水电站地下厂房的围岩稳定分析与变形预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于水电站地下厂房开挖跨度大,其构造和受力条件复杂,因此围岩稳定一直都是地下工程领域中的研究重点和难点。由于初始地应力场,岩体本构以及岩体参数都有很强的随机性、模糊性以及非线性,导致传统分析手段不能准确地对地下工程进行计算分析。多门学科交叉,多种手段并用是目前解决地下工程的有力武器。本文运用解析、数值以及智能方法从多个角度对水电站地下厂房的围岩稳定进行分析和评价,为设计和施工提供理论基础和可靠依据。全文的总体内容如下:
     (1) BP神经网络已广泛地应用于岩体力学参数和初始地应力场的反演分析,但在实际应用中,BP网络存在着网络训练易于过度、收敛速度慢、易陷入局部极小以及隐层节点数难以确定等缺点。基于上述原因,本文采用RBF网络作为反分析方法,利用有限差分格式的快速拉格朗日算法进行正分析计算,依据若干测点的应力数据,对计算区域的岩体力学参数以及初始应力场进行多参反演。以呼和浩特抽水蓄能电站的实例来说明RBF网络在反演分析的精度和学习速度方面,均优于传统BP网络的反演算法。
     (2)根据水电站地下厂房所在地域、地质条件以及工期的要求,采用何种开挖方式以及开挖高度,至今水工设计规范上尚没有明确的规定。本文以呼和浩特抽水蓄能电站快速施工方案设计为背景,利用FLAC~(3D)对5层和7层开挖方式进行敏感性分析,以求探讨减少开挖层数,加快施工进度的可行性及工程措施,并对两种开挖方案下的围岩稳定性进行评价,同时对开挖过程中的支护措施给出合理的参考意见。
     (3)基于锚杆的主动支护原理,将锚杆与岩体之间的剪应力转换为作用在洞室内表面上的面压力,将锚固后的岩体视为等效材料。采用Poynting-thomson流变本构模型,利用弹性力学和粘弹性力学推导得出锚固岩体的流变公式。以圆形引水隧洞为算例,应用FLAC~(3D)计算软件对其计算结果进行校核,通过比较可以发现,推导得到的公式不仅计算简单,而且其精度能够满足工程需要。
     (4)自适应网络模糊推理系统(ANFIS)是一种将神经元网络和模糊逻辑有机结合的新型模糊推理系统,采用反向传播算法和最小二乘法的混合算法分别调整前提参数和结论参数,这样充分地利用了神经网络和模糊逻辑的优良特性。本文将ANFIS和水电站地下厂房围岩变形的监测数据相结合,建立水电站围岩变形的预测模型。利用对现场观测数据的学习,对未来的围岩变形进行预测。通过工程实例,说明了该方法的合理性和可行性。
     (5)针对神经网络没有严格理论基础的缺陷,本文将一种改进的支持向量机—精确在线支持向量机(Accurate Online Support Vector Regression)方法应用到水电站地下厂房开挖过程的顶拱围岩变形预测中。以琅琊山抽水蓄能电站地下厂房顶拱变形为例,通过与现场观测值和其他预测方法结果的比较,说明精确在线支持向量机具有很强的学习能力和很高的预测精度。
     通过上述问题的研究,从多角度对围岩的稳定和变形进行了分析和评价,并且得到了有意义的结论和成果,最后本文给出了下一步研究工作的展望。
Since excavation span of underground powerhouse is large, its geologic construct and state of stress is complex, the stabilization of underground powerhouse has always been the main focus in underground engineering. Because of initial stress field of rock masses, constitutive model and material parameters have randomness, fuzziness and strongly nonlinear, which result that underground engineering may not be accurately analyzed and simulated by traditional calculation method. However, along with the development of crossing multi-disciplinary, using diversiform methods are effective weapons to study the characteristic of underground engineering. The paper adopts the analytic solution, numerical methods and intelligent algorithms to analyze and evaluate the stabilization of surrounding rock of underground powerhouse and provides advices for the design and construction. The main contents are as follows:
     (1) At present, BP neural network has been widely used in back analysis of material parameters and initial stress field of rock masses in mechanics. However, BP neural network is prone to be over- trained, slow in convergence, not global minimum but local ones obtained and number of neurons in hidden layer hard to be determined. Due to above problems, the paper adopts RBF neural network and advanced BP neural network to identify mechanical parameters and initial geo-stresses according to actual observed normal stresses of some specific points. Direct computations based on fast Lagrangian analysis of Continuum (FLAC) are performed to get enough training samples for RBF neural network and BP neural network. The example of Hohhot pumped-storage power station shows that the combination of RBF neural network with FLAC is more effective and rapid than the application of BP neural network.
