经皮穿刺CPC/FG/OM复合材料股骨头填充联合hBMSCs移植治疗股骨头坏死的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章自体血清培养人骨髓间充质干细胞的可行性评估
     目的:
     胎牛血清体外培养的人骨髓间充质干细胞增加体内移植的风险,限制其临床应用。本部分实验旨在探讨自体血清体外培养人骨髓间充质干细胞的可行性。
     方法:
     全骨髓贴壁培养法分离、纯化人骨髓间充质干原代细胞,取第三代细胞按加入培养血清的不同分为胎牛血清培养组和自体血清培养组。倒置相差显微镜观察两组培养细胞的生长情况;使用MTT法测定两组培养传代第3代细胞和第5代细胞的增殖情况,绘制细胞增殖曲线;取两组培养传代第3代细胞行成软骨细胞、成骨细胞及成脂肪细胞诱导分化,并分别对成软骨细胞行甲苯胺蓝染色、Ⅱ型胶原染色;对成骨细胞行碱性磷酸酶(ALP)染色、VonKossa染色;对成脂肪细胞行油红O染色,并计算两组细胞诱导分化阳性率;取自体血清培养组传代第5代细胞行流式细胞仪测定鉴定细胞表面CD44. CD90抗原表达情况。
     结果:
     倒置相差显微镜下观察全骨髓贴壁法分离纯化的原代细胞形态均一,呈长梭形,两组培养细胞近融合状态均呈漩涡样同向生长特征;MTT测定两组培养第3代及第5代细胞均具备良好的生长增殖潜能,第3-6d是增殖对数增长期,两组细胞增殖无统计学差异;两组培养第3代细胞均能在特定诱导环境下向成软骨细胞、成骨细胞及成脂肪细胞分化,成软骨细胞经甲苯胺蓝染成蓝紫色,Ⅱ型胶原染成黄色;成骨细胞碱性磷酸酶染色(ALP)阳性,VonKossa钙结节染成黑色;成脂肪细胞内经油红O染成红色脂滴,两组诱导分化细胞阳性率无统计学差异;自体血清培养组第5代细胞经流式细胞仪鉴定细胞表面不表达CD34、CD45,而表达CD44、CD90。
     结论:
     全骨髓贴壁培养法操作简单,细胞纯化率高;自体血清培养组细胞保持了骨髓间充质干细胞典型的生长特征、增殖以及诱导分化潜能;自体血清培养组细胞表面不表达造血干细胞表面抗原,而表达骨髓间充质干细胞表面抗原,符合骨髓间充质干细胞特征。
     第二章CPC/FG/OM复合材料的研制及理学性质测定
     目的:
     股骨头坏死是临床治疗上颇为棘手的问题之一。有研究表明坏死股骨头软骨下骨板的支撑是治疗股骨头坏死的关键因素。磷酸钙骨水泥(calcium phosphate cement, CPC)材料是一种兼备修复与成型的骨组织修复材料,具备自固化与骨传导特性。但是由于材料本身的缺陷存在抗压强度低,无骨诱导活性等缺点,限制了其在人体负重区域的临床应用。纤维蛋白胶(fibrin glue, FG)是临床上广泛应用的粘合剂,与CPC复合能够利用其粘性增加CPC的抗压强度。成骨诱导剂(osteogenesis medium, OM)已被证实对骨髓间充质干细胞有着诱导成骨分化的作用。本部分实验旨在研制一种新型的适用于治疗股骨头坏死的填充材料—CPC/FG/OM复合材料,以期复合材料即能够保留单纯CPC材料自固化及优良骨传导性的优点,又能够通过加入FG增强材料的抗压强度以满足人体负重区域抗压强度要求以及加入OM增加材料的成骨诱导活性以改善坏死股骨头内的成骨内环境。
     方法:
     将OM加入FG中制备FG/OM溶液,按照3:1的粉末/液体比例配置CPC/FG/OM复合材料,按照相同的粉末/液体比值配置CPC/FG复合材料及CPC材料作为两组对照组。对三组材料进行扫描电镜观察材料表面结构;XRD晶体分析;凝固时间(吉尔摩针法)、抗压强度、弹性模量(MTS S10力学性能实验机测试)以及孔隙率的测定(阿基米德法)。
     结果:
     三组材料扫描电镜观察发现单纯CPC材料表面孔隙分布均匀,孔隙较小,而CPC/FG及CPC/FG/OM两种复合材料表面孔隙分布不均匀,孔隙尺寸大;XRD分析显示三种材料的XRD曲线与羟基磷灰石相似;CPC/FG及CPC/FG/OM两种材料初凝时间[(6.8±0.5)min,(7.28±0.6)min]明显长于CPC材料[(3.38±0.4)min],差异有统计学意义(P<0.05),三种材料终凝时间差异无统计学差异(P>0.05); CPC/FG及CPC/FG/OM两种材料抗压强度及弹性模量[(8.94±0.5)MPa,(9.1±0.4) MPa;(2.73±0.07)GPa,(2.846±0.1)GPa]明显高于CPC材料组[(5.08±0.5)MPa,(1.064±0.14)GPa],差异有统计学意义(P<0.05);CPC/FG及CPC/FG/OM两种材料孔隙率[(38.64±1.5)%,(37.9±1.4)%]明显低于CPC材料组[(48.82±8.2)%],差异有统计学意义(P<0.05)。
     结论:
     三种材料晶体相与羟基磷灰石一致,证实体内降解产物与人体骨骼无机成分相同;CPC/FG/OM复合材料中OM的加入没有影响其理学性质:凝固时间满足临床经皮穿刺的可注射性要求;抗压强度及弹性模量与CPC/FG复合材料相仿,明显高于CPC材料,达到坏死股骨头软骨下骨板的填充材料抗压强度要求;孔隙率与CPC/FG复合材料相仿,明显低于CPC材料,但是由于其表面呈大尺寸孔隙特征,有利于种子细胞早期帖附。
