沥青/无机纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面在服役过程中易产生车辙、裂缝、坑槽、剥落等病害,这些病害的产生严重影响了沥青路面的使用性能和服役年限。已有的研究表明,导致沥青路面产生病害的主要原因之一就是沥青的老化,即沥青路面在服役的过程中,受热、氧、光和水等环境因素的作用,沥青将发生热氧老化和光氧老化。由此可见,采用合适的耐老化改性剂以改善沥青的耐老化性能,对于延长沥青路面的使用寿命具有重要的意义。聚合物/无机纳米复合材料具有的独特力学、热学、阻隔、光学、电磁学等性能,使得添加无机纳米材料已成为聚合物高性能化和功能化的重要手段。无机纳米材料主要包括层状硅酸盐(如蒙脱石Mt、蛭石、累托石REC等)和无机纳米粒子(如纳米SiO2、纳米TiO2、纳米ZnO等)。近些年来,沥青/Mt纳米复合材料已受到国内外的广泛关注,研究表明Mt对沥青的物理性能、流变性能和抗老化性能有良好的改善效果,并且有机插层改性Mt的作用更为明显。而目前将其他无机纳米材料用于沥青改性的研究较少。系统研究不同无机纳米材料对沥青的改性作用以及二者的相互作用机理,对于改善沥青的耐老化性能、拓宽沥青改性剂的种类和推动纳米技术在道路材料中的应用具有重要意义。
     本文选用不同结构类型的插层剂对层状硅酸盐进行插层改性和采用硅烷偶联剂对无机纳米粒子进行表面修饰,制备了不同组成和结构的无机纳米材料;研究了插层改性和表面修饰前后不同无机纳米材料对沥青物理、热氧和光氧老化性能的影响;采用X-射线衍射(XRD)、傅里叶红外光谱(FTIR)和原子力显微镜(AFM)等测试手段对老化前后不同沥青/无机纳米复合材料的化学结构和微观结构进行了表征,探讨了无机纳米材料对沥青的改性机理以及沥青/无机纳米复合材料的耐老化机理。主要研究结论如下:
     (1)十六烷基三甲基溴化铵(CTAB)和十八烷基二甲基苄基氯化铵(ODBA)均可增大Mt、REC和膨胀蛭石(EVMt)的层间距。与Mt和REC相比,EVMt层间更易撑开,层间距同比增大了1.69nm~3.16nm。插层剂在三种层状硅酸盐的层间排布形式各异,主要表现为:倾斜单层、直立或倾斜双层。有机化改性过程中,层状硅酸盐中有机物含量在很大程度上取决于其阳离子交换容量的大小。
     (2)将沥青/层状硅酸盐纳米复合材料溶于三氯乙烯中,对混合溶液进行过滤,分离出其中的层状硅酸盐,然后进行XRD测试,将此测试结果与沥青/层状硅酸盐纳米复合材料本身的XRD测试数据相结合能更准确的反映不同沥青/层状硅酸盐纳米复合材料的结构特征,避免了仅对复合材料采用XRD测试过程中误差掩盖的真实结构信息。结果表明,Mt和EVMt与沥青复合之后形成的是相分离型的复合结构,ODBA-Mt、REC和ODBA-REC与沥青复合之后形成的是插层型的纳米复合结构,而ODBA-EVMt与沥青形成的则是半剥离型的纳米复合结构。
     (3)有机化插层改性显著增强了Mt和REC与沥青的相容性,离析管上下两部分的软化点差值和层状硅酸盐含量差别均明显减小,但其对EVMt与沥青的相容性无明显改善作用。相比于空白样,不同沥青/层状硅酸盐纳米复合材料物理性能的变化趋势均表现为软化点和粘度增大,而针入度和10℃延度变化差别较大。与REC和EVMt相比,Mt加入后沥青的软化点和粘度增加更大,并且Mt的加入提高了沥青的10℃延度,经过有机化改性,这种作用更为明显,而REC和EVMt插层改性前后对沥青的10℃延度影响较小。
     (4) Mt、REC和EVMt三种层状硅酸盐的加入均可降低沥青薄膜烘箱老化(TFOT)和压力老化箱(PAV)老化之后的粘度老化指数和软化点增量,提高沥青的延度保留率。相比于REC和Mt,沥青/EVMt复合材料在TFOT和PAV老化之后显示出更低的粘度老化指数、软化点增量和更高的延度保留率。EVMt的有机化改性使得沥青/EVMt纳米复合材料的耐热氧老化性能得到了进一步提高,但对其耐紫外老化性能无明显改善作用。插层剂的组成和结构对沥青/EVMt复合材料的耐老化性能影响较大,相比于CTAB-EVMt,沥青/ODBA-EVMt纳米复合材料在TFOT、PAV和长期热氧老化后显示出更低的质量变化率和粘度老化指数,这归因于ODBA-EVMt的加入显著抑制了沥青在热氧老化过程中羰基的生成,减缓了体系的胶体结构由溶胶-凝胶型向凝胶型转变而呈现单相化的趋势。
     (5)紫外老化之后,沥青/Mt复合材料较空白样显示出较低的粘度老化指数和软化点增量,而REC和EVMt的加入对沥青的紫外老化性能无明显改善作用。原子力显微镜观测表明,由于不同组分结构和刚性的差异,沥青呈现出以沥青质为核心的分散相和以轻组分为主的连续相。紫外老化过程中,沥青中的分散相表现出明显的缔合作用,使得沥青硬化,最终导致性能的劣化。而Mt的加入有效抑制了沥青紫外老化过程中分散相的缔合作用,减缓了沥青的硬化,显著改善了沥青的耐紫外老化性能。相比于Mt,沥青/ODBA-Mt纳米复合材料紫外老化之后体系中的两相结构更为明显,并且粘度老化指数和软化点增量也进一步降低,表现出更好的耐紫外老化性能。
     (6)红外光谱研究表明,硅烷偶联剂已通过化学键接到了三种无机纳米粒子的表面,不同无机纳米粒子表面偶联剂含量大小为:DB-560-nano-ZnO> DB-560-nano-SiO2>DB-560-nano-TiO2。无机纳米粒子的表面修饰显著增强了其与沥青的相容性,离析软化点差值和离析管中无机纳米粒子的含量差值明显减小。表面修饰对纳米ZnO与沥青的相容性及其在沥青中的分散性改善作用最为明显。无机纳米粒子的加入均可降低沥青的针入度和延度,提高沥青的粘度和软化点,但是表面修饰之后无机纳米粒子对沥青的这种作用有不同程度的降低,其中降低的程度以DB-560-nano-ZnO最为显著。