     (2) According to the requirement of terrain tract, geological conditions and project's time limit of underground powerhouse, how to choose a better construction scheme and step has not always been determined by specification for the design of any hydraulic structure. On the base of the project background of Hohhot pumped-storage power station, the paper applies the FLAC~(3D) program to study the deformations, stresses and plastic states separately for five layers and seven layers of excavation height model. Comparing the results of two different models, the stability evaluation of its surrounding rocks has been advanced and some reasonable advices are gained in excavation and supporting.
     (3) Based on active timbering principle of bolt-grouting, shearing strength between bolt-grouting and rock can be transformed into the surface pressure of acting on the inner surface in the cavity and anchor-forced rock is regarded as a equivalent material. Adopting rheological constitutive relation model of Poynting-thomson, the rheological expressions of rock with anchoring force is advanced utilizing elasticity and visco-elasticity. Taking a circular tunnel for example, the precision of the simplified calculation results can satisfy the demand of actual project by checking a precedent with FLAC program.
     (4) Adaptive-Network-based Fuzzy Inference Systems (ANFIS) are new fuzzy inference systems which organically integrate with neural network and fuzzy logic. ANFIS adopt Hybrid learning algorithm of back propopagation algorithm and Least Square estimate method, which adjust premise parameter and conclusion parameter respectively, so as to make full use of excellent characteristic of neural network and fuzzy logic. This paper combines ANFIS and Hydropower Powerhouse surrounding rock deformation monitoring data to establish the forecasting model of Hydropower rock deformation. The future of rock deformation will be predicted by studying on-site observation data. The paper takes Longtan Power Station as engineering background to illustrate the rationality and feasibility of this method.
     (5) As neural network lacks strict theoretical foundation, the "Accurate Online Support Vector Regression" method is applied to study the evolution law for underground powerhouse rock surrounding's stability. For example, the crown's deformation of a pumped-storage power station, comparing with other prediction methods' monitoring results; it shows that the learning efficiency and prediction accuracy of AOSVR is superior to other prediction methods obviously.
     In conclusion, the paper shows that surrounding rock's stability and prediction of deformation have been studied and analyzed from different aspects. Finally a summary is given some problems to be further studied are discussed.
引文
[1] 孙钧.地下工程设计理论与实践.上海:上海科学技术出版社,1996,12.
    [2] 张有天.中国水工地下结构建设50年.西北水电,1999,17(4):8-14.
    [3] 中国水力发电工程—工程地质卷.北京:中国电力出版社.2000.
    [4] 河海大学工程力学系.白鹤滩水电站地下厂房洞室群围岩稳定与支护设计专题研究报告.南京:河海大学.2006,3.
    [5] 巨能攀.大跨度高边墙地下洞室群围岩稳定性及支护方的系统工程地质研究:(博士学位论文).成都2005,12.
    [6] 周维垣,刘怀恒等.高等岩石力学.北京:中国岩石力学与工程学会,1989.
    [7] 薛守义,刘汉东.岩体力学的基本问题与科学方法论.岩石力学与工程学报,1999,15(4):405-406.
    [8] 于学馥,岩石记忆与开挖理论.北京:冶金工业出版社.1993,8.
    [9] 李世辉,隧道围岩稳定系统分析;北京:中国铁道出版社;1991.
    [10] 冯夏庭.智能岩石力学导论.北京:科学出版社,2000.
