基于活性焦改性协同脱除二氧化硫和汞机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种燃煤烟气污染物排放控制技术中,采用多种污染物综合控制技术实现二氧化硫和汞排放协同控制是当今污染物控制领域的重要发展方向。但由于目前还未有一种完善的控制体系能达到SO2与汞同时高效脱除,究其原因是缺乏对相关机理的深入了解。本文结合相关国家项目的支持,对协同脱除SO2与汞的反应特性及反应机理进行了深入系统的试验和机理研究。
     本文从单种污染物脱除机理入手,以活性焦为研究对象,综合采用固定床活性焦S02与汞协同脱除机理试验台及热重分析对活性焦对SO2与汞协同吸附及再生过程进行了系统的实验研究。通过试验研究表明,活性焦脱硫脱汞主要是通过活性焦表面带有的含氧官能团作为氧化吸附汞和SO2的活化中心,烟气中的O吸附到活性焦表面形成化学吸附态O可以使Hg0氧化成HgO,SO2氧化成S03,在有水分的条件下形成硫酸而易被脱除。但SO2与汞会在活性焦表面产生竞争吸附,高浓度的SO2会导致脱汞效率的降低。
     通过以上研究发现,O2是SO2与汞的吸附氧化过程中举足轻重的反应组分,当反应系统中氧气浓度较低时,SO2与汞吸附效率较低。因此,在实际工业应用中,SO2与汞的协同吸附效率受到烟气中氧含量的限制,而烟气中的氧含量较低,一般仅为4%-5%,因而十分有必要开发对O2依赖性较弱的新型吸附剂。同时,急需解决高浓度的SO2条件下低汞吸附性能问题。
     采用浸渍法制备了改性活性焦吸附剂——Ce02/AC催化吸附剂,通过BET、XRD、SEM等吸附剂表征,发现制备的吸附剂具有较大的比表面积,其中负载5%Ce02的活性焦表面负载的Ce分散度较高,活性组分与载体之间相互作用较强。负载过程可以氧化AC表面,生成更多内酯和羰基官能团。改性后的活性焦即使在低浓度氧的情况下也能保有较高SO2和汞吸附效率,主要是因为Ce02有着很强的储存和释放O的能力。同时,在SO2存在的条件下,Ce02可以很大地增强活性焦的汞吸附效率,SO2浓度为500ppm时,Ce02/AC比新鲜活性焦的Hg0脱除效率提高了50%。这是因为SO2在Ce02的催化氧化下生成了适宜吸附零价汞的含硫官能团,可以与部分吸附态的Hg生成HgSO4,增强了Hg的氧化吸附。基于以上结论,进一步得出吸附剂表面发生的汞与SO2吸附氧化主要发生在吸附态的Hg0、吸附态的SO2和吸附态的O2之间。
     基于试验研究结果,结合机理分析,针对固定床反应器,运用气固催化反应动力学方法进行分析研究,考虑多种污染物协同脱除的主要影响因素,根据吸附理论、扩散传质、质量平衡、吸附速率等方面的内容建立了固定床吸附剂协同脱除SO2和Hg反应器内浓度分布的数学模型。结果表明,SO2和Hg吸附过程既包括化学吸附,也包括物理吸附。SO2和Hg协同吸附的关键步骤是吸附剂对烟气中O的捕捉能力。SO2的反应速率常数要比Hg的反应速率常数大一个数量级,这也导致了SO2和汞在吸附剂表面形成竞争吸附,而SO2更易被吸附剂捕捉。为了获得较大的反应速率,高效的汞和SO2协同脱除吸附剂对反应组分应具有较强的吸附能力,以减少吸附剂的使用量。
     以负载CeO2的活性焦为研究对象,采用热脱附为再生手段,通过热重分析,考察了热脱附再生对Ce02/AC性能的影响以及SO2和Hg的解吸附规律。结果表明:Ce02/AC再生后释放出的气体形态为SO2和Hg0,最佳联合再生温度应定在320℃以上。但再生温度越高,二次汞吸附效率就越低。根据Ce02/AC表面化学性质检测,其二次脱硫脱汞效率随再生次数以及再生温度的增加而降低的原因可以归为AC表面的碳在再生过程中受到烧蚀和氧化而,致使表面活性成分Ce02减少以及表面酸性官能团分解。
In different kinds of environmental pollution control technologies in coal-fired flue gas, the combined removal SO2/Hg technology in a complete single process is considered to be the potential developing direction. Howerver, it hasn't been well developed for the combined removal SO2/Hg technology with high efficiency. The reason is the lack of understanding of relevant mechanisms. In this paper, with the support of relevant national projects, the character and michanism of combine SO2/Hg control technology have been researched systematicly.
