机械合金化2Si-B-3C-N陶瓷的热压烧结行为与高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Si-B-C-N陶瓷因其优异的组织稳定性、抗高温蠕变和抗氧化等性能而逐渐成为陶瓷材料领域研究的热点之一,在航空、航天、冶金、能源、信息、微电子等领域具有广泛的应用前景。目前,Si-B-C-N陶瓷的制备方法主要包括有机聚合物前驱体裂解、物理气相沉积和机械合金化三种。其中机械合金化法因其采用的原料无毒,工艺简单,材料成本低廉,有利于制备致密块体陶瓷而受到研究人员的重视。目前,采用该方法可以较为容易地制备出室温弯曲强度约为300-500MPa,晶粒尺寸约为200-500nm的Si-B-C-N复相陶瓷。但该方法仍存在一些亟待深入研究的问题。例如,对非晶态Si-B-C-N粉末的微观结构、烧结行为、晶化过程,以及对陶瓷的组织演变规律尚不清楚;对陶瓷材料高温性能的研究尚需进一步加深等。本文针对上述问题,以c-Si、h-BN和石墨粉末为原料,采用行星式高能球磨机制备非晶态2Si-B-3C-N粉末,然后采用热压烧结工艺对该粉末进行烧结。采用X射线衍射、透射电镜、扫描电镜、激光粒度分析、热重-差热分析(TG-DTA)、力学性能测试等方法深入研究非晶态2Si-B-3C-N粉末的微观结构、烧结工艺、在热压烧结过程中的晶化行为,以及所制备陶瓷的微观结构和高温性能,进一步探讨采用机械合金化和热压烧结工艺制备Si-B-C-N陶瓷的可行性。
     研究发现,采用本文所用原料及机械合金化工艺制备的非晶态2Si-B-3C-N粉末由近似球形的纳米颗粒硬团聚体构成,团聚体的平均粒径约为5μm;采用不同球磨工艺参数制备的非晶态2Si-B-3C-N粉末具有相似的粒度分布、表面结构及组织热稳定性;当球磨罐转速高于600rpm或球料质量比大于20:1时,会促使非晶组织发生晶化并生成尺寸约为1-5nm的SiC晶体。30h或40h的球磨时间有利于硅与碳原子之间反应成键,并且此时粉末中的非晶态组织没有发生明显的晶化;当非晶态2Si-B-3C-N粉末在氮气氛中被加热至约1000℃以上时,在粉末的表面出现SiC纳米线的生长现象;当被加热至约1350℃时,粉末因为表面氧化膜的碳热还原反应而快速生成并释放出CO或CO2气体。
     在80MPa下热压烧结,当温度高于约1830℃时,非晶态2Si-B-3C-N粉末将发生快速的致密化。在1900℃/80MPa/30min/8bar N_2条件下热压烧结制备的2Si-B-3C-N复相陶瓷体积密度和相对密度,以及室温弯曲强度、弹性模量、断裂韧性和维氏硬度分别约为2.52g/cm~3,88.7%,331.1MPa,139.4GPa,2.81MPa·m~(1/2)和5.65GPa。当烧结温度降至1800℃或压力降至50MPa时,所制备材料的密度和力学性能会急剧下降。5mol%ZrO2或AlN添加剂使陶瓷坯体在相同工艺条件下发生快速烧结致密化的温度分别降低至约1720℃和1760℃,陶瓷材料的相对密度分别增至约97.7%和96.9%,室温弯曲强度分别增至约575.4MPa和415.7MPa。
     在80MPa/30min/8bar N_2条件下热压烧结时,非晶态2Si-B-3C-N粉末的起始晶化温度约为1485℃。SiC和BN(C)通过各自密排面有序堆垛、相邻晶粒合并等方式实现晶粒生长。在1900℃/80MPa/30min/8bar N_2条件下热压烧结制备的2Si-B-3C-N陶瓷由平均晶粒尺寸小于100nm,且分布均匀的β-SiC、α-SiC和BN(C)构成。BN(C)相具有湍层结构,由分布不均匀的湍层氮化硼,湍层碳,以及B原子固溶的湍层碳和C原子固溶的湍层氮化硼等原子层构成。
     热压烧结制备的纳米2Si-B-3C-N复相陶瓷具有优异的高温组织稳定性、高温抗蠕变性能和抗氧化性能。在1800℃/1bar N_2条件下保温处理3h后,材料的组织结构没有发生明显的变化。但由于局部亚稳相的热分解,致使材料出现约3.55%的质量损失,材料的密度、弯曲强度和弹性模量分别下降了约2%、13%和29%。同时,陶瓷样品在平行于及垂直于压力方向上分别产生了约0.535%和0.203%的体积收缩。当应力为125MPa时,材料在1400℃、1500℃或1600℃真空环境中的稳态蠕变速率分别约为5.5×10~(-10)/s、3.4×10~(-8)/s和8.5×10~(-8)/s。在静态干燥空气中,当温度低于1200℃或等于1600℃时,2Si-B-3C-N复相陶瓷具有良好的抗氧化性能;当温度约为1400℃时,材料会发生快速的氧化;少量ZrO2或AlN(5mol%)的加入使材料在1000℃即发生快速的氧化,当温度为1200℃时,样品表面至材料内部的氧化侵蚀层厚度约为0.25-1.00mm。
     本文的研究优化了机械合金化非晶态2Si-B-3C-N粉末及热压烧结纳米2Si-B-3C-N陶瓷的制备工艺;阐明了ZrO2或AlN添加剂对材料烧结致密化的促进作用;揭示了材料的表面结构、热稳定性、晶化过程,BN(C)相的湍层结构,以及材料的室温与高温力学性能,为Si-B-C-N陶瓷及相关材料的进一步研究提供了理论依据和数据支持。
Because of its outstanding structural stability, creep resistance and oxidationresistance, Si-B-C-N ceramic attracts great attention in recent years, and maypossess extensive applications in aircraft, metallurgy, energy, information, etc.Methods used to prepare Si-B-C-N ceramic mainly include organic polymerpyrolyzing, physical vapor deposition and mechanical alloying. Much attention ispaid to the mechanical alloying method, due to its cheap and innocuous rawmaterials, simple process and advantage in the preparation of dense bulk ceramic.However, the sintering and crystallization process or mehanisms of the amorphousSi-B-C-N powder, and the high-temperature properties of the hot pressed nanoceramic, etc., are still needed to be further investigated. Aiming at these problems,amorphous2Si-B-3C-N powder was high-energy ball milled in this subject, and wasthen hot pressed to prepare bulk ceramic. Methods, including X-ray diffraction,SEM, TEM, TG-DTA, mechanical property testing, etc., were employed to carefullystudy the microstructure, sintering process, crystallization and property of2Si-B-3C-N powder or bulk ceramic. Main results are as follows.