    [11] 冯夏庭,朱维申.智能岩石力学在地下工程中的应用.岩石力学与工程学报,1999.18(增):822-826.
    [12] 冯夏庭,王泳嘉,林韵梅.地下工程力学综合集成智能分析的理论和方法.岩土工程学报,1997,19(1):30-35.
    [13] 孙钧.世纪之交岩石力学研究的若干进展.广州:广东科技出版社,1998.
    [14] 黄润秋.正确的思维方式是学科发展的源泉.岩石力学与工程学报,1994,13(3):283-287.
    [15] 王思敬.中国岩石力学与工程的世纪成就与历史使命.岩石力学与工程学报,2003,22(6):867-871.
    [16] M. Utagawa, M. Seto and K. Katsuyam. Estimation of initial stress by Deformation Rate Analysis(DRA). Int. J. RockMech. Min. Sci. 1997, 3 (4):501-505.
    [17] 蔡美峰.地应力测量原理和技术(修订版).北京:科学技术出版社,2000.
    [18] 张淖元,王士天,王兰生.工程地质分析原理(第二版).北京:地质出版社,1994.
    [19] 蔡美峰.岩石力学与工程.北京:科学出版社,2002.
    [20] A.J, Bowling. Surface rock stress measurement with a new cylindrical jack. In: Investigation of Stress in Rock-Advances in stress Measurement. The Institution of Engineers, 1976:7-11.
    [21] B.C. Haimson. The hydrofracturing stress measuring technique-method and recent field results in the U.S. In: Investigation of Stress in Rock-Advances in Stress Measurement. The Institution of Engineers, 1976:23-30.
    [22] J. Enever, M.S.E.D. Khhorshid. A note on the use of the hydraulic fracturing technique for estimating in-situ stresses in hard and soft earthen materials. In: Investigation of Stress in Rock Advances in Stress Measurement. The Institution of Engineers, 1976:31-36.
    [23] B.J. Pestman. C.J. Kenter and H.G. Uan Munster. Core-based determination of in-situ stress magnitudes. In: D. Elsworth, J. PTinucci and K.A. Heasley, ed. Rock mechanics in the national interest, Volume Ⅱ.A.A. Balkema, 2001:1353-1360.
    [24] N. Soma, M. Seto. In-situ rock stress measurements by the acoustic emission method using cored samples. In: D. Elsworth, J.P. Tinucci and K.A. Heasley, ed. Rock mechanics in the national interest, Volume Ⅱ. A.A. Balkema, 2001:1381-1388.
    [25] W.L. Van Heerden. Practical application of the CSIR triaxial strain cell for rock stress measurements. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of Engineers, 1976: 1-6.
    [26] R.L. Blackwood, A.J. Hargraves and J. McKay. Absolute stress investigations in coal at Appin Colliery, New South Wales. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of Eneineers. 1976:17-22.
    [27] B.H.B. Brady, R.G. Friday and L.G. Alexander. Stress measurement in a bored raise at the Mount Ise Mine. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of En} ineers, 1976:12-16.
    [28] J. Enever, J. McKay. A note on the relationship between an elastic strain recovery and virgin rock stresses-a possible method of stress measurement. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of Engineers, 1976:37-40.
    [29] W.E. Bamford. Evolution of stresses in rock masses, as related to compressive strengths and plate tectonics. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of Engineers, 1976: 63-70.
    [30] 王思敬,杨志法,刘竹华.地下工程岩体稳定分析.北京:科学出版社,1984.
    [31] 王士天.断层错动机制和构造应力场的赤平投影解及其在区域稳定研究中的应用.(见:王士天等著.复杂环境中地质工:程问题分析的理论与实践.)四川:四川大学出版社,2002.
    [32] E. Hoek and E. T. Brown. Underground excavations in rock. The Institution of Mining and Metallurgy, 1980.
    [33] G. Worotnicki, D. Denham. The state of stress in the upper part of the earth's crust in Australia according to measurements in mines and tunnels and from seismic observations. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of Engineers, 1976:71-82.