     (7)不同无机纳米粒子的加入均可以降低沥青紫外老化之后的粘度老化指数和软化点增量,其中以沥青/纳米ZnO复合材料的耐紫外老化性能最为明显。这归因于三种无机纳米粒子对紫外光屏蔽作用的差异,纳米SiO2主要以反射作用为主,而纳米TiO2和纳米ZnO则以吸收作用为主。与纳米TiO2相比,纳米ZnO对紫外光的吸收能力更强。由此可见,与对紫外线的反射相比,纳米粒子表现出的吸收作用对沥青耐紫外老化性能的改善更为有效。不同无机纳米粒子的表面修饰进一步增强了其对沥青紫外老化性能的改善作用,尤其以DB-550-nano-ZnO的作用最为明显。
     (8)表面修饰前后纳米ZnO均可有效抑制沥青的光氧化,相同紫外老化时间下,沥青/nano-ZnO和DB-550-nano-ZnO复合材料的羰基指数较空白样明显降低,但其抑制作用随着紫外老化时间的延长逐渐减弱。纳米ZnO的加入促进了沥青质在冷却过程中的异相成核结晶,改变了“蜂形”结构的尺寸及其在沥青中的分布状态。相比于未修饰纳米ZnO, DB-550-nano-ZnO的加入使得沥青质结晶体的直径明显减小,在体系中的分布也更为均匀,尺寸趋于均一。紫外老化过程中,纳米ZnO的加入有效地抑制了沥青表面粗糙度的增加和组分变化引起的体系单相化趋势,并且DB-550-nano-ZnO的作用更为显著,从而使得沥青/nano-ZnO和DB-550-nano-ZnO复合材料表现出较好的耐紫外老化性能。
Asphalt pavement is prone to be destroyed by forming the rutting, cracks, pot holes and stripping during service process, which affects the service performance and service life of asphalt pavement obviously. Many studies have shown that bitumen aging is one of the principal factors causing the deterioration of bitumen pavements, that is, the thermo-oxidative and photo-oxidative aging of bitumen occur under the influence of heat, oxygen, light and water. Consequently, it is important to improve the aging resistance of bitumen by developing new anti-aging modifiers, which will prolong the service life of asphat pavement. Polymer/inorganic nanomaterials show the special mechanical, thermotic, barrier, optical and electromagnetic properties, which contributes to that the adding of inorganic nanomaterials is the important high performance modification and functionalization method to polymer. The inorganic nanomaterials mainly contain layered silicates (e.g. montmorillonite (Mt), vermiculite, rectorite (REC)) and nanoparticles (e.g. nano-SiO2, nano-TiO2, nano-ZnO). The key point of preparing polymer/inorganic nanomaterials is to improve the interface effect of inorganic nanomaterials and polymer, which can be achieved by organic modification of layered silicates and surface modification of nanoparticles. Recently, more and more attention of the domestic and international researchers has been paid to the bitumen/Mt nanocomposite. It has been showed that physical, rheological and aging resistance of bitumen can be improved obviously with the introduction of Mt. However, there are relative few reseacches about the adding of other nanomaterials into bitumen. The investigation of mechanism between the bitumen and inorganic nanomaterials is significant to improve the aging properties of bitumen, expand the bitumen modifiers and promote the application of nanotechnology in road materials.