     At the first, single plutant removal mechanism of activated coke (AC) was researched using SO2/Hg combine control fixed-bed system. And then the SO2/Hg regeneration mechanism of AC was researched using TG analysis. The results showed that the key step of Hg capture was the oxidation of Hg0. The O2containing functional group and chemi-adsorbed O2on the surface of AC was the activation center for Hg0oxidation, which can oxidize SO2and Hg0to SO3and HgO. There would be competitive adsorption between SO2and mercury on the surface of AC, high concentration of SO2could cause low Hg0removal efficiency.
     From these results above, O2is considered to be the essencial reaction component during SO2and Hg0oxidation and adsorption. SO2and Hg0removal efficiency was low with the low concentration of O2, which means the SO2and Hg0removal efficiency is limited by the O2concentration in flue gas. The O2concentration in flue gas is4%~5%. It's necessary to develop the new sorbent for SO2and Hg0removal, which is efficient under low O2concentration. Moreover, the problem of low Hg0removal efficiency under the high concentration of SO2should be solved.
     Cerium oxide supported on AC (CeO2/AC) were synthesized by an impregnation method for SO2and Hg0removal in simulated coal-fired flue gas. The sorbents were characterized by BET, XRD and SEM. The sorbents have large surface ares and the5%CeO2impregnated AC with highly dispersed cerium oxides can be obtained. The CeO2impregnation method could oxdize the AC surface and bring large amount of oxygen surface groups. CeO2/AC has the high SO2and Hg0removal efficiency even under low O2concentration due to its storing or releasing O2ability. Moreover, the results showed that SO2had great promotion on Hg0removal efficiency with the existence of CeO2. The Hg0capture capability of CeO2/AC was50%higher than that of AC when the SO2concentration was500ppm. In the case of CeO2/AC, the interaction between SO2and CeO2/AC is mainly chemisorption due to the catalysis of CeO2.The formed sulfur groups on the CeO2/AC surface favor the absorbtion of Hg0to form HgSO4, which inhance the oxidation of Hg0. Base on the conclusion above, the SO2and Hg0adsorption and oxidation on the surface of AC is among the adsorbed Hg0/adsorbed SO2and adsorbed O2.
     Based on the experimental results, a model of SO2and Hg0adsorption process based on adsorption theory, diffusion mass transfer, mass balance, the adsorption rate over CeO2/AC was developed. The results implies that both chemisorption and physisorption played an important role in removing SO2and Hg0. The key step of simutanious SO2and Hg0adsorption is the ability to O2capture in flue gas. The reaction rate constant of SO2is one order bigger than that of Hg0, which lead to the competitive adsorption between SO2and Hg0on the surface of sorbent and SO2was easier to capture. Efficient adsorbent for SO2and Hg0removal should have a strong adsorption capacity for each component in order to get a larger reaction rate, which can reduce the use of adsorbent.
     The characteristic of SO2and mercury desorption of CeO2/AC was investigated during heating regeneration process in N2atmosphere though TG analysis. The results showed the best regeneration temperature of SO2and Hg0should be set above320℃. The mercury removal efficiency decreased with increasing regeneration times and temperature due to CeO2loss during the carbon ablation and oxidation as well as desorption of surface acid functional group during the regeneration.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2009[M].北京:中国统计出版社,2009.
    [2]中华人民共和国工业和信息化部http://www.miit.gov.cn[Z].2010.
    [3]徐亮.2010年、2015年中国煤炭需求预测研究[J].中国煤炭.2010(5):17-21.
    [4]中华人民共和国环境保护部. 《火电厂大气污染物排放标准》 (二次征求意见稿)2011[201 1-06-06].