    [34] A.M. Myrvang. Practical use of rock stress measurements in Norway. In: Investigation of Stress in Rock—Advances in Stress Measurement. The Institution of Engineers, 1976:92-99.
    [35] Y. Ishijima, T. Goto and S. Kinoshita et al. Monitoring of stress relief boring in Akabira Coal Mine. In: Investigation of Stress in Rock -Advances in Stress Measurement. The Institution of Engineers, 1976:100-106.
    [36] 苏生瑞,黄润秋,王士天.断裂构造对地应力场的影响及其工程应用.北京:科学出版社,2002.
    [37] 邵云惠,孙叶,李咸业等.地质力学在环境地质中的应用.北京:地质出版社,1997.
    [38] 陈庆宣,王维襄,孙叶等.岩石力学与构造应力场分析.地质出版社,1998.
    [39] 陈津民.地球的应力—球壳型重力应力的理论公式.成都地质学院学报,1993(1):109-117.
    [40] 黄醒春.基于弹性球壳理论的原岩应力状态评价.岩土工程学报.1998(4):102-104.
    [41] 冯庆机.河谷地应力场特征的理论研究及在溪洛渡水电工程中的应用.成都理工大学硕士学位论文,2001
    [42] E. Pan, B. Amadei and W.Z. Savage. Gravitational and tectonic stresses in anisotropic rock with irregular topography. Int. J. Rock Mech. Min. Sci. & geomech. Abstr. 1995(3):201-214.
    [43] B. Amadei. Importance of anisotropy when estimating and measuring in situ stresses in rock. Int. J. Rock Mech. Min. Sci. & geomech. Abstr. 1996(3):293-325.
    [44] 周思孟.复杂岩体若干岩石力学问题.北京:水利水电出版社,1998.
    [45] 尚岳全,徐进,陈剑平.南水北调西线区域构造应力场和断层活动性数值模拟.见:工程地质研究进展.西南交通人学出版社,1994:1-16.
    [46] 尚岳全。岩体稳定与区域稳定数值模拟理论与实践:(博士学位论文).成都:成都理工大学,1995.
    [47] 佘成学,熊文林,陈胜宏.边坡初始地应力场的应力函数与有限元联合反演法.武汉水利电力大学学报,1995(4):3f6-371.
    [48] 朱焕春,陶振宇,黄德凡.河谷走向与河谷地应力分布.岩石力学与工程学报,1995(1):17-24.
    [49] 严明,李渝生,王士天.溪洛渡地区区域构造应力场的有限元反演分析.成都理工学院学报,1996(1):26-31
    [50] 蔡美峰,熊顺成,乔兰等.地应力场三维有限元拟合研究.中国矿业,1997(6):42-45.
    [51] 李青麒.初始应力的回归与三维拟合.岩土工程学报,1998(5):68-71.
    [52] 庞作会,陈文胜,邓建辉等.复杂初始应力场的反分析.岩土工程学报,1998(4):44-47.
    [53] 肖明,刘志明.锦屏二级水电站三维地应力场反演回归分析.人民长江,2000(9):42-44.
    [54] 王衍森,吴振业.基于有限元模型的二维地应力求解方法.岩土工程学报,2000(4):426-429.
    [55] 胡斌.深切峡谷区大型地下洞室群围岩稳定性的动态数值仿真研究:(博士学位论文).成都:成都理工大学,2001.
    [56] 杨志法,王思敬,冯紫良等.岩土工程反分析原理及应用.北京:地震出版社,2002.
    [57] 杨林德等.岩土工程问题的反演理论与工程实践.北京:科学出版社,1996.
    [58] 沙瑞华.基于神经网络的水电机组动荷载识别研究:(硕士学位论文).大连:大连理工大学,2005.6.
    [59] 林剑艺.水电站(群)中长期预报及凋度的智能方法研究:(博士学位论文).大连:大连理工大学,2006,5.
    [60] 毛政良,张圣坤.人工神经网络在结构可靠性中的应用.上海交通大学学报.1997.31(11):86-90.
    [61] 蒋云霞.蔡嗣经.神经网络与遗传算法结合在矿业评价中的应用.辽宁工程技术大学学报2006,25(5):777-780.