     In this paper, inorganic nanomaterials with different composition and structure were prepared by modifying the layered silicates with intercalated agents and nanoparticles with silane coupling agents, respectively. The effect of inorganic nanomaterials on physical, thermo-oxidative and photo-oxidation aging properties was investigated before and after organic intercalation and surface modification. The chemical and microstructures of bitumen/inorganic nanocomposites before and after aging were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). The modification and aging resistance mechanism of bitumen/inorganic nanocomposites also studied. The main results obtained are as follows:
     (1) The interlayer spacing of three layered silicates (Mt, REC and EVMt) can be increased by cetyltrimethyl ammonium bromide (CTAB) or octadecyl dimethyl benzyl ammonium chloride (ODBA). Compared with Mt and REC, the interlayer spacing of EVMt is easily expanded. The interlayer spacing of EVMt increases with the values between1.69and3.16nm in comparison with Mt and REC modified by the same intercalation agents. The intercalation agents show different aggregation structures in three layered silicates interlayers, for example, lateral-monolayer, vertical structure and lateral-bilayer. The intercalation agents content in layered silicates is mainly dependent on cation-exchange capacity.
     (2) The microstructures of bitumen/inorganic nanocomposites can be reflected more precisely by combining XRD and dissolving-filtrating method, which avoids the true structures hidden by test error during XRD analysis for bitumen/inorganic nanocomposites. The seperation process of layered silicates was performed as follows: first, bitumen/inorganic nanocomposites were dissolved in trichloroethylene and the layered silicates were filtered from the solution. Then the separated layered silicates were characterized by XRD. The results show that Bitumen/Mt and EVMt nanocomposites form the phase-seperated structure, bitumen/ODBA-Mt, REC and ODBA-REC nanocomposites form the intercalated structure, while the bitumen/ODBAEVMt nanocomposite forms the semi-exfoliated structure.
     (3) The compatibility between bitumen and Mt as well as REC is improved obviously by organic modification. Under the same content, the difference between the softening point as well as the layered silicates content in the upper and lower sections of the toothpaste tubes is decreased remarkably after organic modification. However, the compatibility between the EVMt and bitumen is not enhanced by organic modification. Compared with unmodified bitumen, the softening point and viscosity of bitumen/layered silicates nanocomposites are increased, while the penetration and ductility (10℃) are changed differently. The softening point and viscosity of bitumen are increased more obviously after Mt modification in comparison with REC and EVMt, moreover, the ductility (10℃) of bitumen is increased after Mt modification, which can be improved after organic modification of Mt. However, the ductility of bitumen is slightly influenced by REC and EVMT.
     (4) The viscosity aging index and softening point increment of bitumen are decreased, while the retained ductility are increased after thin film oven test (TFOT) and pressure aging vessel (PAV) aging with the adding of Mt, REC and EVMt. Compared with REC and Mt, bitumen/EVMt nanocomposite shows the lower viscosity aging index and softening point increment, and the higher retained ductility. The thermo-oxidative aging resistance of bitumen/EVMt nanocomposite is further improved after EVMt organic modification which shows slightly influence on its ultraviolet (UV) aging properties. The aging resistance of bitumen/EVMt nanocomposite is affected remarkably by the composition and structure of intercalation agents. Bitumen/ODBA-EVMt nanocomposite shows the lower viscosity aging index and mass change ratio in comparison with CTAB-EVMt after TFOT, PAV and long term aging, which can be attributed to that the formation of carbonyl in bitumen is restained as well as the transformation from sol-gel structure to gel structure during thermo-oxidative aging by ODBA-EVMt.
