slotted CSMA/CA networks[J]. IEEE Trans. on Wireless Communications,2009,8(1):440-448
    [95] X Ling, Y Cheng, JW Mark, et al. A Renewal Theory Based Analytical Model for theContention Access Period of IEEE802.15.4MAC[J]. IEEE Trans on Wireless Communications,2008,7(6):2340-2349.
    [96] Scalable Network Technologies, Inc., http://www.scalable-networks.com/
    [97] T. Melodia, D. Pompili, I.F. Akyildiz. On the Interdependence of Distributed Topology Controland Geographical Routing in Ad Hoc and Sensor Networks[J]. IEEE J. Selected Areas inComm.2005,23(3):520-532.
    [98] T.L. Lim, M. Gurusamy. Energy Aware Geographical outing and Topology Control to ImproveNetwork Lifetime in ireless Sensor Networks. IEEE Int’l Conf. Broadband etworks. NewYork:IEEE Press,2005:829-831.
    [99] S. Wu,.S. Candan. ower-Aware Single-and Multipath eographic Routing in SensorNetworks[J]. Ad Hoc Networks,2007,5(7):974-997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700