    [62] 蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析.河海大学学报,2002,30(3):52-56.
    [63] 易达,徐明毅,陈胜宏,葛修润.人工神经网络在岩体初始应力场反演中的应用.岩土力学,2004.25(6):943-946.
    [64] 金长宇,马震岳,张运良等.神经网络在岩体力学参数和地应力场反演中的应用.岩土力学2006,27(8):1263-1266.
    [65] 许传华,任青文.地下工程围岩稳定性分析方法研究进展.金属矿山,2003,23(2):34-37.
    [66] 朱大勇,钱七虎,周早生.复杂形状硐室围岩应力弹性解析分析.岩石力学与工程学报,1999.4.
    [67] 薛琳.直墙拱形隧道围岩粘弹性位移解析解.岩土工程学报,1996.(5):96-101.
    [68] 高谦,乔兰,吴顺川等.地下工程系统分析与设计.北京:中国建材工业出版社,2005,2.
    [69] 梁海波,李仲奎,谷兆祺.FLAC程序及其在我国水电工程中的应用.岩石力学与工程学报,1996,15(3):193-200.
    [70] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997,3.
    [71] 王元淳.边界元法基础.上海:上海大学出版社,1988,9.
    [72] 朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用.上海:同济大学出版社,1997.
    [73] Huang, Ziping; Broch, Einar et al. Cavern roof stability—mechanism of arching and stabilization by rockbolting, Tunneling and Underground Space Technology Volume:17, Issue:3, July, 2002.
    [74] 于学馥,郑颖人,刘怀衡,方正昌.地下工程围岩稳定分析.北京:煤炭工业出版社,1983.
    [75] Tezuka, Masanobu, Seoka et al. Latest technology of underground rock cavern excavation in Japan. Tunneling and Underground Space Technology Volume:18, Issue:2-3 April - June, 2003.
    [76] 谢和平,陈忠辉.岩石力学.北京:科学出版社,2004,5.
    [77] 陶振宇.岩石力学理论与实践.北京:水利出版社,1979.
    [78] 景诗庭.地下结构可靠度分析研究之进展.石家庄铁道学院学报,1995,8(2):13-18.
    [79] 陆兆溱,王京,吕亚平.模糊模式识别法在围岩稳定性分类上的应用.河海大学学报,1991.19(6):97-101.
    [80] 高谦.地下矿山工程围岩稳定性模糊动态聚类分析.工程地质学报,1997,5(3):205-210.
    [81] E.Hoek,E.T.Brown.岩石地下工程.北京:冶金工业出版社,1986.
    [82] E.T. Brown, J.W. Brav, B. Ladanyi, E. Hoek. Ground response curve for rock tunnels. J Geotech. Engineering,1993.109(1):15-39.
    [83] G. Lombardi. Long teen measurement in underground openings and their interpretation with special consideration to the fielogical behavior of the rock. In: Int Symp. on Field Measuremeru in Rock mechanics. 1977:839-859.
    [84] M. Langet. Rheological behavior of rock masses. In: Proc. 4th Congr. ISRM. 1979.
    [85] Tan Tjong-kie(陈宗基), Kang Wen-fa. Lock in stress, creep and dilatancy of rocks and constitutive equqtion. Rock .Mechanics. 1980,13:5-22.
    [86] 陈宗基.关于岩石变形的基本偏微分方程.岩石力学与工程学报,1984,3(1):10-22.
    [87] 章根德,何鲜,朱维耀.岩石介质流变学.北京:科学出版社,1999.
    [88] 林德彰,刘宝探.巷道岩体一支护体系线性流变学研究.地下工程,1982(9):22-27.
    [89] 孙钧,李永盛.岩石流变力学及其工程应用.沈阳:东北工学出版社,1989.
    [90] 范广勤.岩土工程流变力学.北京:煤炭工业出版社,1993.
    [91] 郭志.软岩流变过程与强度研究.工程地质学报,1996,4(1):75-79.