     (5) After ultraviolet (UV) aging, bitumen/Mt nanocomposite shows the lower viscosity aging index and softening point increment in comparison with unmodified bitumen, while the the UV aging properties of bitumen are slightly influenced by REC and EVMt. According to AFM analysis, bitumen shows the dispersed phase the core of which is asphaltenes and the matrix phase mainly contained light components due to the structure and stiffness diffference in various bitumen molecules. The association reactions of the dispersed phase as well as the hardening of bitumen occur during UV aging. However, the association reactions of the dispersed phase as well as the hardening of bitumen are prevented during UV aging by Mt. Furthermore, the two phases are still obvious in bitumen/ODBA-Mt nanocomposite, and the viscosity aging index and softening point increment are further decreased in comparison with Mt after UV aging, indicating its good UV aging resistance.
     (6) The silane coupling agents are bound on the surface of the three nanoparticles according to FTIR analysis and ablation tests. The silane coupling agents content in the three nanoparticles is as follows:DB-560-nano-ZnO> DB-560-nano-SiO2>DB-560-nano-TiO2. The compatibility between bitumen and nanoparticles is improved obviously by surface modification. Under the same content, the difference between the softening point as well as the nanoparticles content in the upper and lower sections of the toothpaste tubes is decreased remarkably after surface modification. Nano-ZnO shows the best compatibility with bitumen after surface modification among the three nanoparticles. The penetration and ductility are decreased, while the softening point and viscosity of bitumen are increased with the addition of nanoparticles. However, this effect is weakened after surface modification of nanoparticles and DB-560-nano-ZnO has the most influence.
     (7) The softening point increment and viscosity aging index of bitumen after UV aging are decreased with the addition of different nanoparticles. Bitumen/nano-ZnO nanocomposite shows the best UV aging resistance. It can be attributed to the different UV-shielding properties of the three nanoparticles. Nano-Si02has stronger reflection effect to ultra violet, while nano-TiO2and ZnO show the strong absorption effect. Compared with nano-TiO2, the absorption effect of ZnO is more obvious. Compared with reflection effect, the UV aging resistance of bitumen is improved more obviously by absorption effect of UV radiation. The UV aging resistance of bitumen/nanoparticle composites is further enhanced by surface modification of nanoparticles, and bitumen/DB-550-nano-ZnO composite shows the best UV aging resistance.
     (8) The photo-oxidation of bitumen can be prevented remarkably by nano-ZnO before and after its surface modification. The carbonyl indices of bitumen/nano-ZnO and DB-550-nano-ZnO composites are decreased more obviously in comparison with unmodified bitumen under the same UV aging time. However, this effect is weakened with the increasing of UV aging time. The heterogeneous nucleation crystallization of asphaltenes is accelerated by adding the nano-ZnO which also changes the "bee-like" structures as well as its dispersion in bitumen. Compared with unmodified nano-ZnO, the diameter of crystals is decreased obviously and its dispersion in bitumen is more homogeneous in bitumen by DB-550-nano-ZnO. The surface roughness increases and single phase trend caused by components changes in bitumen are prevented with the addition of nano-ZnO during UV aging, which is improved more obviously by DB-550-nano-ZnO, indicating the good UV aging resistance of bitumen/nano-ZnO and DB-550-nano-ZnO composites.
引文
[1]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].南京:东南大学出版社,2002.
    [2]Isacsson U, Zeng H Y. Relationships between bitumen chemistry and low temperature behaviour of asphalt [J]. Construction and Building Materials,1997, (11):83-91.
    [3]Krishnan J M, Rajagopal K R. On the mechanical behavior of asphalt [J]. Mechanics of Materials,2005, (37):1085-1100.
    [4]Lesueur D.. The colloidal structure of bitumen:Consequences on the rheology and on the mechanisms of bitumen modification [J]. Advances in Colloid and Interface Science,2009, 145:42-82.
    [5]Lu Xiaohu, Isacsson U. Modification of road bitumen with thermoplastic polymers [J]. Polymer Testing,2001, (20):77-86.
    [6]Lu Xiaohu and Isacsson U.. Low-temperature properties of styrene-butadiene-styrene polymer modified bitumens [J]. Construction and Building Materials,1998,12:405—414.
    [7]Gordon D. Airey. Rheological properties of styrene butadiene styrene polymer modified road bitumens [J]. Fuel,2003,82(14):1709-1719.
    [8]Zhang Feng, Yu Jianying, Wu Shaopeng. Influence of ageing on rheology of SBR/sulfur-modified asphalts [J]. Polymer Engineering and Science,2011,52(1):71-79.