     The mechanically-alloyed amorphous2Si-B-3C-N powder consists of hardaggregates, with near spherical shapes and an average size of about5μm. Theamorphous2Si-B-3C-N powders, prepared employing different milling parameters,have similar size distribution, surface structure and thermal stability. When therotation speed of pot is higher than600rpm, or the ball to powder mass ratio islarger than20:1, nano SiC crystals with a size of about1-5nm appear in theamorphous matrix. When milling time is30h or40h, silicon atoms are ready toreact with carbon atoms, but crystals are hard to be found. At temperatures higherthan1000℃, SiC nano wires may grow on the surface of the heated2Si-B-3C-Npowder. At about1350℃in nitrogen, carbothermic reaction occurs on the surfaceof2Si-B-3C-N powder and hence CO or CO2is released.
     Sintered at a temperature higher than1830℃(at80MPa), the2Si-B-3C-Nceramic body takes rapid volume shrinkage and its density is greatly enhanced. Thebulk density, relative density, room-temperature fracture strength, Young’s modulus, fracture toughness and Vickers hardness of the as-prepared2Si-B-3C-N ceramic,hot pressed at1900℃/80MPa/30min/8bar N_2, are about2.52g/cm~3,88.7%,331.1MPa,139.4GPa,2.81MPa·m~(1/2), and5.65GPa, respectively. Whentemperature is lowered to1800℃, or pressure is decreased to50MPa, the densityand mechanical property of the prepared ceramic sharply degrade. The addition ofZrO2or AlN (5mol%) reduces the temperature, at which notable sintering occurs,to about1720℃and1760℃, respectively, and the density and fracture strength ofthe prepared cramic are considerablely elevated.
     Hot pressed under a pressure of80MPa, the amorphous2Si-B-3C-N powderstarts to crystallize at about1485℃. The growth of SiC and BN(C) grains relies onthe stacking of (111) or (0002) planes, or the incorporation of adjacent grains. The2Si-B-3C-N ceramic, hot pressed at1900℃/80MPa/30min/8bar N_2, is composedof uniformly distributed β-SiC、α-SiC and BN(C), with an average grain size lessthan100nm. BN(C) has a turbostratic structure and consists of unevenly distributedt-BN, t-carbon, boron adopted t-carbon and carbon adopted t-BN.
     The nano2Si-B-3C-N ceramic prepared here has outstanding structuralstability, creep resistance and oxidation resistance. Annealed at1800℃in1bar N_2for3h, the ceramic shows little change in its microstructure. However, due to thedecomposition of ceramic, the sample has a mass loss of about3.55%. Under thepressure of125MPa, the2Si-B-3C-N ceramic exhibits a steady-creep rate of about5.5×10~(-10)/s at1400℃,3.4×10~(-8)/s at1500℃and8.5×10~(-8)/s at1600℃in vacuum.In static and dry air, the ceramic possesses excellent oxidation resistance attemperatures lower than1200℃or at1600℃. However, the ceramic rapidlyoxidizes at1400℃. The addition of ZrO2or AlN (5mol%) greatly degrade theoxidation resistance of the2Si-B-3C-N ceramic.
     Current results give further comprehension on the preparation process,microstructure, thermal stability, crystallization, and high-temperature properties ofthe mechanically alloyed amorphous2Si-B-3C-N powder or the hot pressed2Si-B-3C-N ceramic, providing new theoretical insights or experimental data forthe further research of Si-B-C-N ceramic or related materials.
引文
[1] Stanley R L, Ahmed K N, Samuel L V. Flight-Vehicle Materials. Structures, andDynamic Assessment and Future Directions Vol.3. Ceramics and Ceramic-Matrix Composites[M]. New York: The American Society of MechanicalEngineers,1992.
    [2]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001.
    [3] Upadhya K, Yang J M, Hoffman W. Advanced Materials for UltrahighTemperature Structural Applications above2000oC[R]. Air Force ResearchLaboratory (AFMC),1997.
    [4] Fitzer E. Composites for High Temperatures[J]. Pure&Applied Chemistry,1988,60(3):287-302.
    [5]谢志鹏.结构陶瓷[M].北京:清华大学出版社,2011.
    [6]张幸红,胡平,韩杰才,杜善义.超高温陶瓷材料抗热冲击性能及抗氧化性能研究[J].中国材料进展,2011,30(1):27-31.
    [7]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000.
    [8] Ervin J R G. Oxidation Behavior of Silicon Carbide[J]. Journal of the AmericanCeramic Society,1958,41(9):347-352.
    [9] Wei G C, Becher P F. Improvements in Mechanical Properties in SiC by theAddition of TiC Particles[J]. Journal of the American Ceramic Society,1984,67(8):571-574.
    [10] Wan J L, Duan R G, Gasch M J, Mukherjeew A K. Highly Creep-ResistantSilicon Nitride/Silicon Carbide Nano-Nano Composites[J]. Journal ofAdvanced Ceramics,2006,89(1):274-280.
    [11] Woetting G, Caspers B, Gugel E, Westerheide R. High-Temperature Propertiesof SiC-Si3N4Particle Composites[J]. Journal of Engineering for Gas Turbinesand Power,2000,122(1):8-12.
    [12] Qin X H, Xiao B L, Dong S M, Jiang D L. SiCf/SiC Composites Reinforced byRandomly Oriented Chopped Fibers Prepared by Semi-Solid MechanicalStirring Method and Hot Pressing[J]. Journal of Materials Science,2007,42(10):3488-3494.
    [13] Naslain R. Design, Preparation and Properties of Non-Oxide CMCs forApplication in Engines and Nuclear Reactors: An Overview[J]. CompositesScience and Technology,2004,64(2):155-170.