    [5]韩国刚,曲富国,戴文楠,等.中国2015年SO2排放总量宏观控制目标研究[J].电力科技与环保.2010(2):1-4.
    [6]Jiang X, Nie Y, Li C, et al. Imidazolium-based alkylphosphate ionic liquids-A potential solvent for extractive desulfurization of fuel[J]. FUEL.2008,87:79-84.
    [7]国家环保部.2009年中国环境状况公报[R].,2009.
    [8]中华人民共和国环境保护部.“两控区”污染防治“十五”计划中期评估结果,2004,[6-11].
    [9]中华人民共和国环境保护部http://www.zhb.gov.cn/[Z].2010:2011.
    [10]Epa U S. Mercury Study Report to Congress, Volume I:Executive Summary 1997[R].,1997.
    [11]Dg S, Jm H, Y W, et al. Anthropogenic mercury emissions in China[J].2005.
    [12]张明泉,朱元成,邓汝温.中国燃煤大气排放汞量的估算与评述[J]AMBIO-人类环境杂志.2002,31(6):482484.
    [13]Pacyna E G, Pacyna J M, Sundseth K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. ATMOSPHERIC ENVIRONMENT.2010,44:2487-2499.
    [14]任建莉,周劲松,骆仲泱,等.燃煤电站汞排放量的预测模型[J].动力工程.2005,25(4):587-592.
    [15]胡长兴,周劲松,何胜,等.全国燃煤电站汞排放量估算[J].热力发电.2010(2):1-4.
    [16]王爱华,蔡九菊,王连勇,等.洁净煤技术进展与展望[J].节能.2004(5):6-9.
    [17]成玉琪,俞珠峰.中国洁净煤技术发展现状及发展思路[J].东方锅炉.2000(2):22-26.
    [18]徐龙君,邹德均,程昱娟.正丙醇脱煤中有机硫的研究[J].煤炭转化.2006,29(4):13-16.
    [19]王英刚.烟道气生物脱硫技术研究进展[J].环境保护科学.2009,35(4):22-25.
    [20]石伟.火力发电厂常规脱硫与生物脱硫技术[J].中国科技信息.2009(19):42-43.
    [21]徐宏祥,陈宣辰.煤炭生物脱硫技术的研究及其应用[J].煤炭技术.2009,28(7):159-160.
    [22]韩立鹏,李天祥.燃煤电厂脱硫技术[J].山西化工.2007(4):42-44.
    [23]邓新云,肖怀秋,禹练英.我国燃煤烟气脱硫技术研究进展[J].广州化工.2008(1):24-27.
    [24]Haase P. Mercury Control for Coal-Fired Power Plants[J]. EPRI Journal.2005,20.
    [25]Epri. http://www.epri.com, [Z].2010:2011.
    [26]边蔚,任爱玲.燃煤电厂汞排放控制技术的研究进展[J].河北工业科技.2008,25(6):401-404.
    [27]Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology.2003,82(2-3):89-165.
    [28]Hoffart A, Seames W, Kozliak E, et al. A two-step acid mercury removal process for pulverized coal[J]. FUEL.2006,85:1166-1173.
    [29]Wang M, Keener T C, Khang S J. The effects of coal volatility on mercury removal from bituminous coal during mild pyrolysis[J]. Fuel Processing Technology.2000,67:147-161.
    [30]Engineers I K. Topical Report No.5 Trace Elemental Removal Study. Prepared for U.S. Department of Energy's Pittsburgh Technology Center[R]. Fairfax, VA,1995.
    [31]Liu K L, Gao Y, Riley J T. An investigation of mercury emission from FBC systems fired with high-chlorine coals[J]. Energy&Fuels.2001,15(5):1173-1180.
    [32]周劲松,午旭杰,高洪亮,等.循环流化床锅炉汞排放及控制试验研究[J].热力发电.2004,33(1):72-75.
    [33]Miller S J, Dunham G E, Olson E S, et al. Flue gas effects on a carbon-based mercury sorbent[J]. Fuel Processing Technology.2000,65:66343-66363.
    [34]赵毅,于欢欢,贾吉林,等.烟气脱汞技术研究进展[J].中国电力.2006,39(12):59-62.