    [9]Lu Xiaohu and Isacsson U.. Effect of ageing on bitumen chemistry and rheology [J]. Construction and Building Materials,2002,16:15-22.
    [10]Francoise D., Fabienne F., Virginie M.. The influence of UV aging of a styrene/butadiene/styrene modified bitumen:comparison between laboratory and on site aging. Fuel,2007,86:1446-1451.
    [11]Lu Xiaohu, Isacsson U.. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens [J]. Fuel,1998,77(9):961-972.
    [12]Ruan Yonghong, Davison R. R., Glover C. J.. The effect of long-term oxidation on the rheological properties of polymer modified asphalts [J]. Fuel,2003,82:1763-1773.
    [13]Cortizo M.S., Larsen D.O.. Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts [J]. Polymer Degradation and Stability,2004,86:275-282.
    [14]Feng Pengcheng, Yu Jianying, Wang Xiao, et al. Effects of thermal-oxidative aging on rheological properties of montmorillonite modified bitumen [J]. Journal of Central South University of Technology,2008,15 (Suppl.1):167-171.
    [15]Gao Ming, Xiao Bin, Liao Kejian, et al. Aging behavior of colored paving asphalt [J]. Petroleum Science and Technology,2006,24(6):689-698.
    [16]魏荣梅,余剑英,吴少鹏等.紫外光老化对沥青化学族组成和物理性能的影响[J].石油沥青,2006,20(1):6-10.
    [17]吴少鹏,庞凌,余剑英等.沥青光氧老化研究进展[J].石油沥青,2007,21(2):1-6.
    [18]庞凌.沥青紫外光老化特性研究[D].武汉:武汉理工大学,2008.
    [19]谭忆秋,王佳妮,冯中良等.沥青结合料紫外老化机理[J].中国公路学报,2008,21(1):19-24.
    [20]叶奋,黄彭.强紫外线辐射对沥青路用性能的影响[J].同济大学学报(自然科学版)2005,33(7):909-913.
    [21]章明秋,容敏智,阮文红.非层状纳米无机粒子/热塑性聚合物复合材料制备方法研究进展[J].复合材料学报,2011,28(5):1-11.
    [22]李晓晔,王文一.聚合物/无机纳米粒子复合材料的研究进展[J].中国粉体工业,2006,(6):9-13.
    [23]孙玉绣,张大伟,金政伟.纳米材料的制备方法及其应用[M].北京:中国纺织出版社,2010.
    [24]陈永.纳米材料制备与改性[M].沈阳:万卷出版公司,2008.
    [25]高晓燕.聚氨酯/纳米无机复合材料的制备与性能研究[D].长春:吉林大学,2011.
    [26]Rozenberg B. A., Tenne R.. Polymer-assisted fabrication of nanoparticles and nanocomposites [J]. Progress in Polymer Science,2008,33:40-112.
    [27]欧宝立,李笃信.无机纳米粒子表面修饰[J].高分子材料科学与工程,2008,24(5):1-5.
    [28]张宏.无机纳米粒子/聚合物复合材料的制备与性能研究[D].兰州:兰州大学,2007.
    [29]Somasundaran P., Krishnakumar S.. Adsorption of surfactants and polymers at the solid-liquid interface [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,123-124:491-513.
    [30]师琦,吴素芳.沉淀法SiO2包覆纳米CaCO3吸附剂性能[J].化工学报,2009,60(2):507-513.
    [31]李玉峰,欧阳家虎,钟继勇等.A1203包覆SrSO4米复合粉体的制备与表征[J].人工晶体学报,2009,38:21-24.
    [32]张万忠,乔学亮,陈建国等.纳米材料的表面修饰与应用[J].化工进展,2004,23(10):1067-1071.
    [33]严满清.无机纳米粒子的表面处理及其增强增韧高分子材料的研究[D].合肥:合肥工业大学,2003.
    [34]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[J].硅酸盐学报,2007,35(3):373-376.
    [35]姚超,高国生,林西平.硅烷偶联剂对纳米二氧化钦表面改性的研究[J].无机材料学报,2006,21(2):315-311.
    [36]褚艳红,张国宝,赵根锁.ω-十一烯酸表面改性纳米碳酸钙粒子反应机理的差示FTIR光谱研究[J].光谱学与光谱分析,2007,27(8):1510-1513.
    [37]刘晓云,赵辉鹏,李兰.二氧化硅纳米粒子表面修饰及其表征[J].分析测试学报,2006,25(6):5-9.