    [14] Baldus H P, Wagner O, Jansen M. Synthesis of Advanced Ceramics in theSystems Si-B-N and Si-B-N-C Employing Novel Precursor Compounds[J].Materials Research Society Proceedings,1992,271:821-826.
    [15] Wideman T, Su K, Remsen E E, Zank G A, Sneddon L G. Synthesis,Characterization, and Ceramic Conversion Reactions of Borazine/SilazaneCopolymers: New Polymeric Precursors to SiNCB Ceramics[J]. Chemistry ofMaterials,1995,7(11):2203-2212.
    [16] Weinmann M, Kamphowe T W, Schuhmacher J, Muller K, Aldinger F. Designof Polymeric Si-B-C-N Ceramic Precursors for Application in Fiber-Reinforced Composite Materials[J]. Chemistry of Materials,2000,12(8):2112-2122.
    [17] Schmidt H, Borchardt G, Weber S, Scherrer H, Baumann H, Muller A, Bill J.Comparison of30Si Diffusion in Amorphous Si-C-N and Si-B-C-N Precursor-Derived Ceramics[J]. Journal of Non-Crystalline Solids,2002,298(2-3):232-240.
    [18] Tang Y, Wang J, Li X D, Li W H, Wang H, Wang X Z. Thermal Stability ofPolymer Derived SiBNC Ceramics[J]. Ceramics International,2009,35(7):2871-2876.
    [19] Tavakoli A H, Gerstel P, Golczewski J A, Bill J. Kinetic Effect of Boron on theCrystallization of Si3N4in Si-B-C-N Polymer-Derived Ceramics[J]. Journal ofMaterials Research,2011,26(4):600-608.
    [20] Kumar R, Cai Y, Gerstel P, Rixecker G, Aldinger F. Processing, Crystallizationand Characterization of Polymer Derived Nano-Crystalline Si-B-C-NCeramics[J]. Journal of Materials Science,2006,41(21):7088-7095.
    [21] Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F. A SilicoboronCarbonitride Ceramic Stable to2,000oC[J]. Nature,1996,382(6594):796-798.
    [22] Wang Z C, Aldinger F, Riedel R. Novel Silicon-Boron-Carbon-NitrogenMaterials Thermally Stable up to2200°C[J]. Journal of the American CeramicSociety,2001,84(10):2179-2183.
    [23] Christ M, Thurn G, Weinmann M, Bill J, Aldinger F. High-TemperatureMechanical Properties of Si-B-C-N-Precursor-Derived Amorphous Ceramicsand the Applicability of Deformation Models Developed for MetallicGlasses[J]. Journal of the American Ceramic Society,2000,83(12):3025-3032.
    [24] Ravi Kumar N V, Prinz S, Cai Y, Zimmermann A, Aldinger F, Berger F, MüllerK. Crystallization and Creep Behavior of Si-B-C-N Ceramics[J]. ActaMaterialia,2005,53(17):4567-4578.
    [25] Riedel R, Ruswisch L M, An L N, Raj R. Amorphous Silicoboron CarbonitrideCeramic with Very High Viscosity at Temperatures above1500oC[J]. Journalof the American Ceramic Society,1998,81(12):3341-3344.
    [26] Weinmann M, Schuhmacher J, Kummer H, Prinz S, Peng J Q, Seifert H J,Christ M, Muller K, Bill J, Aldinger F. Synthesis and Thermal Behavior ofNovel Si-B-C-N Ceramic Precursors[J]. Chemistry of Materials,2000,12(3):623-632.
    [27] Colombo P, Mera G, Riedel R, Soraru G D. Polymer-Derived Ceramics:40Years of Research and Innovation in Advanced Ceramics[J]. Journal of theAmerican Ceramic Society,2010,93(7):1805-1837.
    [28] Haberecht J, Nesper R, Grutzmacher H. A Construction Kit for Si-B-C-NCeramic Materials Based on Borazine Precursors[J]. Chemistry of Materials,2005,17(9):2340-2347.
    [29] Muller A, Gerstel P, Weinmann M, Bill J, Aldinger F. Si-B-C-N CeramicPrecursors Derived from Dichlorodivinylsilane and Chlorotrivinylsilane.1.Precursor Synthesis[J]. Chemistry of Materials,2002,14(8):3398-3405.
    [30] Vlcek J, Potocky T, Cizek J, Houska J, Kormunda M, Zeman P, Perina V,Zemek J, Setsuhara Y, Konuma S. Reactive Magnetron Sputtering of HardSi-B-C-N Films with a High-Temperature Oxidation Resistance[J]. Journal ofVacuum Science&Technology A,2005,23(6):1513-1522.
    [31] Vijayakumar A, Todi R M, Warren A P, Sundaram K B. Influence of N2/Ar GasMixture Ratio and Annealing on Optical Properties of SiCBN Thin FilmsPrepared by Rf Sputtering[J]. Diamond and Related Materials,2008,17(6):944-948.
    [32] Bill J, Aldinger F. Precursor-Derived Covalent Ceramics[J]. AdvancedMaterials,1995,7(9):775-787.
    [33] Wideman T, Cortez E, Remsen E E, Zank G A, Carroll P J, Sneddon L G.Reactions of Monofunctional Boranes with Hydridopolysilazane: Synthesis,Characterization, and Ceramic Conversion Reactions of New ProcessiblePrecursors to SiNCB Ceramic Materials[J]. Chemistry of Materials,1997,9(10):2218-2230.
    [34] Yu Z, Zhou C, Li R, Yang L, Li S, Xia H. Synthesis and Ceramic Conversion ofa Novel Processible Polyboronsilazane Precursor to SiBCN Ceramic[J].Ceramics International,2012,38(6):4635-4643.
    [35] Vishnyakov V M, Ehiasarian A P, Vishnyakov V V, Hovsepian P, Colligon J S.Amorphous Boron Containing Silicon Carbo-Nitrides Created by IonSputtering[J]. Surface and Coatings Technology,2011,206(1):149-154.
    [36] Vijayakumar A, Todi R, Sundaram K. Effect of N2/Ar Gas MixtureComposition on the Chemistry of SiCBN Thin Films Prepared by Rf ReactiveSputtering[J]. Journal of the Electrochemical Society,2007,154(4):H271-H274.