    [92] 王子潮,王绳祖.岩石幂次蠕变律常数的实验测定.岩石力学与工程学报,1989,8(3):191-199.
    [93] 夏才初,刘大安.理论流变模型及其统一模型研究.见:中国岩石力学与工程学会第五次学术大会论文集.北京:中国科学技术出版社,1998,134-140.
    [94] V.L.Kubetsky.裂隙岩石和半固结岩石材料的某些蠕变规律.见:第四届国际岩石力学会议论文集.北京:冶金工业出版社,1985.
    [95] 金长宇,马震岳,邵龙潭等.锚固支护软弱围岩的流变分析.水力发电学报,2006,25(5):88-91.
    [96] 刘全林,杨敏.软弱围岩巷道锚注支护机理及其变形分析.岩石力学与工程学报,2002,21(8):1156~1161.
    [97] 陈胜宏,Peter EGGER.加锚节理岩体流变模型及三维弹粘性有限元分析,水利学报,1998,941-47.
    [98] 张玉军,刘谊平.锚固正交各向异性岩体的三维弹塑性有限元模型分析,岩石力学与工程学报,2002,21(8):1115-1119.
    [99] 蔡永昌,朱合华,李晓军.一种用于锚杆支护数值模拟的单元处理方法,岩石力学与工程学报.2003,22(7):1137-1140.
    [100] 强晟.三维弹粘塑性复合单元法研究:(博士学位论文).武汉:武汉大学,2005.
    [101] 李斯海.枫林1号隧道施工监测与围岩变形分析.隧道与地下工程,1989,10(3).
    [102] 刘怀恒.地下工程位移反分析原理应用及其发展.西安矿业学院学报,1988,8(3):1-10.
    [103] 林跃忠,林登阁.巷道表面收敛变形的预测研究,岩石力学与工程报,2002,21(增):2084-2086.
    [104] 李文秀.地下开挖地表移动的模糊数学分析.岩土工程学报,1991,13(2):21-30.
    [105] 陈子荫.时间序列分析一种预报岩体力学行为的可能途径.岩土工程学报,1991,13(4):87-95.
    [106] 高玮.岩土工程反分析的计算智能研究:(博士学位论文).重庆:后勤工程学院,2002.6.
    [107] 张治强,冯夏庭,杨成祥等.非线性位移时间序列分析的遗传-神经网络方法.东北大学学报,1999,20(4):422-425.
    [108] 冯夏庭,张治强.长江三峡工程永久船闸高边坡开挖变形的智能预测.辽宁工程技术大学学报.1999,18(5):463-465.
    [109] 冯夏庭,王泳嘉.岩石力学的一种集成智能理论模型.东北大学学报(自然科学版),1995,16(1):1-5.
    [110] 高玮,郑颖人.岩土工程中的几种位移预测方法探讨.中国岩石力学与工程学会编.中国岩石力学与工程学会第六次学术大会论文集.北京:中国科学技术出版社,2000:90-93.
    [111] 赵洪波.非线性岩土力学行为的支持向量机研究:(博士学位论文).北京:中国科学院研究生院,2003,6.
    [112] 赵洪波,冯夏庭.支持向量机函数拟合的边坡稳定性估计.岩石力学与工程学报,2003,22(2):241-245.
    [113] 赵洪波,冯夏庭.福宁高速公路八尺门滑坡变形演化规律预测研究.岩土力学,2003,24(4):631-633.
    [114] 张振营.岩土力学.北京:中国水利水电出版社,2000.
    [115] 邵国建.岩体初始地应力场的反演回归分析.水利水电科技进展,2000.20(5):36-38.
    [116] 王仁.构造应力场的反演.北京:北京大学出版社,1982.
    [117] 吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1998.
    [118] 陈允平,王旭蕊,韩宝亮.人工神经网络原理及其应用.中国电力出版社,2002.8.
    [119] 曾静,盛谦,廖红建,冷先伦.佛子岭抽水蓄能水电站地下厂房施工开挖过程的FLAC3D数值模拟.岩土力学.2006,27(4):636-642.
    [120] 孙均.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999.