     第三章CPC/FG/OM复合材料与hBMSCs体外共培养的实验研究
     目的:
     股骨头坏死的治疗涉及到重建生物力学坚强(坏死股骨头软骨下骨板的支撑)和重建生物学坚强(坏死股骨头内源性的修复)。目前骨组织工程以及干细胞工程的兴起使得骨髓间充质干细胞移植成为未来治疗股骨头坏死的新方向。实验二已经证实CPC/FG/OM复合材料满足即时重建坏死股骨头生物力学坚强要求,本部分实验将CPC/FG/OM复合材料与自体血清培养的hBMSCs共培养,探讨CPC/FG/OM复合材料的生物相容性和成骨诱导性能。
     方法:
     三组材料按实验二步骤制备。hBMSCs按实验一步骤准备。将三种材料各放置入24孔板,hBMSCs接种。扫描电镜观察细胞在三组材料上的生长粘附情况;MTT法检测培养第1至7d细胞在三组材料上的生长增殖情况;RT-PCR检测细胞在三组材料中培养7d后的碱性磷酸酶(ALP)、Ⅰ型胶原蛋白(COL-I)、骨钙素(OCN)mRNA的表达水平;并分别检测细胞在三组材料中培养第3d,第7d,第14d碱性磷酸酶活性(pNPP法)以及骨钙素含量(ELISA法)。
     结果:
     扫描电镜观察细胞在三组材料上均可以粘附生长,CPC组细胞间连接较少,CPC/FG和CPC/FG/OM两组细胞间连接多,细胞外基质分泌较多;MTT法检测细胞在CPC/FG和CPC/FG/OM两组增殖较CPC组增殖快;碱性磷酸酶(ALP)、Ⅰ型胶原蛋白(COL-I)、骨钙素(OCN)在CPC/FG/OM组表达最强,CPC/FG组次之,CPC组最弱。
     结论:
     CPC/FG, CPC/FG/OM以及CPC/FG/OM复合材料生物相容性均良好,但是CPC/FG/OM复合材料诱导成骨能力明显高于CPC/FG组与CPC组。
     第四章经皮穿刺CPC/FG/OM复合材料股骨头填充联合hBMSCs移植治疗股骨头坏死的动物实验研究
     目的:
     通过动物实验观察经皮穿刺CPC/FG/OM复合材料股骨头填充联合hBMSCs移植治疗股骨头坏死的效果
     方法:
     采用激素加内毒素法建造新西兰大白兔股骨头坏死动物模型(耳缘静脉注射大肠杆菌内毒素(10ug/kg),并同时在兔臀部肌肉注射甲基泼尼松龙(40mg/kg),共注射3次,每次间隔24h),取股骨头坏死造模成功的24只大白兔随机分为四组,A组:经皮穿刺组(单纯减压组);B组:经皮穿刺+hBMSCs移植组;C组:经皮穿刺CPC/FG/OM复合材料股骨头填充组;D组:经皮穿刺CPC/FG/OM复合材料股骨头填充+hBMSCs移植组。其中每组6只,一侧行手术操作,对侧不进行任何操作作为对照组。在术后第4、8、12w进行影像学评估(x-ray检查评估股骨头坏死转归情况)和组织学评估(HE染色、软骨下骨区域成骨细胞计数和陷窝面积百分比计算)。
     结果:
     A组,B组与对照组比较治疗效果不明显,影像学评估与对照侧无明显差别,早期出现股骨头坏死进展迹象(软骨下骨囊性变区域增多,关节间隙变窄),组织学大体观察示股骨头多处凹陷区域,股骨头色泽变白,HE染色显示坏死股骨头软骨下骨区域少见成骨细胞及骨基质形成,12w软骨下骨区域成骨细胞计数和陷窝面积百分比计算与对照侧比较差异无统计学意义;C组和D组与A组、B组及对照组比较治疗效果明显,12w影像学评估两组治疗侧股骨头圆形外观保持良好,未见股骨头囊性变区域,C组材料影清晰,与骨界限清楚,D组材料影模糊,与骨界限不清楚,周围有新骨生成影像。组织学大体观察示C组治疗侧股骨头色泽发白,D组色泽正常,HE染色示C组较D组髓内新骨基质形成较少,成骨细胞少。治疗12w软骨下骨区域成骨细胞计数和陷窝面积百分比计算与D组比较差异有统计学意义。
     结论:
     动物实验结果显示经皮穿刺CPC/FG/OM复合材料填充联合hBMSCs移植治疗股骨头坏死治疗效果明显,优于髓芯减压组,hBMSCs移植组,单纯CPC/FG/OM复合材料填充组。
Chapter I Evaluation of feasibility of human bone marrow mesenchymal stem cell cultured by autologous serum
     Objective:
     Translations of human bone marrow mesenchymal stem cell cultured by fetal bovine serum have various risks which limit its clinical application. The experiment was to investigate the feasibility of establishing a suitable hBMSCs lines for clinical application cultured by autologous serum instead of fetal bovine serum in vitro.