    [38]Pavlidou S., Papaspyrides C.D.. A review on polymer - layered silicate nanocomposites [J]. Progress in Polymer Science,2008,33:1119-1198.
    [39]陈济美.累托石的阳离子交换性能及其应用研究[J].矿物岩石,1992,12(1):96-101.
    [40]欧宝立,李笃信.表面修饰纳米Si02增强增韧聚氯乙烯[J].复合材料学报,2009,26(1):48-53.
    [41]李文莲,王正祥,谢安全.滑石粉/碳酸钙增强增韧高密度聚乙烯的研究[J].包装工程,2010,31(5):35-38.
    [42]周庆海,高凤翔,卢会敏等.聚碳酸1,2-丙二酯/蒙脱土复合材料的制备与性能[J].高分子学报,2008,(12):1123-1128.
    [43]李玉峰,高晓辉.聚苯乙烯磺酸掺杂聚苯胺/蒙脱土复合材料的制备与表征[J].功能高分子学报,2008,21(3):323-326.
    [44]侯琳熙,刘燕.有机累托石/环氧树脂复合材料的结构及性能[J].硅酸盐学报,2011,39(7):1223-1228.
    [45]雅重庆.酚醛树脂/蛭石纳米复合材料及其在刹车片中的应用研究[D].武汉:武汉理工大学,2008.
    [46]史丽萍,路琴,顾红艳等.纳米SiO2粒子填充不饱和聚酯树脂基复合材料的摩擦学性能[J].材料科学与工程学报,2011,29(1):39-42.
    [47]卿玉长,周万城,罗发.多壁碳纳米管/环氧有机硅树脂吸波涂层的介电和吸波性能研究[J].无机材料学报,2010,25(2):181-185.
    [48]徐曼,冯军强,曹晓珑.纳米银-环氧树脂复合电介质的介电特性[J].中国电机工程学报,2009,29(4):117-122.
    [49]曹渊,陶长元,刘作华等.纳米无机物/高分子磁功能复合材料研究进展[J].压电与声光,2006,28(1):56-59.
    [50]杨瑞成,吴量,牛绍蕊等.纳米蒙脱土/聚丙烯复合材料热氧老化动力学[J].复合材料学报,2010,27(6):70-75.
    [51]张惠峰,王益庆,吴友平等.粘土/橡胶纳米复合材料老化性能研究[J].橡胶工业,2004,(8):453-459.
    [52]王娟娟,赵康,晁小练等.有机累托石改性环氧树脂基复合材料的研究[J].绝缘材料,2008,41(3):18-20.
    [53]钟世云,许乾慰,王公善.聚合物降解与稳定化[M].北京:化学工业出版社,2002.
    [54]汪斌华,黄婉霞,李彦峰等.纳米TiO2和ZnO的抗老化性应用研究[J].四川大学学报(工程科学版),2003,35(4):103-105.
    [55]张书弟,杨国生,张发余.纳米二氧化硅在外墙涂料中的改性研究[J].电镀与涂饰,2009,28(5):57-59.
    [56]陈少卿,张宏亮,成霞.纳米氧化锌/低密度聚乙烯抗光老化性能的热刺激电流分析[J].绝缘材料,2008,41(1):71-73.
    [57]陈刚.金红石型纳米TiO2在高分子材料杭老化功能改性中的研究[D].成都:四川大学,2005.
    [58]You Zhanping, Mills-Beale J., Foley J. M., et al. Nanoclay-modified asphalt materials: Preparation and characterization [J]. Construction and Building Materials,2011,25: 1072-1078.
    [59]Chong K.P. Nanotechnology and information technology in civil engineering. Conference proceeding-towards a vision for information technology in civil engineering. In:Ian Flood, editor.4th joint international symposium on information technology in civil engineering, November 15-16,2003, Nashville, TN, USA, p.1-9.
    [60]Pauli T.. Emerging issues in asphalt binder research and application of nanotechnology, presentation on the NSF workshop on nanomodification of cementitious materials at the University of Florida in August 2006; and personal communication with the Western Research Institute, Wyoming.
    [61]Greenfield M. Modeling for nano-engineering:molecular simulation of asphaltlike materials, presentation on the NSF workshop on nanomodification of cementitious materials at the University of Florida in August 2006; and personal communication with the Dept. of Chemical Engineering, University of Rhode Island.
    [62]Birgisson B.. Roadmap for research, presentation on the NSF workshop on nanomodification of cementitious materials at the University of Florida in August 2006; and personal communication with the Dept. of Chemical Engineering, University of Rhode Island.