    [35]Mercury Control Options for Coal-Fired Power Plants; Clean Air Network Fact Sheet[R]., 1999.
    [36]Meit R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization[J]. Journal of Water, Air,& Soil Pollution.1991,56:21-23.
    [37]Senior C L, Helble J J, Sarofim A F. Predicting the speciation of mercury emissions from coal-fired power plants[Z]. McLean, VA:2000.
    [38]Eswaran S, Stenger H. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts[J]. Energy & Fuels.2005,19:2328-2334.
    [39]Laudal D. Pilot-Scale Evaluation of the Impact of Selective Catalytic Reduction for NO, on Mercury Speciation[R]. Palo Alto, CA:U.S. Department of Energy National Energy Technology Laboratory, U.S. Environmental Protection Agency, Ontario Power Generation, EPRI,2000.
    [40]Lee C W, Srivastava R, Ghorishi S. Study of speciation of mercury under simulated SCR NOx emission control conditions[Z].2003.
    [41]Yang H, Xu Z, Fan M, et al. Adsorbents for capturing mercury in coal-fired boiler flue gas.[J]. J Hazard Mater.2007,146(1-2):1-11.
    [42]Poulston S, Granite E J, Pennline H W, et al. Metal sorbents for high temperature mercury capture from fuel gas[J]. Fuel.2007,86(14):2201-2203.
    [43]Yamaguchi A, Akiho H, Ito S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology.2007.
    [44]Blanco F, Garcia M P, Ayala J, et al. The effect of mechanically and chemically activated fly ashes on mortar properties[J]. Fuel.2006,85:2018-2026.
    [45]Olson E S, Miller S J, Sharma R K, et al. Catalytic effects of carbon sorbents for mercury capture[J]. Journal of Hazardous Materials.2000,74:61-79.
    [46]Presto A A, Granite E J, Karash A, et al. A kinetic approach to the catalytic oxidation of mercury in flue gas[J]. ENERGY.2006,20:1941-1945.
    [47]Vidic R D, Siler D P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents[J]. CARBON.2001,39:3-14.
    [48]赵毅,刘松涛,马宵颖,等.改性粉煤灰吸收剂对单质汞的脱除研究[J].中国电机工程学报.2008(20):55-60.
    [49]Behrooz G S, Singer C F, Jozewicz W S, et al. Simultaneous control of Hg-0, SO2, and NOx by novel oxidized calcium-based sorbents[J]. JOURNAL OF THE AIR.2002,52:273-278.
    [50]杨立国,段钰锋,王运军,等.新式整体半干法烟气脱硫技术的脱汞实验研究[J].中国电机工程学报.2008(2):66-71.
    [51]徐振刚,李兰延,吴涛,等.活性焦脱硫脱硝脱汞一体化技术[J].煤质技术.2009,3:46-49.
    [52]赵毅,陈周燕,汪黎东,等.湿式烟气脱硫系统同时脱汞研究[J].环境工程学报.2008,2(1):64-69.
    [53]任建莉,周劲松,骆仲泱,等.钙基类吸附剂脱除烟气中气态汞的试验研究[J].燃料化学学报.2006,34(5):557-561.
    [54]况敏,杨国华,胡文佳,等.燃煤电厂烟气脱汞技术现状分析与展望[J].环境科学与技术.2008,31(5):66-70.
    [55]S C, D L, S L. Effects of metal chelate on wet flue gas scrubbing chemistry[J]. Env Sci&Tech.1983,17.
    [56]刘守军,刘振宇.CuO/AC脱除烟气中S02机理的初步研究[J].煤炭转化.2000,23(2):67-71.
    [57]C Muller, The wet and dry gaseous scrubber divisions of the institute of clean air companies inc (ICAC). Scrubber myths and realities[J]. Power Engineering.1995,99(1).
    [58]王学海,方向晨.烟气同时脱硫脱硝的研究进展[J].当代化工.2008,37(2):197-200.
    [59]邱鸿恩,吴丹,王睿.烟气同时脱硫脱硝技术进展[J].化学工业与工程技术.2004,25(6):1-5.