     Methods:
     The hBMSCs was isolated using whole bone marrow adherent way. The passage3of hBMSCs was devided as two groups according the different culturing serum:group of fetal bovine serum and group of autologous serum. The growth of cells were observed by using inverted phase contrast microscope; the MTT method was used to measured the proliferation of passage3and5, then the results were turned to the cell proliferation curve drawing; the passage3of two groups were taken to differentiating into cartilage cells (toluidine blue staining and collagen Ⅱ staining), osteoblasts cells (alkaline phosphate staining and VonKossa staining) and fat cells (oil red O staining) respectively, the positive rates of cell differentiation of two group were calculated; the passage5of autologous serum group was identified CD34,C44,CD45and CD90antigen expression by flow cytometry.
     Results:
     The hBMSCs purified by whole bone marrow adherent way was observed taking a elongated spindle presentation under inverted phase contrast microscope. Cells of two groups showed a spiral-like matter of growth in near fusion. The results of MTT show that the passage3and5of two groups possessed a good potential for growth and proliferation. The period of logarithmic growth phase was3-6d. There is no statistic difference between the two groups. hBMSCs of two groups can be differentiated into cartilage cells(stained purple by toluidine blue and yellow by collagen II), osteoblasts(stained ALP positive and lack in cell nuclear by VonKossa) and fat cells(stained red lipid droplets by oil red O), the positive rate of cell differentiation show no significant statistic difference between two groups; the passage5cultured by autologous serum was identified the CD44and CD90antigen expression by flow cytometry without CD34and C45expression.
     Conclusions:
     Whole bone marrow adherent culture way is simple and has high purification rate of hBMSCs. The hBMSCs cultured by autologous serum maintained the typical growth characteristics and potentials of proliferation and differentiation of stem cells. The hBMSCs of autologous serum group did not express hematopoietic stem cell surface antigen but BMSCs surface antigen which fit the BMSCs characteristics.
     Chapter II Preparation of CPC/FG/OM composite material and evaluation of its physical properties
     Objective:
     The clinical treatment of femoral head osteonecrosis remains a tough issue. Researches have shown that supporting the subchondral bone of femoral head is a key factor for treatment. Calcium phosphate cement (CPC) is a bone tissue material combined repairing and building, which have properties of self-setting and bone conduction. However, due to defects of CPC materials, CPC has some disadvantages such as low strength and lack of bone inducing activity which limit its clinical application especially in weight-bearing area of human body. Fibrin glue(FG) is widely used in clinical as a excellent adhesives, which can increase compressive strength of the CPC by using its viscosity. Osteogenesis medium(OM) has been proved having capability to differentiate stem cells into osteoblasts. The experiment is to evaluate physical property of a novel material, CPC/FG/OM composite material, for treatment of femoral head osteonecrosis. The novel material was expected to remain properties of self-setting and bone conduction of CPC, along with increased compressive strength by adding FG to fulfill the requirement for support the subchondral bone of femoral head and property of bone induction by adding OM to fulfill the requirement for improving the osteogenic activity in femoral head osteonecrosis.
     Methods:
     OM was added into FG to making FG/OM solution. According to a3:1power/liquid ratio, CPC powder was mixed with FG/OM solution to making CPC/FG/OM composite materials. CPC/FG material and CPC material was made as the same powder/liquid ratio and regarded as two control groups. Evaluation the physical properties include scanning electron microscopy observation; XRD analysis; setting time (Gilmore needle method); compressive strength and elastic modulus(MTS S10mechanical properties testing machine) and porosity(Archimedes method).