    [63]张金升,张爱勤,李明田等.纳米改性沥青研究进展[J].材料导报,2005,19(10):87-90.
    [64]欧阳春发.聚合物/填料复合物改性沥青性能与结构研究[D].上海:上海交通大学,2006.
    [65]王小鹏,张毅,沈振球等.熔融插层法制备蒙脱石基石蜡复合相变储能材料[J].硅酸盐学报,2011,39(4):624-629.
    [66]Ghile D.B.. Effects of nanoclay modification on rheology of bitumen and on performance of asphalt mixtures [D]. Delft, The Netherlands:Delft University of Technology,2006.
    [67]曾旋.沥青/层状硅酸盐纳米复合材料的制备与性能研究[D].武汉:武汉理工大学,2007.
    [68]Liu Gang. Characterization and identification of bitumen with the modification of montmorillonite nanoclay [D]. Delft, The Netherlands:Delft University of Technology, 2011.
    [69]Fischer H. R., Bos B.. Bitumen composition with improved ageing resistance [P]. EP 1728831A1.2006-06-12.
    [70]Jahromi S. G., Khodaii A.. Effects of nanoclay on rheological properties of bitumen binder [J]. Construction and Building Materials,2009,23:2894-2904.
    [71]姜海涛,吴少鹏,况栋梁等.有机化蒙脱土改性沥青老化性能的研究[J].武汉理工大学学报,2007,29(9):41-43.
    [72]Yu Jianying, Feng Pengcheng, Zhang Henglong, et al. Effect of organo-montmorillonite on aging properties of asphalt [J]. Construction and Building Materials,2009,23:2636-2640.
    [73]付玉,余剑英,冯鹏程等.蒙脱土改性沥青的制备与性能研究[J].武汉理工大学学报,2007,29(9):51-54.
    [74]张恒龙,余剑英,李斌等.有机化蒙脱土对沥青力延度性能的影响.武汉理工大学学报,2010,32(18):49-52.
    [75]王骁,余剑英,汪林等.有机蒙脱土/SBS改性沥青的制备与性能研究[J].武汉理工大学学报,2007,29(9):81-83.
    [76]马爱群,李雪峰.纳米氧化锌SBS改性沥青及其混合料性能试验研究[J].中外公路,2009,29(5):218-220.
    [77]余剑英,李斌,曾旋等.有机化蒙脱土对SBS改性沥青热氧老化性能的影响[J].武汉理工大学学报,2007,29(9):65-67.
    [78]Galooyak S. S., Dabir B., Nazarbeygi A. E., et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites [J]. Construction and Building Materials,2010,24(3):300-307.
    [79]Polacco G., Kriz P., Filippi S., Stastna J., et al. Rheological properties of asphalt/SBS/clay blends [J]. European Polymer Journal,2008,44:3512-3521.
    [80]Zhang Baochang, Xi Man, Zhang Dewen, Zhang Huixuan, et al. The effect of styrene-butadiene-rubber/montmorillonite modification on the characteristics and properties of asphalt [J]. Construction and Building Materials,2009,23:3112-3117.
    [81]Cleven M. A.. Investigation of the Properties of Carbon Fiber Modified Asphalt Mixtures [D]. Houghton, USA:Michigan Technological University,2000.
    [82]马峰,张超,傅珍.纳米碳酸钙改性沥青的路用性能及机理研究[J].武汉理工大学学报:交通科学与工程版,2007,31(1):88-91.
    [83]肖鹏,李雪峰.纳米ZnO/SBS改性沥青性能与机理的研究[J].公路交通科技,2007,24(6):12-16.
    [84]Zhang Henglong, Yu Jianying, Xue Lihui, et al. Effect of montmorillonite organic modification on microstructures and ultraviolet aging properties of bitumen [J]. Journal of Microscopy,2011,244(1):85-92.
    [85]冯建中,蔡育芬.聚合物/蒙脱土复合材料研究进展[J].广东化工,2009,36(11):65-66.
    [86]Liu Gang, Wu Shaopeng, van de Ven, Martin, et al. Influence of sodium and organo-montmorillonites on the properties of bitumen [J]. Applied Clay Science,2010, 49(1-2):69-73.
    [87]Peeterbroeck S., Alexandre M., Jerome R., et al. Poly(ethylene-co-vinyl acetate)/clay nanocomposites:Effect of clay nature and organic modifiers on morphology, mechanical and thermal properties [J]. Polymer Degradation and Stability,2005,90:288-294.