    [37] Wilden J, Wank A. TPCVD Synthesis of Si(-B)-C-N Coatings[J]. Published atthe ISPC15, Orleans, F, July9th-13th2001.
    [38] Hegemann D, Riedel R, Oehr C. PACVD-Derived Thin Films in the SystemSi-B-C-N[J]. Chemical Vapor Deposition,1999,5(2):61-65.
    [39] Wilden J, Wank A, Bykava A. DC Thermal Plasma CVD Synthesis of Coatingsfrom Liquid Single Source SiBCN and SiCNTi Precursors[J]. Surface andCoatings Technology,2005,200(1-4):612-615.
    [40] Yang Z H, Jia D C, Duan X M, Zhou Y. Microstructure and Thermal Stabilitiesin Various Atmospheres of SiB0.5C1.5N0.5Nano-Sized Powders Fabricated byMechanical Alloying Technique[J]. Journal of Non-Crystalline Solids,2010,356(6-8):326-333.
    [41] Yang Z H, Jia D C, Duan X M, Sun K N, Zhou Y. Effect of Si/C Ratio andTheir Content on the Microstructure and Properties of Si-B-C-N CeramicsPrepared by Spark Plasma Sintering Techniques[J]. Materials Science andEngineering A,2011,528(4-5):5.
    [42] Takamizawa M, Kobayashi T, Hayashida A, Takeda Y. OrganoborosiliconPoymer and a Method for the Preparation Thereof. U.S. Patent No.4550151,1985.
    [43] Seyferth D, Plenio H. Borasilazane Polymeric Precursors for BorosiliconNitride[J]. Journal of the American Ceramic Society,1990,73(7):2131-2133.
    [44] Riedel R, Kleebe H J, Schonfelder H, Aldinger F. A Covalent MicroNanocomposite Resistant to High-Temperature Oxidation[J]. Nature,1995,374(6522):526-528.
    [45] Riedel R, Bill J, Kienzle A. Boron-Modified Inorganic Polymers-Precursors forthe Synthesis of Multicomponent Ceramics[J]. Applied OrganometallicChemistry,1996,10(3-4):241-256.
    [46] Bill J, Kamphowe T W, Muller A, Wichmann T, Zern A, Jalowieki A, Mayer J,Weinmann M, Schuhmacher J, Muller K, Peng J Q, Seifert H J, Aldinger F.Precursor-Derived Si-(B-)C-N Ceramics: Thermolysis, Amorphous State andCrystallization[J]. Applied Organometallic Chemistry,2001,15(10):777-793.
    [47] Gottardo L, Bernard S, Gervais C, Weinmann M, Miele P. Study of theIntermediate Pyrolysis Steps and Mechanism Identification of Polymer-Derived SiBCN Ceramics[J]. Journal of Materials Chemistry,2012,22(34):17923-17933.
    [48] Riedel R, Mera G, Hauser R, Klonczynski A. Silicon-Based Polymer-DerivedCeramics: Synthesis Properties and Applications-A Review[J]. Journal of theCeramic Society of Japan,2006,114(1330):425-444.
    [49] Kumar R, Rixecker G, Aldinger F. Anelasticity of Precursor Derived Si-B-C-NCeramics[J]. Journal of the European Ceramic Society,2007,27(2-3):1475-1480.
    [50] Shriver D F, Drezdz M A. The Manipulation of Air-Sensitive Compounds,2ndEd.[M]. New York: Wiley,1986.
    [51] Gottardo L, Bernard S, Gervais C, Weinmann M, Miele P. Design of theIntermediate Pyrolysis Steps and Controlling Mechanisms of Polymer-DerivedSiBCN Ceramics[J]. Journal of Materials Chemistry,2012,22(34):17923-17933.
    [52] Aldinger F, Weinmann M, Bill J. Precursor-Derived Si-B-C-N Ceramics[J].Pure and applied chemistry,1998,70(2):439-448.
    [53] Jansen M, Jongermann H. A New Class of Promising Ceramics Based onAmorphous Inorganic Networks[J]. Current Opinion in Solid State andMaterials Science,1997,2(2):150-157.
    [54] Sneddon L G, Brunner A R, Su K, Moyer E S. Synthesis, Characterization, andCeramic Conversion Reactions of Pinacolborane-Modified Polyvinylsiloxane:A New Polymeric Precursor to Boron-Modified SiC.[J]. Abstracts of Papers ofthe American Chemical Society,1999,218: U846-U846.
    [55] Su K, Remsen E E, Zank G A, Sneddon L G. Synthesis, Characterization, andCeramic Conversion Reactions of Borazine-Modified Hydridopolysilazanes-New Polymeric Precursors to SiNCB Ceramic Composites[J]. Chemistry ofMaterials,1993,5(4):547-556.
    [56] Jeon J K, Nghiem Q D, Kim D P, Lee J. Olefin Hydroboration of Borazine withVinylsilanes as Precursors of Si-B-C-N Ceramics[J]. Journal of OrganometallicChemistry,2004,689(14):2311-2318.
    [57] Haberecht J, Krumeich F, Grutzmacher H, Nesper R. High-Yield MolecularBorazine Precursors for Si-B-N-C Ceramics[J]. Chemistry of Materials,2004,16(3):418-423.
    [58] Fan X L, Feng C X, Song Y C, Li X D. Preparation of Si-C-O-N-B CeramicFibers from Polycarbosilane[J]. Journal of Materials Science Letters,1999,18(8):629-630.
    [59] Greil P. Polymer Derived Engineering Ceramics[J]. Advanced EngineeringMaterials,2000,2(6):339-348.
    [60] Kumar R, Phillipp F, Aldinger F. Oxidation Induced Effects on the CreepProperties of Nano-Crystalline Porous Si-B-C-N Ceramics[J]. MaterialsScience and Engineering A-Structural Materials Properties Microstructure andProcessing,2007,445-446(15):251-258.
    [61] Zeman P, apek J, erstvy R, Vl ek J. Thermal Stability of MagnetronSputtered Si-B-C-N Materials at Temperatures up to1700°C[J]. Thin SolidFilms,2010,519(1):306-311.