     Results:
     Uneven pore distribution and large size pore were observed in both CPC/FG and CPC/FG/OM group comparing with smooth distribution and small size pore in CPC group(SEM). The result of XRD analysis find that the three group has similar crystal phase to hydroxyapatite; the initial setting time of CPC/FG and CPC/FG/OM [(6.8±0.5)min,(7.28±0.6)min]were significantly longer than the CPC group[(3.38±0.4) min](there is significant statistic differences, P<0.05); the final setting time of three group was similar, there is no significant statistic difference among them(P>0.05); the compressive strength and elastic modulus of CPC/FG and CPC/FG/OM [(8.94±0.5)MPa,(9.1±0.4) MPa;(2.73±0.07)GPa,(2.846±0.1)GPa] were significantly higher than the CPC group[(5.08±0.5)MPa,(1.064±0.14)GPa](there is significant statistic differences,P<0.05); the porosity of CPC/FG and CPC/FG/OM [(38.64±1.5)%,(37.9±1.4)%]were significantly lower than the CPC group[(48.82±8.2)%](there is significant statistic differences, P<0.05).
     Conclusions:
     The three groups have similar crystal phase to hydroxyapatite which means the degraded products in vivo is the same as inorganic constitutes of human bone. Adding OM did not influence the physical property of CPC/FG material:setting time reach the property of injectability when applying percutaneous clinical operation; compressive strength and elastic modulus reach the requirement of support the subchondral bone of femoral head; despite of lower porosity, the surface of CPC/FG/OM have large size pore which can easier for early attachment of seed cells.
     ChapterⅢ Evaluation of autologous serum cultured hBMSCs seeding on CPC/FG/OM composite material
     Objective:
     There are two key elements need to be concerned in treatment of femoral head osteonecrosis:rebuilding both the biomechanical strength (supporting the subchondral bone) and biological strength (autologous repairing) of femoral head. The development in both bone tissue engineering and stem cell engineering make it a new direction for treatment of femoral head osteonecrosis-translation of stem cells. Study in chapter II has proved that CPC/FG/OM composite material can be an ideal material to rebuild biomechanical strength of femoral head immediately. This chapter aims to evaluate the biocompatibility and property of bone induction of CPC/FG/OM composite material by culturing autologous serum-cultured hBMSCs with material.
     Methods:
     Preparations of materials were according to same methods described in chapter Ⅱ. Autologous serum-cultured hBMSCs was prepared in ways described in chapter I. Three materials were put into three separated24-well plate with hBMSCs seeding. SEM (scanning electron microscope) was used to observe the growth of cells in three materials. The proliferation of cell were measured by MTT method in the period of1to7-day respectively; mRNA expression of ALP, COL-I and OCN were measured by RT-PCR method; and activity of ALP(pNPP kit) and content of OCN(human OCN ELISA kit) were measured in the period of3-day,7-day and14-day respectively.
     Results:
     hBMSCs were observed in good shape and lots of cell-cell junction in both CPC/FG and CPC/FG/OM group with less junction in CPC group(SEM observation). The proliferations of hBMSCs were significant increased in both CPC/FG and CPC/FG/OM group. The expression of mRNA of ALP, COL-I and OCN was highest in CPC/FG/OM group with CPC/FG lower and CPC lowest. The acticities of ALP were highest in CPC/FG/OM group with CPC/FG lower and CPC lowest. The content of OCN was positive in CPC/FG/OM group after3-day culturation; however it is positive until post-14-day culturation in CPC and CPC/FG group.
     Conclusions:
     CPC/FG/OM composite material has excellent biocompatibility and strong property of bone induction comparing with CPC/FG group and CPC group.
     Chapter IV Animal studies on percutaneous CPC/FG/OM composite material filling combined with translation of hBMSCs in treatment of femoral head osteonecrosis
     Objective:
     Evaluating the effect of percutaneous CPC/FG/OM composite material filling combined with translation of hBMSCs on treatment of femoral head osteonecrosis through animal studies.
     Methods:
     The hormonal combined endotoxin injection method was chosen to establish New Zealand white rabbit model of femoral head osteonecrosis.(Ear vein injection of Escherichia coli endotoxin (lOug/kg) combined with intramuscular injection methyl-prednisolone (40mg/kg in New Zealand white rabbits). After the animal model have been successfully established,24rabbits were randomly divided into four groups:group A: percutaneous group(simple decompression group); group B:percutaneous hBMSCs translation group; group C:pertaneous CPC/FG/OM filling group and group D:percutaneous CPC/FG/OM filling combined with translation of hBMSCs group. Every group has six rabbits. One side was operated and the contralateral side was regarded as the control group with no operation taken. Radiology and histology evaluation were made every4w,8w and12w.
     Results:
     There are no statistic difference among group A,B and control group, radiology exam show that cystic area in subchondral area increased in early stage with narrowing joint space of operation side. The gross view of femoral head show many pit in the femoral head which turn to be a white color in both group, HE staining show that rare intramedullary osteoblasts in the subchondral bone of femoral head and few bone matrix formation, there are no statistic difference about cell count of intramedullary osteoblasts and percentage of bone resorption area among this three group in12w; group C and D have a good effect treatment. Radiology exam show the round shape of femoral head remained in12w and found no cystic lesion in subchondral area of femoral head. Group C has a clearer image of material than group D which has new bone formation image around the material. Gross view of femoral head show white color in group C comparing with the normal color in group D. HE staining show more osteoblasts and new bone matrix formation in group D. More cell count of osteoblasts and less percentage of bone resorption in subchondral area was observed in group D comparing with group C in12w.