    [88]Wan Chaoying, Qiao Xiuying, Zhang Yong, et al. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites [J]. Polymer Testing, 2003,22:453-461.
    [89]Narita A., Chujo Y.. Functionalization of inorganic nanoparticles with organic molecules [J]. Kobunshi Ronbunshu,2008,65(5):321-333.
    [90]雅重庆,余剑英,高山俊等.不同结构修饰对蛭石插层效果的影响[J].纳米科技,2008,5(2):27-31.
    [91]李斌.有机化蒙脱土改性沥青的制备、性能及其改性机理研究[D].武汉:武汉理工大学,2010.
    [92]韩炜,张尧,刘炜等.不同工艺有机插层蛭石的制备及表征[J].纳米科技,2005,2(5):43-45.
    [93]翁祖华,黄双路,郑玉婴等.季铵盐表面活性剂烷烃链数目对改性蒙脱石结构的影响[J].日用化学工业,2001,(5):8-9.
    [94]陈济美.有机累托石的合成与特性研究[J].矿物学报,1991,11(1):86-91.
    [95]马月红,何宏平,朱建喜等.阳离子交换容量和烷基链链数对有机蒙脱石性能的影响[J].矿物学报,2010,30(1):9-17.
    [96]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004.
    [97]宋美宁,吕宪俊.有机改性蒙脱石结构变化的研究[J].有色矿冶,2004,4(z):66-69.
    [98]王文楼,林枫凉.Cu-, Mg-蒙脱石层间吸附水的研究[J].硅酸盐学报,1992,20(5):463-468.
    [99]李静静.锂基蒙脱石的制备、性能及应用研究[D].济南:山东科技大学,2007.
    [100]黄伟九,谭援强,周亚军等.十二烷和硬脂酸的摩擦化学[J].中国有色金属学报,1999,9(3):636-640.
    [101]雷振跃,周威,赵辉等.活性增容剂对环氧沥青性能影响的研究[J].胶体与聚合物,2011,29(2):84-87.
    [102]王华才,薛理辉.有机化蒙脱土改性沥青微观机理研究[J].中国科技论文在线,2010,5(4):301-306.
    [103]Henglong Zhang, Jianying Yu, Gang Liu. Long-term aging behavior of montmorillonite modified asphalts [C]. Proceedings of AES-ATEMA'2009 Third International Conference on Advances and Trends in Engineering Materials and their Applications, Montreal, Canada, July 06-10,2009.
    [104]杨瑞成,申鹏,穆元春等.聚丙烯酸/蒙脱土/TiO2复合材料的紫外光降解[J].兰州理工大学学报,2010,36(3):18-21.
    [105]杨瑞成,马建忠,陈奎等.聚丙烯/蒙脱土复合材料的热氧老化性能[J].兰州理工大学学报,2007,33(3):8-11.
    [106]Ouyang Chunfa, Wang Shifeng, Zhang Yong, et al. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants [J]. Polymer Degradation and Stability,2006,91:795-804.
    [107]原健安.沥青老化过程中结晶性蜡的生成是导致性能变差的重要因素[J].西安公路交通大学学报,1997,17(1):9-11.
    [108]Baumgardner G. L., Masson J-F., Hardee J. R., et al. Polyphosphoric acid modified asphalt: proposed mechanisms. Journal of Association of Asphalt Paving Technologists,2006,74: 283-305.
    [109]陈和生,孙振亚,邵景昌.八种不同来源二氧化硅的红外光谱特征研究[J].硅酸盐通报,2011,30(4):34-37.
    [110]Zhang H L, Yu J Y, Xue L H, et al. Effect of montmorillonite organic modification on microstructures and ultraviolet aging properties of bitumen [J]. J. Microsc.,2011,244(1): 85-92.
    [111]郭刚.金红石型纳米TiO2在高分子材料杭老化功能改性中的研究[D].成都:四川大学,2005.
    [112]程晓丽,高山,霍丽华等.纳米氧化锌的IR及其薄膜的UV光谱研究[J].光散射学报,2003,15(3):197-199.
    [113]单薇,廖明义.纳米Si02的表面处理及其在聚合物基纳米复合材料中的应用进展[J].高分子通报,2006,(3):1-9.
    [114]潘祖仁.高分子化学(增强版)[M].北京:化学工业出版社,2007.
    [115]杨睿,刘颖,于建.聚烯烃复合材料的老化行为及机理研究[J].高分子通报,2011,(4):68-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700