    [121] 翟淳.岩石学简明教程.北京:地质出版社,1987.
    [122] 钱鸣高,石伍平.矿山压力与岩层控制.徐州:中国矿业大学出版社,2003.
    [123] 周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究.岩石力学与工程学报,2002,21(5):679-683.
    [124] 王祥秋,杨林德.软弱围岩蠕变损伤机理及合理支护时间的反演分析.岩石力学与工程学报,2004,23(5):793-796.
    [125] A. Serrano, C. Olalla. Tensile resistance of rock anchors. International Journal of Rock Mechanics and Mining Sciences. 1999(36):449-474.
    [126] 刘宝琛.矿山岩体力学概论.长沙:湖南科技出版社,1982.
    [127] 肖世洪,靳晓光,线性—非线性GM模型在围岩变形预测中的应用.地下空间与工程学报2006,2(5):781-784.
    [128] 赵洪波.支持向量机在隧道围岩变形预测中的应用.岩石力学与工程学报2005,24(4):649-652.
    [129] 陈秋南,张永兴,赵明华等.基于ε-SVR算法的隧道围岩位移演化规律预测.岩土力学.2006,27(4):591-593.
    [130] 李元松,李新平,张成良.基于BP网络的隧道围岩位移预测方法.岩石力学与工程学报.25(增刊1):2969-2973.
    [131] 曹跃,张成良Elman网络在地下洞室变形预测中的应用.武汉理工大学学报.2006,28(2):49-52.
    [132] 马万权,王新平.神经网络技术在阳宗隧道围岩变形预测中的应用.公路交通技术,2003,(2):56-59.
    [133] 张玉祥.岩土工程时间序列预报问题初探.岩石力学与工程学报,1998,17(5):552-558.
    [134] 常斌,李宁,马玉扩.神经网络方法在洞室施工期应力及变形预测中的应用及其改进.岩石力学与工程学报,2004,23(7):1132-1135.
    [135] 高浪,谢康和.人工神经网络在岩土工程中的应用.土木工程学报,2002,35(4):77-81.
    [136] Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cysbernetics. 1985,15:116-132.
    [137] Sugeno M., Kang G. T. Structure identification of fuzzy model, fuzzy Sets and Systems. 1988,28:15-33.
    [138] 张智星.孙春在.水谷英二.神经-模糊和软计算.西安:西安交通大大学出版社,2000.
    [139] Jang J. S. R. ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactions on Systems, Man, and Cysbernetics. 1993,23 (3):665-685.
    [140] 周佩玲,邢根柳.股市价格趋势预测研究.计算机工程.2002,28(1):136-140.
    [141] 张国江,邱家驹,李继红.基于模糊推理系统的多因素电力负荷预测.电力系统自动化.2002,10:49-53.
    [142] Jang J.S.R. Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm. Ninth National Conference on Artificial Intelligence, 1991:762-767.
    [143] Strobach P. Linear prediction theory: a mathematical basis for adaptive systems. New York:Springer-Verlag, 1990.
    [144] 闻新,周露,李东江.MATLAB模糊逻辑工具箱的分析和应用.北京:科学出版社,2001.
    [145] Mamdani E. H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies. 1975,7 (1):1-13.
    [146] Tsukamoto Y. An approach to fuzzy reasoning method. Amsterdam: North-Holland. 1979.
    [147] 黄席批.张著洪.何传江等.现代智能算法理论及应用.北京:科学出版社.2005.
    [148] Jang J. S. R., Sun C. T. Neuro-fuzzy modeling and control. Proceedings of the IEEE. 1995,83(3):378-406.
    [149] Klassen M., Pao Y. H., Chen V. Characteristics of the functional link net: a higher order delta rule net. IEEE second annual international conference on newel networks, San Diego, USA, 1988:507-513.
    [150] Pao Y. H. Adaptive pattern recognition and neural networks. New York: Addison-Wesley, 1989.
    [151] 赵洪波,冯夏庭.非线性位移时间序列预测的进化-支持向量机方法及应用.岩土工程学报,2003,25(4):468-471.