     Conclusions:
     Results of the animal study show that percutaneous CPC/FG/OM composite materail filling combined with translation of hBMSCs has a significant effect on dealing with femoral head osteonecrosis, compared with core decompression, hBMSCs translation and CPC/FG/OM filling method.
引文
1.杨述华,许伟华,叶树楠,等.异体螺纹骨笼结合脱钙骨基质和自体骨植入术治疗早期股骨头坏死的临床疗效.中国骨与关节外科,2009,2(2):95-99.
    2. Wang RY, Gao Y, Yang SH, et al. Titanium alloy cage implantation for the treatment of ischemicnecrosis of femoral head in dogs.J Huazhong Univ Sci Technol Med Sci 2008,28(2):163-166.
    3.李军伟,王义生,杨国辉,等.股方肌蒂骨柱加钛网伞状支撑术治疗非创伤性股骨头坏死的初步疗效临床观察.中华骨科杂志,2010,30(1):37-40.
    4. Wang Y, Chai Y, Wang ZG, Zhou YG, Zhang GQ, Chen JY. Superelastic cage implantation:a new technique for treating osteonecrosis of the femoral head with midterm follow-ups. J Arthroplasty.2009 Oct;24(7):1006-1014.
    5. Hernigou P, Poignard A, Zilber S, et al. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop,2009,43(1):40-45.
    6. Leo M, Milena F, Ruggero C, et al. Biophysical stimulation in osteonecrosis of the femoral head. Indian J Orthop,2009,43(1):17-21.
    7. Rijnen WH, Gardeniers JW, Schreurs BW, Buma P.Impacted bone and calcium phosphate cement for repair of femoral head defects:a pilot study. Clin Orthop Relat Res.2007 Jun;459:216-21.
    8. Babhulkar S. Osteonecrosis of femoral head:treatment by core decompression and vascular pedicle grafting. Indian J Orthop,2009,43(1):27-35.
    9. Korompilias AV, Lykissas MG, Beris AE, et al. Vascularised fibular graft in the management of femoral head osteonecrosis:twenty years later. J Bone Join t Surg Br,2009,91(3):287-293.
    10. Jiang HJ, Huang XJ, Tan YC, Liu DZ, Wang L. Core decompression and implantation of calcium phosphate cement/Danshen drug delivery system for treating ischemic necrosis of femoral head at Stages I, II and III of antigen reactive cell opsonization. Chin J Traumatol.2009 Oct; 12(5):285-290.
    11. Wood ML, McDowell CM, Kelley SS. Cementation for femoral head osteonecrosis:a preliminary clinic study. Clin Orthop Relat Res,2003(412): 94-102.
    12. Alenzi FQ, Lotfy M, Tamimi WG, Wyse RK. Review:Stem cells and gene therapy. Lab Hematol 2010; 16:53-73.
    13. Muller I, Vaegler M, Holzw arth C, et al. Secret ion of angiogenic protein s by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis.Leukemia,2008,22 (11):2054-2061.
    14.张宏军,高书图,胡永成,等.髓芯减压术联合自体骨髓干细胞移植治疗股骨头坏死的早期临床观察.中华骨科杂志,2010,30(1):48-52
    15. Ambard AJ, Mueninghoff L. Calcium phosphate cement:review of mechanical and biological properties. J Prosthodont.2006 Sep-Oct; 15(5):321-8
    16. Brown WE, Chow LC. A new calcium phosphate water setting cement. In:Brown PW, editor. Cements research progress. Westerville, OH:Am CeramSoc; 1986,352-79.
    17. Chow LC. Calcium phosphate cements:chemistry, properties, and applications.Mat Res Soc Symp Proc 2000;599:27-37.
    18. Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci 2008;43:3028-57.
    19. Friedman CD, Costantino PD, Takagi S, Chow LC. Bonesource hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 1998;43B:428-32
    20. Chang CH, Liao TC, Hsu YM, Fang HW, Chen CC, Lin FH.A poly(propylene fumarate)--calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis. Biomaterials.2010 May;31(14):4048-4055.
    21. Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 2002;23:193-202.
    22. Burguera EF, Xu HHK, Takagi S, Chow LC. High early-strength calcium phosphate bone cement:effects of dicalcium phosphate dehydrate and absorbable fibers. J Biomed Mater Res 2005;75A:966-75.
    23. Zhang Y, Xu HHK. Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. J Biomed Mater Res 2005;75A:832-40.
    24. Xu HHK, Weir MD, Simon CG Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 2008;24:1212-22.
    25. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem 2005;70:247-299.