    [60]宋增林,王丽萍,程璞.火电厂锅炉烟气同时脱硫脱硝技术进展[J].热力发电.2005,34(2):6-9.
    [61]Haslbeck J L, Neal L G, Ma W T. Development status of the VOXSO combined NOx/ SO2 flue gas treatment process[J]. Integrated Environmental Control.1998,3.
    [62]Mieczyslaw A Gostomczyk, Wojciech Jozewicz. Simultaneous control of SO2, NOx, and mercury emissions from coal-fired boilers[R]. Washington, DC, USA,2004.
    [63]Lee J, Ju Y, Keener T C, et al. Development of Cost-Effective Noncarbon Sorbents for Hg0 Removal from Coal-Fired Power Plants[J]. Environ. Sci. Technol.2006,40(8):2714-2720.
    [64]Miller S, Dunham G, Olson E, et al. Flue gas effects on a carbon-based mercury sorbent[J]. Fuel Processing Technology.2000,65:343-363.
    [65]Li Y, Lee C, Gullett B. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J]. FUEL.2003,82:451-457.
    [66]Huggins F, Huffman G, Dunham G, et al. XAFS examination of mercury sorption on three activated carbons[J]. ENERGY & FUELS.1999,13:114-121.
    [67]Staudt J E, Jozewicz W. Performance and cost of mercury and multipollutant emission control technology applications on electric utility boilers[R]. U. S. EPA,2003.
    [68]梁大明,熊银伍,孙仲超,等.活性焦干法脱除烟气中汞的研究[Z].北京:2007.
    [69]梁大明,熊银伍,杜铭华,等.改性活性焦脱除烟气中汞的实验研究[J].中国电机工程学报.2007.
    [70]Wu J, Cao Y, Pan W. Evaluation of mercury sorbents in a lab-scale multiphase flow reactor, a pilot-scale slipstream reactor and full-scale power plant [J]. Chemical Engineering Science. 2008,63:782-790.
    [71]Zhuang Y, Laumb J, Liggett R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. FUEL PROCESSING TECHNOLOGY.2007,88:929-934.
    [72]Diamantopoulou I, Skodras G, Sakellaropoulos G P. Sorption of mercury by activated carbon in the presence of flue gas components[J]. FUEL PROCESSING TECHNOLOGY.2010, 91:158-163.
    [73]Feng W, Borguet E, Vidic R D. Sulfurization of a carbon surface for vapor phase mercury removal-Ⅱ:Sulfur forms and mercury uptake[J]. CARBON.2006,44:2998-3004.
    [74]Feng W, Borguet E, Vidic R D. Sulfurization of carbon surface for vapor phase mercury removal-Ⅰ:Effect of temperature and sulfurization protocol[J]. CARBON.2006,44:2990-2997.
    [75]胡长兴.燃煤电站汞排放及活性炭稳定吸附机理研究[D].浙江大学,2007.
    [76]高洪亮.模拟燃烧烟气中汞形态转化及脱除技术的实验及机理研究[D].浙江大学,2004.
    [77]Reed G P, Ergudenler A, Grace J R, et al. Control of gasifier mercury emissions in a hot gas filter:the effect of temperature[J]. FUEL.2001,80(5):623-634.
    [78]Olson D, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. FUEL PROCESSING TECHNOLOGY.2000,65:393-405.
    [79]G Z, Sun S, D Y, et al. The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. [J]. Carbon.2008,46:196-205.
    [80]Olson E S, Miller S J, Sharma R K, et al. Catalytic effects of carbon sorbents for mercury capture[J]. JOURNAL OF HAZARDOUS MATERIALS.2000,74(1-2):61-79.
    [81]Miller S J, Dunham G E, Olson E S, et al. Flue gas effects on a carbon-based mercury sorbent[J]. FUEL PROCESSING TECHNOLOGY.2000,65:343-363.
    [82]许绿丝.改性处理活性炭纤维吸附氧化脱除SO2/NOx/Hg的研究[D].华中科技大学,2007.
    [83]Li Y H, Lee C W, Gullett B K. The effect of activated carbon surface moisture on low temperature mercury adsorption[J]. CARBON.2002,40(1):65-72.