    [152] 杨典森,陈卫忠,杨为民等.龙滩地下洞室群围岩稳定性分析.岩土力学,25(3):391-395.
    [153] 王平,袁丛华,朱维申.基于地下工程实测结果的位移预报模型.岩土力学,1992,13(4):15-23.
    [154] 陈有亮.非等距时间序列的GM(1,N)模型及其在地下工程中的应用.计算结构力学及其应用,1996,13(4):483—488.
    [155] 靳晓光,李晓红,亢会明等.隧道围岩位移的灰色优化模型预测.重庆大学学报,2002,25(1):1-5.
    [156] Vapnik V, Lerner A.. Pattern Recognition using Generalized Portrait Method. Automation and Remote Control. 1963,24.
    [157] Vapnik. V. Statistical Learning Theory. New York: Springer, 1998.
    [158] Vapnik V N. The nature of statistical learning theory, 2nd ed. New York: springer-verlag, 2000.
    [159] Vladimir N Vapnik. The Nature of Statistical Learning Theory. Ny: Spring-Verlag, 1995.
    [160] 边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2000.
    [161] Osuna E, Freund R, Girosi F. Training Support Vectorto Face Detection. Proc. Of CVPR'97, Puerto RicoMachines: an Application, 1997.
    [162] Blanz V, Scholkopf B, Bullthoff H. et. al. Comparison of View-based Ob jectRecognition Algorithms Using Realistic 3D Models. Artificial Neural Networks一ICANN' 96, Berlin, 1996, 1112: 251-256.
    [163] Brown M, Lewis H G, Gunn S R. Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing.. IEEE Trans. Geoscience and Remote Sensing, 1998.
    [164] Cristianini N.,Shawe—Taylot J.支持向量机导论.北京:电子工业出版社2004.
    [165] 李凯,郭子雪.基于SVM的函数模拟.河北大学学报(自然科学版).2001,21(1):7-8.
    [166] Thissena U., Brakel R. V., Weijer A. P. D., et al. Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems. 2003, 69: 35-49.
    [167] 杨镜非.程浩忠.SVM在电网短期负荷预测中应用研究.电力自动化设备.2004,24(21:30-32.
    [168] 张贵,乔春生应用支持向量机回归确定岩体强度指标.北方交通大学学报,2004,28(1):51-54.
    [169] 陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计.岩石力学与工程学报,2005,24(1):149-153.
    [170] 冯夏庭,赵洪波.岩爆预测的支持向量机.东北大学学报(自然科学版)2002,23(1):57-59.
    [171] K.Y. Liu, C.S. Qiao, S.F. Tian. Design of tunnel shotcrete-bolting support based on a support vector machine. Int. J. Rock Mech. Min. Sci. Vol. 41, No. 3,1-6.
    [172] 余志雄,周创兵,李俊平等.基v-SVR算法的边坡稳定性预测.岩石力学与工程学报,2005,24(14):2468-2475.
    [173] 陈秋南,张永兴,赵明华等.基于ε-SVR算法的隧道围岩位移演化规律预测.岩土力学,2006:27(4):591-593.
    [174] 张学工译.统计学习理论的本质.北京:清华大学出版社,2000.
    [175] 史忠值.知识发现.北京:清华大学出版社,2002.
    [176] 邓乃扬,田英杰.数据挖掘中的新方法—支持向量机.北京:科学出版社,2004.
    [177] 张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42.
    [178] Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998,2(2):121-127.
    [179] C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, 1995,20 (3):273-297.
    [180] Amari S, Wu S. Improving support vector machine classifier by modifying kernel functions. Neural Networks, 1999,12(9):783-789.
    [181] Scholkopf B, Simard P, Smola A J. Prior Knowledge in Support Vector Kernels. Advanced in Neural Information Processings Systems. MA: MIT Press, 1998. 640-646.
    [182] Ma Junshui, Theiler J, Perkins S. Accurate On-line Support Vector Regression. Neural Computation, 2003, (15):2683-2703.
    [183] 田翔,邓飞其.精确在线支持向量回归在股指预测中的应用.计算机工程,2005,31(2):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700