    [62] apek J, H eben S, Zeman P, Vl ek J, erstvy R, Hou ka J. Effect of the GasMixture Composition on High-Temperature Behavior of Magnetron SputteredSi-B-C-N Coatings[J]. Surface and Coatings Technology,2008,203(5-7):466-469.
    [63] Gengler J J, Hu J, Jones J G, Voevodin A A, Steidl P, Vl ek J. ThermalConductivity of High-Temperature Si-B-C-N Thin Films[J]. Surface andCoatings Technology,2011,206(7):2030-2033.
    [64] Kalas J, Vernhes R, Hreben S, Vlcek J, Klemberg-Sapieha J E, Martinu L.High-Temperature Stability of the Mechanical and Optical Properties ofSi-B-C-N Films Prepared by Magnetron Sputtering[J]. Thin Solid Films,2009,518(1):174-179.
    [65] Houska J, Vlcek J, Potocky S, Perina V. Influence of Substrate Bias Voltage onStructure and Properties of Hard Si-B-C-N Films Prepared by ReactiveMagnetron Sputtering[J]. Diamond and Related Materials,2007,16(1):29-36.
    [66] Vijayakumar A, Warren A, Todi R, Sundaram K. Photoluminescence from RfSputtered SiCBN Thin Films[J]. Journal of Materials Science: Materials inElectronics,2009,20(2):144-148.
    [67] Vijayakumar A. Investigation of Reactively Sputtered Silicon Carbon BoronNitride (SiCBN) Thin Films for High Temperature Applications[D].2007.
    [68] Suryanarayana C, Klassen T, Ivanov E. Synthesis of Nanocomposites andAmorphous Alloys by Mechanical Alloying[J]. Journal of Materials Science,2011,46(19):6301-6315.
    [69] Yang Z H, Jia D C, Zhou Y, Yu C Q. Fabrication and Characterization ofAmorphous SiBCN Powders[J]. Ceramics International,2007,33(8):1573-1577.
    [70]杨治华. Si-B-C-N机械合金化粉末及陶瓷的组织结构与高温性能[D].哈尔滨:哈尔滨工业大学,2008.
    [71] Yang Z H, Jia D C, Zhou Y, Zhang J X. Processing and Characterization ofSiB0.5C1.5N0.5Produced by Mechanical Alloying and Subsequent Spark PlasmaSintering[J]. Materials Science and Engineering A,2008,488(1-2):241-246.
    [72] Yang Z H, Zhou Y, Jia D C, Meng Q C. Microstructures and Properties ofSiB0.5C1.5N0.5Ceramics Consolidated by Mechanical Alloying and HotPressing[J]. Materials Science and Engineering A,2008,489(1-2):187-192.
    [73] Müller A, Zern A, Gerstel P, Bill J, Aldinger F. Boron-ModifiedPoly(Propenylsilazane)-Derived Si-B-C-N Ceramics: Preparation and HighTemperature Properties[J]. Journal of the European Ceramic Society,2002,22(9-10):1631-1643.
    [74] Funayama O, Nakahara H, Okoda M, Okumura M, Isoda T. ConversionMechanism of Polyborosilazane into Silicon Nitride-Based Ceramics[J].Journal of Materials Science,1995,30(2):410-416.
    [75] Gao Y, Mera G, Nguyen H, Morita K, Kleebe H-J, Riedel R. Processing RouteDramatically Influencing the Nanostructure of Carbon-Rich SiCN and SiBCNPolymer-Derived Ceramics. Part I: Low Temperature ThermalTransformation[J]. Journal of the European Ceramic Society,2012,32(9):1857-1866.
    [76] Tavakoli A H, Gerstel P, Golczewski J A, Bill J. Effect of Boron on theCrystallization of Amorphous Si-(B-)C-N Polymer-Derived Ceramics[J].Journal of Non-Crystalline Solids,2009,355(48-49):2381-2389.
    [77] Bunjes N, Muller A, Sigle W, Aldinger F. Crystallization of Polymer-DerivedSiC/BN/C Composites Investigated by TEM[J]. Journal of Non-CrystallineSolids,2007,353(16-17):1567-1576.
    [78] Christ M, Zimmermann A, Zern A, Weinmann M, Aldinger F. HighTemperature Deformation Behavior of Crystallized Precursor-DerivedSi-B-C-N Ceramics[J]. Journal of Materials Science,2001,36(24):5767-5772.
    [79] Muller A, Peng J Q, Seifert H J, Bill J, Aldinger F. Si-B-C-N CeramicPrecursors Derived from Dichlorodivinylsilane and Chlorotrivinylsilane.2.Ceramization of Polymers and High-Temperature Behavior of CeramicMaterials[J]. Chemistry of Materials,2002,14(8):3406-3412.
    [80] Franke R, Bender S, Jungermann H, Kroschel M, Jansen M. The Determinationof Structural Units in Amorphous Si-B-N-C Ceramics by Means of Si, B, Nand C K-XANES Spectroscopy[J]. Journal of Electron Spectroscopy andRelated Phenomena,1999,101-103:641-645.
    [81] Gastreich M, Reinhardt S, Doerr M, Marian C M. Modeling Si/B/N/(C)Ceramic Materials[J]. NIC Symposium2001, Proceedings,2002,123-134.
    [82] Jeschke G, Kroschel M, Jansen M. A Magnetic Resonance Study on theStructure of Amorphous Networks in the Si-B-N(-C) System[J]. Journal ofNon-Crystalline Solids,1999,260(3):216-227.
    [83] Gervais C, Babonneau F, Ruwisch L, Hauser R, Riedel R. Solid-State NMRInvestigations of the Polymer Route to SiBCN Ceramic[J]. Candan Journal ofChemistry,2003,81(11):1359-1369.
    [84] Sigle W, Kr mer S, Varshney V, Zern A, Eigenthaler U, Rühle M. PlasmonEnergy Mapping in Energy-Filtering Transmission Electron Microscopy[J].Ultramicroscopy,2003,96(3-4):565-571.
    [85] Zern A, Mayer J, Janakiraman N, Weinmann M, Bill J, Ruhle M. QuantitativeEftem Study of Precursor-Derived Si-B-C-N Ceramics[J]. Journal of theEuropean Ceramic Society,2002,22(9-10):1621-1629.