    [84]Yh L, Cw L, Bk G. The effect of activated carbon surface moisture on low temperature mercury adsorption[J]. CARBON.2002,40(1):65-72.
    [85]Laumb J D, Benson S A, Olson E A. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry[J]. Fuel Processing Technology.2004,85:577-585.
    [86]Li Y, Murphy P, Wua C. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite[J]. FUEL PROCESSING TECHNOLOGY.2008,89: 567-573.
    [87]Norton G A, Yang H, Brown R C, et al. Sorption of mercury by activated carbon in simulated post combustion conditions[J]. FUEL.2003,82:107-116.
    [88]Diamantopoulou I, Skodras G, Sakellaropoulos G P. Sorption of mercury by activated carbon in the presence of flue gas components[J]. Fuel Processing Technology.2010,91: 158-163.
    [89]Es O, Sj M, Rk S, et al. Catalytic effects of carbon sorbents for mercury capture[J]. JOURNAL OF HAZARDOUS MATERIALS.2000,74:61-79.
    [90]任建莉,周劲松,骆仲泱,等.活性碳吸附烟气中气态汞的试验研究[J].中国电机工程学报.2004(2):172-176.
    [91]Jing L Q, Xu Z L, Sun X J. The surface properties and photocatalytic activities of ZnO ultrafine particles.[J]. Applied Surface Science.2001,180(3/4):308-314.
    [92]袁一.化学工程师手册[M].2001:448-550.
    [93]Lizzio A, Debarr J. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char[J]. FUEL.1996,75(13):1515-1522.
    [94]Li J, Yan N, Qu Z, et al. Catalytic Oxidation of Elemental Mercury over the Modified Catalyst Mn/alpha-Al2O3 at Lower Temperatures[J]. ENVIRONMENTAL SCIENCE.2010,44: 426-431.
    [95]Poulston S, Granite E J, Pennline H W, et al. Metal sorbents for high temperature mercury capture from fuel gas[J]. FUEL.2007,86:2201-2203.
    [96]Pitoniak E, Wu C Y, Mazyck D W. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal[J]. ENVIRONMENTAL SCIENCE.2005, 39:1269-1274.
    [97]He S, Zhou J, Zhu Y, et al. Mercury Oxidation over a Vanadia-based Selective Catalytic Reduction Catalyst[J]. ENERGY.2009,23:253-259.
    [98]Liotta L F, Di Carlo G, Longo A, et al. Support effect on the catalytic performance of Au/Co3O4-CeO2 catalysts for CO and CH4 oxidation[J]. CATALYSIS TODAY.2008,139: 174-179.
    [99]Zheng X, Zhang X, Wang X, et al. Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation[J]. APPLIED CATALYSIS A-GENERAL.2005,295:142-149.
    [100]Tian L, Li C, Li Q, et al. Removal of elemental mercury by activated carbon impregnated with CeO2[J]. FUEL.2009,88:1687-1691.
    [101]Stobinski L, Lesiak B, Kover L, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods[J]. JOURNAL OF ALLOYS AND COMPOUNDS.2010,501(1):77-84.
    [102]Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J]. FUEL.2003,82:451-457.
    [103]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. APPLIED CATALYSIS B-ENVIRONMENTAL.2004,51(2):93-106.
    [104]Serrano-Ruiz J C, Ramos-Fernandez E V, Silvestre-Albero J, et al. Preparation and characterization of CeO2 highly dispersed on activated carbon[J]. MATERIALS RESEARCH BULLETIN.2008,43(7):1850-1857.
    [105]Fan X, Li C, Zeng G, et al. Removal of Gas-Phase Element Mercury by Activated Carbon Fiber Impregnated with CeO2[J]. ENERGY & FUELS.2010,24:4250-4254.
    [106]Hu C X, Zhou J S, He S, et al. Effect of chemical activation of an activated carbon using zinc chloride on elemental mercury adsorption[J]. FUEL PROCESSING TECHNOLOGY.2009, 90(6):812-817.
    [107]Tian L H, Li C T, Li Q, et al. Removal of elemental mercury by activated carbon impregnated with CeO2[J]. FUEL.2009,88(9):1687-1691.