    26. Ceng Cui, Jie Li, Wei Lei, et al. The mechanical and biological properties of an injectable calcium phosphate cement fibrin glue composite for bone regeneration.J Bio Mater Res.2009,11(10):377-385.
    27. Lee HS, Huang GT, Chiang H,et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis.Stem Cells. 2003;21(2):190-9.
    28. Gangji V, Hauzeur JP. Treatment of os teonecros is of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg 2005; 87 Suppl 1(Pt 1):106-112
    29. Reyes, J.M.,Fermanian, S.,Yang, F.,et al.Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy. Stem Cells 24,1213,2006.
    1. Hasson J. Stem cells, a micro-review. Conn Med 2010; 74:237-240.
    2. Shaw SW, David AL, De Coppi P. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 2011; 23:109-116.
    3. Gaspard N, Vanderhaeghen P. From stem cells to neural networks:recent advances and perspectives for neurodevelopmental disorders. Dev Med Child Neurol 2011;53:13-17.
    4. Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications:a review. Cell Prolif 2011; 44:86-98.
    5. Bersano A, Ballabio E, Lanfranconi S et al. Clinical studies in stem cells transplantation for stroke:a review. In Curr Vasc Pharmacol, Edition 2009/06/03. 2010; 29-34.
    6. Butler KL, Goverman J, Ma H et al. Stem cells and burns:review and therapeutic implications. J Burn Care Res 2010; 31:874-881.
    7. Abdallah BM, Kassem M. Human mesenchymal stem cells:from basic biology to clinical applications. Gene Ther 2008; 15:109-116.
    8. Greco S J, Rameshwar P. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics 2008; 2: 699-705.
    9. Haleem AM, Singergy AA, Sabry D et al. The Clinical Use of Human Culture-Expanded Autologous Bone Marrow Mesenchymal Stem Cells Transplanted on Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects:A Pilot Study and Preliminary Results. Cartilage 2010; 1:253-261.
    10. Lin H, Xu R, Zhang Z et al. Implications of the immunoregulatory functions of mesenchymal stem cells in the treatment of human liver diseases. Cell Mol Immunol 2010; 8:19-22.
    11. Muraki K, Hirose M, Kotobuki N et al. Assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation. Tissue Eng 2006; 12:1711-1719.
    12.路继业,王岩,蔡胥,等.骨髓基质干细胞成骨的研究进展.中华创伤骨科杂志,2004,6(5):578-580.
    13. Liu J, Song L, Zou W et al. [Advances in efficacy and security of expanded mesenchymal stem cells in vitro]. Sheng Wu Gong Cheng Xue Bao 2010; 26: 1629-1635.
    14. Tuschong, L., et al., Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy, in Hum Gene Ther.2002; 1605-1610.
    15. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta:inmplications for cell therapy of bone. Proc Natl Acad Sci USA.2002;99:8932-8937.
    16. Spees JL, Gregory CA, Singh H, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol Ther.2004;9:747-756.
    17. Pittenger F, Mackay A, Beck S, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999; 284:143-147.
    18. Schilling T, Noth U. Plas ticity in adipogenes is and os teogenes is of human mesenchymal s tem cells. Mol Cell Endocrinol 2007;271 (1-2):1-17
    19. Jackson L, Jones DR, Scotting P, et al. Adult mesenchymal stem cells:Differentiation potential and therapeutic applications. J Pos tgrad Med 2007;53(2):121-127
    20. Cho KJ, Trzaska KA, Greco S J et al. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1 alpha. Stem Cells 2005; 23: 383-391.
    21. Bianco P, Robey PGMarrow stromal cells. J Clin Invest.2000; 105(12): 1663-1668.
    22. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells.2004;22(4):487-500.
    23. Can, A. and D. Balci, Isolation, Culture, and Characterization of Human Umbilical Cord Stroma-derived Mesenchymal Stem Cells. Methods Mol Biol, 2011.698:p.51-62.
    24.赵子义,郭希民,王常勇,等.成人骨髓基质干细胞的分离与纯化.中华创伤骨科杂志,2004,6(7):740-743.
    25. Sekiya I, Larson BL, Smith JR, et al. Expansion of human adult stem cells from bone marrow stroma:conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells,2002,20(6):530-541.
    26. Pang, Y., W. Chen, and P. Cui, [Optimal culture of human bone marrow mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2004. 18(3):p.220-224.
    27. Sotiropoulou, P.A., et al.Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells, in Stem Cells.2006. p.462-471.
    28.朱灏,许建中,周强,等.人骨髓间充质干细胞体外增殖及成骨分化的增龄变化.第三军医大学学报,2005,27(1):59-62.
    29.孙晓娟,杨乃龙.成人与胎儿骨髓间充质干细胞生物学性状的比较.中国组织工程研究与临床康复,2009,13(14):2701-2704.