    [86] Muller A, Gerstel P, Weinmann M, Bill J, Aldinger F. Correlation of BoronContent and High Temperature Stability in Si-B-C-N Ceramics[J]. Journal ofthe European Ceramic Society,2000,20(14-15):2655-2659.
    [87] Seifert H J, Peng J Q, Golczewski J, Aldinger F. Phase Equilibria ofPrecursor-Derived Si-(B-)C-N Ceramics[J]. Applied Organometallic Chemistry,2001,15(10):794-808.
    [88] Sarkar S, Gan Z, An L, Zhai L. Structural Evolution of Polymer-DerivedAmorphous SiBCN Ceramics at High Temperature[J]. The Journal of PhysicalChemistry,2011,115(50):24993-25000.
    [89] Gao D, Zhang F, Zhang Y, Song Y. The Microstructure, ChemicalCharacteristic and Crystallization Behavior of the Polymer Derived Si-B-C-NAmorphous Ceramic[J]. International Journal of Advanced ManufacturingTechnology,2010,24(15-16):3263-3268.
    [90] Gerstel P, Muller A, Bill J, Aldinger F. Synthesis and High-TemperatureBehavior of Si/B/C/N Precursor-Derived Ceramics without "Free Carbon"[J].Chemistry of Materials,2003,15(26):4980-4986.
    [91] Schmidt H, Borchardt G, Kaitasov O, Lesage B. Atomic Diffusion of Boronand Other Constituents in Amorphous Si-B-C-N[J]. Journal of Non-CrystallineSolids,2007,353(52-54):4801-4805.
    [92] Jalowiecki A, Bill J, Aldinger F. Interface Characterization of NanosizedB-Doped Si3N4/SiC Ceramics[J]. Composites Part A: Applied Science andManufacturing,1996,27(9):717-721.
    [93] Vlcek J, Hreben S, Kalas J, Capek J, Zeman P, Cerstvy R, Perina V, SetsuharaY. Magnetron Sputtered Si-B-C-N Films with High Oxidation Resistance andThermal Stability in Air at Temperatures above1500oC[J]. Journal of VacuumScience&Technology A,2008,26(5):1101-1108.
    [94] Kumar N V R, Mager R, Cai Y, Zimmermann A, Aldinger F. High TemperatureDeformation Behaviour of Crystallized Si-B-C-N Ceramics Obtained from aBoron Modified Poly(Vinyl)Silazane Polymeric Precursor[J]. ScriptaMaterialia,2004,51(1):65-69.
    [95] Zimmermann A, Bauer A, Christ M, Cai Y, Aldinger F. High-TemperatureDeformation of Amorphous Si-C-N and Si-B-C-N Ceramics Derived fromPolymers[J]. Acta Materialia,2002,50(5):1187-1196.
    [96] Kumar R, Eswarapragada C, Zimmermann A, Aldinger F. High TemperatureCompression Creep Behavior of Amorphous Si-B-C-N Ceramics in ControlledAtmosphere[J]. Ceramic Materials and Components for Energy andEnvironmental Applications,2010, DOI:10.1002/9780470640845.ch9780470640840.
    [97] Bharadwaj L, Fan Y, Zhang L G, Jiang D P, An L N. Oxidation Behavior of aFully Dense Polymer-Derived Amorphous Silicon Carbonitride Ceramic[J].Journal of the American Ceramic Society,2004,87(3):483-486.
    [98] Baldus H P, Jansen M. Novel High-Performance Ceramics-AmorphousInorganic Networks from Molecular Precursors[J]. Angewandte ChemieInternational Edition in English,1997,36(4):328-343.
    [99] Baldus P, Jansen M, Sporn D. Ceramic Fibers for Matrix Composites inHigh-Temperature Engine Applications[J]. Science,1999,285(5428):699-703.
    [100] Jansen M, Jaschke B, Jaschke T J. Amorphous Mulitnary Ceramics in theSi-B-N-C System[J]. Structure and bonding,2002,101:137-191.
    [101] Butchereit E, Nickel K G, Muller A. Precursor-Derived Si-B-C-N Ceramics:Oxidation Kinetics[J]. Journal of the American Ceramic Society,2001,84(10):2184-2188.
    [102] Cinibulk M K, Parthasarathy T A. Characterization of OxidizedPolymer-Derived SiBCN Fibers[J]. Journal of the American Ceramic Society,2001,84(10):2197-2202.
    [103] Petrman V, Houska J, Kos S, Calta P, Vlcek J. Effect of Nitrogen Content onElectronic Structure and Properties of SiBCN Materials[J]. Acta Materialia,2011,59(6):2341-2349.
    [104] J Houska S K. SiBCN Materials for High-Temperature Applications:Atomistic Origin of Electrical Conductivity[J]. Journal of Applied Physics,2010,108(8):083711-083711.083717.
    [105] Hermann A M, Wang Y T, Ramakrishnan P A, Balzar D, An L N, Haluschka C,Riedel R. Structure and Electronic Transport Properties of Si-(B)-C-NCeramics[J]. Journal of the American Ceramic Society,2001,84(10):2260-2264.
    [106] Ramakrishnan P A, Wang Y T, Balzar D, An L A, Haluschka C, Riedel R,Hermann A M. Silicoboron-Carbonitride Ceramics: A Class of High-Temperature, Dopable Electronic Materials[J]. Applied Physics Letters,2001,78(20):3076-3078.
    [107] Cizek J, Vlcek J, Potocky S, Houska J, Soukup Z, Kalas J, Jedrzejowski P,Klemberg-Sapieha J E, Martinu L. Mechanical and Optical Properties ofQuaternary Si-B-C-N Films Prepared by Reactive Magnetron Sputtering[J].Thin Solid Films,2008,516(21):7286-7293.
    [108] Li W, Wang J, Xie Z, Wang H. A Novel Polyborosilazane for High-Temperature Amorphous Si-B-N-C Ceramic Fibres[J]. Ceramics International,2012,38(8):6321-6326.
    [109] Yan X-B, Gottardo L, Bernard S, Dibandjo P, Brioude A, Moutaabbid H,Miele P. Ordered Mesoporous Silicoboron Carbonitride Materials ViaPreceramic Polymer Nanocasting[J]. Chemistry of Materials,2008,20(20):6325-6334.