    [108]R Y, Dt L, L T, et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption[J]. FUEL.2004,83:2401-2409.
    [109]Fb M, R C, Tr C, et al. Modeling mercury removal by sorbent injection[J]. JOURNAL OF THE AIR.1999,49:694-704.
    [110]Scirc S, Minicn S, Crisafulli C, et al. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts[J]. APPLIED CATALYSIS B-ENVIRONMENTAL.2003,40: 43-49.
    [111]Vannice M A. An analysis of the Mars-van Krevelen rate expression[J]. CATALYSIS TODAY.2007,123:18-22.
    [112]I D, Kt L, Ah K, et al. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal[J]. Journal of Hazardous Materials. 2009,166(2-3):1556-1559.
    [113]Waqif M, P. A, Saur O, et al. Use of CeO2-Al2O3 as a SO2 sorbent Solid State Ionics[J]. 1997,95:163-167.
    [114]C B, E B, A G, et al. Interaction of mercury vapour with thin films of gold[J]. APPLIED SURFACE SCIENCE.1996,103(2):107-111.
    [115]Hutson N D, Attwood B C, Scheckel K G. XAS and XPS characterization of mercury binding on brominated activated carbon[J]. ENVIRONMENTAL SCIENCE.2007,41(5): 1747-1752.
    [116]Diamantopoulou I, Skodras G, Sakellaropoulos G P. Sorption of mercury by activated carbon in the presence of flue gas components[J]. FUEL PROCESSING TECHNOLOGY.2010, 91(2):158-163.
    [117]Ochiai R, Uddin M A, Sasaoka E, et al. Effects of HCl and SO2 Concentration on Mercury Removal by Activated Carbon Sorbents in Coal-Derived Flue Gas[J]. ENERGY.2009,23: 4734-4739.
    [118]Mochida I, Miyamoto S, Kuroda K, et al. Adsorption and adsorbed species of SO2 during its oxidative removal over pitch-based activated carbon fibers[J]. ENERGY & FUELS.1999, 13(2):369-373.
    [119]Ho T C, Kobayashi N, Lee Y K. Modeling of mercury sorption by activated carbon in a confined, a semi-fluidized, and a fluidized bed[J]. WASTE MANAGEMENT.2002,22(4): 391-398.
    [120]Flora J, Hargis R A, O'Dowd W J, et al. Modeling sorbent injection for mercury control in baghouse filters:I-Model development and sensitivity analysis[J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION.2003,53(4):478-488.
    [121]Meserole F B, Chang R, Carey T R. Modeling mercury removal by sorbent injection[J]. Journal of Air & Waste Management Association.1999,49(6):694-704.
    [122]Lee T G. Study of mercury kinetics and control methodologies in simulates combustion flue gases [D]. University of Cincirnnati,1999.
    [123]任建莉,周劲松,骆仲泱,等.模拟烟气中汞吸附系统的数学模型[J].浙江大学学报(工学版).2006(10):1827-1832.
    [124]李作骏编著.多相催化反应动力学基础[M].北京:北京大学出版社:275.
    [125]Guo S, Yang J, Liu Z, et al. Behavior of mercury release during thermal decomposition of coals[J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING.2009,26:560-563.
    [126]K S. Let them eat fish:hold the mercury[J]. CHEMICAL PHYSICS LETTERS.2004,386: 65-69.
    [127]Wang J, Yang J, Liu Z. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. FUEL PROCESSING TECHNOLOGY.2010,91:676-680.
    [128]刘守新,陈曦,张显权.活性炭孔结构和表面化学性质对吸附硝基苯的影响[J].环境 科学.2008,29(5):1192-1196.
    [129]郭彦霞,刘振宇,刘清雅,等.V205/AC同时脱硫脱硝催化剂在氨气氛中再生时的碳烧蚀机理[J].催化学报.2007,28(6):514-520.
    [130]Stavropoulos G G, Samaras P, Sakellaropoulos G P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J]. JOURNAL OF HAZARDOUS MATERIALS.2008,151:414-421.
    [131]王德荣,林彦奇.电厂燃煤锅炉同时脱硫脱氮技术与分析[J].环境保护科学.2002(3):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700