    30. Bonab MM, Alimoghaddam K, Talebian F, et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol.2006;7-14.
    31. Yamamoto N, Isobe M, Negishi A, et al. Effects of autologous serum on osteoblastic differentiation in human bone marrow cell. J Med Dent Sci.2003; 50(1):63-69.
    32. Stute N, Holtz K, Bubenheim M, et al. Autologous serum for isolation and ezpansion of human mesenchymal stem cells for clinical use. Exp Hematol.2004; 32(12):1212-1225.
    33.裴瑛波.骨髓间充质干细胞分离培养和定向分化的研究现状.中国组织工程研究与临床复,2009,13(14):2775-2778.
    34.殷晓雪,陈仲强,郭昭庆,等.人骨髓间充质干细胞定向诱导分化为成骨细胞及其鉴定.中国修复重建外科杂志,2004,18(2):88-91.
    35. Ringe J, Haupl T, Sittinger M. Mesenchymal stem cells for tissue engineering of bone and cartilage. Med Klin(Munich).2003;98(2):35-40.
    36.张媛,陈立梅,张雷,等.成人自体血清体外扩增培养骨髓间充质干细胞的生物学特性分析.中国组织工程研究与临床康复.2007,28(11),5523-5526.
    37. Porter JR, Ruckh TT, Popat KC.Bone tissue engineering:a review in bone biomimetics and drug delivery strategies. Biotechnol Prog.2009 Nov-Dec;25(6):1539-1560.
    38. Stevens B, Yang Y, Mohandas A,et al.A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues.J Biomed Mater Res B Appl Biomater.2008May;85(2):573-582.
    39. El-Ghannam A.Bone reconstruction:from bioceramics to tissue engineering. Expert Rev Med Devices.2005 Jan;2(1):87-101.
    40. Tanner KE.Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H.2010 Dec;224(12):1359-1372.
    41. Bhatia SK.Tissue engineering for clinical applications.Biotechnol J.2010 Dec;5(12):1309-1323.
    42. Buckley PD, Gearen PF, Petty RW. Structural bone-grafting for early atraumatic avascular necrosis of the femoral head. J Bone Jonit Surg Am. 1991:73(9):1357-1364
    43. Wan J, Zhang XS.Percutaneous femoral head arthroplasty using calcium phosphate cement maybe a more feasible way to cure avascular necrosis of femoral head:Comment on "Calcium phosphate cement to prevent collapse in avascular necrosis of the femoral head".Med Hypotheses.2010 Jul;75(1):132.
    44. Ng VY, Granger JF, Ellis TJ.Calcium phosphate cement to prevent collapse in avascular necrosis of the femoral head. Med Hypotheses.2010 Apr;74(4):725-6.
    45. Chu TMG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002; 23:1283-1293.
    46. Miranda P, Pajares A, Saiz E, et al. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting.J Biomed Mater Res 2007;83A:646-655.
    47. Hing KA, Best SM, Bonfield W. Characterization of porous hydroxyapatite. J Mater Sci Mater Med 1999;10:135-145.
    48. Pilliar RM, Filiaggi MJ, Wells JD,et al. Porous calcium polyphosphate scaffolds for bone substitute applications-in vitro characterization.Biomaterials 2001;22: 963-972.
    49. Ambard AJ, Mueninghoff L. Calcium phosphate cement:review of mechanical and biological properties. J Prosthodont.2006 Sep-Oct; 15(5):321-328.
    50. Brown WE, Chow LC. Anew calcium phosphate water setting cement. In:Brown PW, editor. Cements research progress. Westerville, OH:Am CeramSoc; 1986,352-379.
    51. Chow LC. Calcium phosphate cements:chemistry, properties, and applications.Mat Res Soc Symp Proc 2000;599:27-37.
    52. Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci 2008;43:3028-3057.
    53. Friedman CD, Costantino PD, Takagi S, Chow LC. Bonesource hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 1998;43B:428-432.
    54. Xu HHK, Quinn JB. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 2002;23:193-202.
    55. Burguera EF, Xu HHK, Takagi S, Chow LC. High early-strength calcium phosphate bone cement:effects of dicalcium phosphate dehydrate and absorbable fibers. J Biomed Mater Res 2005;75A:966-975.
    56. Zhang Y, Xu HHK. Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. J Biomed Mater Res 2005;75A:832-840.
    57. Xu HHK, Weir MD, Simon CG Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 2008;24:1212-22.
    58. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem 2005;70:247-299.
    59. Zhu SJ, Choi BH, Jung JH, et al. A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102:175-179.
    60. Findikcioglu K, Findikcioglu F, Yavuzer R, et al. Effect of platelet-rich plasma and fibrin glue on healing of critical-size calvarial bone defects. J Craniofac Surg 2009;20:34-40.
    61. Hu YS, Fan QY, Ma BA, et al. Structural and mechanical properties of the compound scaffold of calcium phosphate cement and fibrin glue. J Funct Mater 2006;37:607-610.