    [110] Majoulet O, Alauzun J G, Gottardo L, Gervais C, Schuster M E, Bernard S,Miele P. Ordered Mesoporous Silicoboron Carbonitride Ceramics fromBoron-Modified Polysilazanes: Polymer Synthesis, Processing andProperties[J]. Microporous and Mesoporous Materials,2011,140(1-3):40-50.
    [111] Wideman T, Fazen P J, Su K, Remsen E E, Zank G A, Sneddon L G.Second-Generation Polymeric Precursors for BN and SiNCB CeramicMaterials[J]. Applied Organometallic Chemistry,1998,12(10-11):681-693.
    [112] Bernard S, Weinmann M, Gerstel P, Miele P, Aldinger F. Boron-ModifiedPolysilazane as a Novel Single-Source Precursor for SiBCN Ceramic Fibers:Synthesis, Melt-Spinning, Curing and Ceramic Conversion[J]. Journal ofMaterials Chemistry,2005,15(2):289-299.
    [113] Lee S H, Weinmann M, Gerstel P, Aldinger F. Extraordinary Thermal Stabilityof SiC Particulate-Reinforced Polymer-Derived Si-B-C-N Composites[J].Scripta Materialia,2008,59(6):607-610.
    [114] Lee S H, Weinmann M, Aldinger F. Processing and Properties of C/Si-B-C-NFiber-Reinforced Ceramic Matrix Composites Prepared by PrecursorImpregnation and Pyrolysis[J]. Acta Materialia,2008,56(7):1529-1538.
    [115] Huang X, Li Y, Li S, Tang X. Preparation and Properties of SiCNanocrystallite Reinforced Amorphous Si-B-C-N Ceramics[J]. KeyEngineering Materials,2012,512-515:785-788.
    [116] Lee S H, Weinmann M. Cfiber/SiCfiller/Si-B-C-NmatrixComposites withExtremely High Thermal Stability[J]. Acta Materialia,2009,57(15):4374-4381.
    [117] Goerkea O, Feikea E, Heinea T, Trampertb A, Schuberta H. Ceramic CoatingsProcessed by Spraying of Siloxane Precursors (Polymer-Spraying)[J]. Journalof the European Ceramic Society,2004,24(7):2141-2147.
    [118] Kern F, Gadow R. Liquid Phase Coating Process for Protective CeramicLayers on Carbon Fibers[J]. Surface and Coatings Technology,2002,151-152:418-423.
    [119] Prasad R M, Iwamoto Y, Riedel R, Gurlo A. Multilayer Amorphous-Si-B-C-N/Gamma-Al2O3/Alpha-Al2O3Membranes for Hydrogen Purification[J].Advanced Engineering Materials,2010,12(6):522-528.
    [120] Nghiem Q D, Jeon J K, Hong L Y, Kim D P. Polymer Derived Si-C-B-NCeramics Via Hydroboration from Borazine Derivatives and Trivinylcyclotr-isilazane[J]. Journal of Organometallic Chemistry,2003,688(1-2):27-35.
    [121] Suryanarayana C. Mechanical Alloying and Milling[J]. Progress in MaterialsScience,2001,46(1-2):1-184.
    [122] Koch C C, Whittenberge J D. Mechanical Milling/Alloying ofIntermetallics[J]. Intermetallics,1996,4(5):339-355.
    [123] Yamamoto T, Kitaura H, Kodera Y, Ishii T, Ohyanagi M, Munir Z A.Consolidation of Nanostructured Beta-SiC by Spark Plasma Sintering[J].Journal of the American Ceramic Society,2004,87(8):1436-1441.
    [124] Yamamoto T A, Ishii T, Kodera Y, Kitaura H, Ohyanagi M, Munir Z A. Effectof Input Energy on Si-C Reaction Milling and Sintering Process[J]. Journal ofthe Ceramic Society of Japan,2004,112(5): S940-S945.
    [125] Benjamin J S, Volin T E. The Mechanism of Mechanical Alloying[J].Metallurgical and Materials Transactions B,1974,5(8):1929-1934.
    [126]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [127] Luo X T, Yang G J, Li C J. Preparation of cBNp/Nicral NanostructuredComposite Powders by A Step-Fashion Mechanical Alloying Process[J].Powder Technology,2012,217(591-598.
    [128] Zahrani E M, Fathi M H. The Effect of High-Energy Ball Milling Parameterson the Preparation and Characterization of Fluorapatite NanocrystallinePowder[J]. Ceramics International,2009,35(6):2311-2323.
    [129] Zhang D L. Processing of Advanced Materials Using High-EnergyMechanical Milling[J]. Progress in Materials Science,2004,49(3-4):537-560.
    [130] Gregg S, Sing K S W. Adsorption, Surface Area, and Porosity[M]. London:Academic Press,1982.
    [131] Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and PorousSolids[M]. London: Academic Press,1999.
    [132] Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J,Siemieniewska T. Reporting Physisorption Data for Gas/Solid Systems, withSpecial Reference to the Determination of Surface Area and Porosity[J]. Pureand applied chemistry,1985,57(4):603-619.
    [133] Brunauer S, Emmett P H, Teller E. Adsorption of Gases in MultimolecularLayers[J]. Journal of the American Chemical Society,1938,60(2):309-319.
    [134] Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume andArea Distributions in Porous Substances. I. Computations from NitrogenIsotherms[J]. Journal of the American Chemical Society,1951,73(1):373-380.
    [135] Martina L, Martinez H, Ulldemolins M, Pecquenard B, Cras F L. Evolution ofthe Si Electrode/Electrolyte Interface in Lithium Batteries Characterized byXPS and AFM Techniques: The Influence of Vinylene Carbonate Additive[J].Solid State Ionics,2012,215(14):36-44.
    [136] Guimon C, Gonbeau D, Pfister-Guillouzo G, Dugne O, Guette A, Naslain R,Lahaye M. XPS Study of BN Thin Films Deposited by CVD on SiC PlaneSubstrates[J]. Surface and Interface Analysis,1990,16(1-12):440-445.
    [137] Ronning C, Feldermann H, Merk R, Hofsass H, Reinke P, Thiele J-U. CarbonNitride Deposited Using Energetic Species: A Review on XPS Studies[J].Physical Review B,1998,58(4):2207-2215.
    [138] Merle-Mbjean T, Abdelmounim E, Quintard P. Oxide Layer on SiliconCarbide Powder: A FT-IR Investigation[J]. Journal of Molecular Structure,1995,349(1):105-108.
    [139] Baraton M I, El-Shall M S. Synthesis and Characterization of NanoscaleMetal Oxides and Carbides: II. Micro-Raman and FT-IR Surface Studies of aSilicon Carbide Powder[J]. Nanostractured Materials,1995,6(1-4):301-304.
    [140] Muller E, Hilbig A, Wenzel R, Trommer K, Roewer G, Sciurova O, Miklas J R.Amorphous SiC: H-Layers from Precursors[J]. Advanced EngineeringMaterials,2002,4(11):880-883.
    [141] Schuhmacher J, Berger F, Weinmann M, Bill J, Aldinger F, Muller K.Solid-State NMR and FT IR Studies of the Preparation of Si-B-C-N Ceramicsfrom Boron-Modified Polysilazanes[J]. Applied Organometallic Chemistry,2001,15(10):809-819.
    [142] Lebrun J M, Missiaen J M, Pascal C. Elucidation of Mechanisms InvolvedDuring Silica Reduction on Silicon Powders[J]. Scripta Materialia,2011,64(12):1102-1105.
    [143] Gubicza J, Nauyoks S, Balogh L, Labar J, Zerda T W, Ungár T. Influence ofSintering Temperature and Pressure on Crystallite Size and Lattice DefectStructure in Nanocrystalline SiC[J]. Journal of Materials Research,2007,22(5):1314-1321.
    [144] Berckmans S, Auvray L, Ferro G, Cauwet F o, Soulière V, Collard E,Brylinski C. Investigation of3C-SiC Growth on Si(111) by Vapor-Liquid-Solid Transport Using A Sige Liquid Phase[J]. Journal of Crystal Growth,2012,354(1):119-128.
    [145] Shirai K, Yamamoto T, Ohyanagi M, Munir Z A. Effect of AlN Addition onthe Consolidation of SiC with Stacking-Disordered Structure[J]. Journal ofthe Ceramic Society of Japan,2006,114(2):220-223.
    [146] Stevens R. Defects in Silicon Carbide[J]. Journal of Materials Science,1972,7(5):517-521.
    [147] Seo W-S, Koumoto K, Aria S. Morphology and Stacking Faults of B-SiliconCarbide Whisker Synthesized by Carbothermal Reduction[J]. Journal of theAmerican Ceramic Society,2000,83(10):2584-2592.
    [148] Koumoto K, Takeda S, Pai C H, Sato T, Yanagida H. High-ResolutionElectron Microscopy Observations of Stacking Faults in Beta-SiC[J]. Journalof the American Ceramic Society,1989,72(10):1985-1987.
    [149] Zheleva T, Lelis A, Duscher G, Liu F, Levin I, Das M. Transition Layers at theSiO2/SiC Interface[J]. Applied Physics Letters,2008,93(2):022108-022108.022103.
    [150] Yurdakul H, Gncü Y, Durukan O, Akay A, Seyhan A T, Ay N, Turan S.Nanoscopic Characterization of Two-Dimensional (2D) Boron NitrideNanosheets (BNNSs) Produced by Microfluidization[J]. CeramicsInternational,2012,38(3):2187-2193.
    [151] Sikora A, Bourgeois O, Sanchez-Lopez J C, Rouzaud J N, Rojas T C, Loir A S,Garden J L, Garrelie F, Donnet C. Effect of Boron Incorporation on theStructure and Electrical Properties of Diamond-Like Carbon Films Depositedby Femtosecond and Nanosecond Pulsed Laser Ablation[J]. Thin Solid Films,2009,518(5):1470-1474.
    [152] Wiederhorn S M, Roberts D E, Chuang T J. Damage-Enhanced Creep in aSiliconized Silicon Carbide: Phenomenology[J]. Journal of the AmericanCeramic Society,1988,71(7):602-608.
    [153] C. H. Carter J, Davis R F, Bentley J. Kinetics and Mechanisms ofHigh-Temperature Creep in Silicon Carbide: II, Chemically VaporDeposited[J]. Journal of the American Ceramic Society,1984,67(11):732-740.
    [154]张清纯.结构陶瓷的高温蠕变[J].硅酸盐通报,1988,21(1-4):36-48.
    [155] JR C H C, Davis R F, Bentley J. Kinetics and Mechanisms of High-Temperature Creep in Silicon Carbide: I, Reaction-Bonded[J]. Journal of theAmerican Ceramic Society,1984,67(6):409-417.
    [156] Jorgensen P J, Wadsworth M E, Cutler I B. Oxidation of Silicon Carbide[J].Journal of the American Ceramic Society,1959,42(12):613-616.
    [157] Fox D S. Oxidation Behavior of Chemically-Vapor-Deposited Silicon Carbideand Silicon Nitride from1200oC to1600°C[J]. Journal of the AmericanCeramic Society,1998,81(4):945-950.
    [158]常春,陈传忠,孙文成. SiC的高温抗氧化性分析[J].山东大学学报,2002,32(6):581-585.
    [159] Cofer C G, Economy J. Oxidative and Hydrolytic Stability of Boron Nitride-ANew Approach to Improving the Oxidation Resistance of CarbonaceousStructures[J]. Carbon,1995,33(4):389-395.
    [160] Harris R C A. Oxidation of6H-α Silicon Carbide Platelets[J]. Journal of theAmerican Ceramic Society,1975,58(1-2):7-9.
    [161] Luthra K L. Some New Perspectives on Oxidation of Silicon Carbide andSilicon Nitride[J]. Journal of the American Ceramic Society,1991,74(5):1095-1103.
    [162] Adamsky R F. Oxidation of Silicon Carbide in the Temperature Range1200to1500oC[J]. The Journal of Physical Chemistry,1959,63(2):305-307.
    [163] Opila E J. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbidein Wet Oxygen[J]. Journal of the American Ceramic Society,1994,77(3):730-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700