    62. Ceng Cui, Jie Li, Wei Lei, et al. The mechanical and biological properties of an injectable calcium phosphate cement fibrin glue composite for bone regeneration.J Bio Mater Res.2009,11(10):377-385.
    63. Reyes, J.M.,Fermanian, S.,Yang, F,et al.Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy. Stem Cells 2006;24:1-13.
    64. Niikura T, Miwa M, Sakai Y. et al. Human hemarthrosis derived progenitor cells can differentiate into osteoblast-like cells in vitro,Biochem. Biophys. Res. Commun.,2005:336:1234-1240.
    65. Driessens FCM, Boltong MG, Bemudze O, et al. Formation and setting times of some calcium orthophosphate cements:a pilot study. J Mater Sci Mater Med 1993; 4:503.
    66. Sun L, Xu HH, Takagi S, Chow LC. Fast setting calcium phosphate cement-chitosan composite:Mechanical properties and dissolution rates. J Biomater Appl 2007;21:299-315.
    67. Weir MD, Xu HH. High-strength, in situ-setting calcium phosphate composite with protein release. J Biomed Mater Res A 2008;85:388-396.
    68. Ginebra MP, Fernandez E, Boltong MG,et al. Compliance of an apatitic calcium phosphate cement with the short-term clinical requirements in bone surgery, orthopaedics and dentisry. Clin Mater.1994; 17:99-104.
    69. Bohner M. Calcium orthophosphates in medicine:from ceramics to calcium phosphate cements Calcium. Injury 2000;31(4):S-D37-47.
    70. Bohner M. Reactivity of calcium phosphate cements. J Mater Chem. 2007;17:3980-3986.
    71. Xu HH, Takagi S, Sun L, Hussain L, Chow LC, Guthrie WF, Yen JH. Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair. J Am Dent Assoc 2006; 137:1131-1138.
    72. Schoenfeld CM, Lautenschlager EP, Meyer Jr PR. Mechanical properties of human cancellous bone in the femoral head. Med Biol Eng 1974 May;12:313-317.
    73. Damien, C.J. and Parsons, J.R. Bone Graft and Bone Graft Substitutes:A Review of Current Technology and Applications, J. Appl. Biomater.,1991:2:187-208.
    74.陈执平,齐振熙.髓芯减压空洞充填材料对股骨头应力的影响.苏州大学学报(医学版),2010:30(5):978-981.
    75. J. M. Garcia, M. Doblare,J. Cegonino.Bone remodelling simulation:a tool for implant design. Computational Materials Science.2002,25(1-2),100-114.
    76. Hodgskinson R, Currey JD. Young's modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 1992;3:377-381.
    77.姜文学.2004年国家级股骨头坏死最新治疗进展专题研讨会会议纪要.实用骨科杂志,2005,11(2):190-192
    78. Lee HS, Huang GT, Chiang H,et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells.2003; 21(2): 190-199.
    79. Gangji V, Hauzeur JP. Treatment of os teonecros is of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg 2005; 87 Suppl 1(Pt 1):106-112
    80. J i WF, Tong PJ, Zheng WB, et al. Experimental s tudy on treatment of femoral head necros is with arterial perfus ion of marrow s tem cells.Zhongguo Xiufu Chongjian Waike Zazhi 2004; 24(11):999-1002
    81.杨晓凤,王红梅.经动脉骨髓干细胞移植治疗股骨头坏死63例.中国临床康复,2006,10(13):3-5
    82. Muller I, Vaegler M, Holzwarth C, et al. Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis.Leukemia,2008,22 (11):2054-2061.
    83. Yan ZQ, Chen YS, Li WJ,et al. Treatment of os teonecros is of the femoral head by percutaneous decompres s ion and autologous bone marrow mononuclear cell infusion. Chin J Traumatol 2006; 9(1):3-7
    84.徐晓良,同志勤,王坤正,等bBMP/胶原/珊瑚复合人工骨修复股骨头骨缺损的实验研究[J].骨与关节损伤杂志,2000,15(3):209
    85.张晔,曾炳芳,张长青,等.骨髓间充质干细胞预构人工骨对兔股骨头坏死的 修复作用[J].中国临床康复,2004,8(20):3960-3962
    86. LeGeros RZ. Properties of os teoconductive biomaterials xalcium phosphates. Clin Orthop 2002; 395:81-98
    87.胡建中,毛新展,吕红斌,等.羟基磷灰石/磷酸三钙复合材料成骨细胞载体的体外实验.中国临床康复,2003,7(6):916-917
    88.赵丽君,毛天球,陈富林,等.不同类型骨组织工程支架的比较研究.中国临床康复,2003,7(4):548-549
    89. Kidd KR, Nagle RB, Williams SK, et al. Angiogenes is and neovascularization as sociated with extracellular matrix modified porous implants. J Biomed Res 2002; 59(2):366-377
    90. Ikeda, E., Hirose, M., Kotobuki, N. et al. Osteogenic Differentiation of Human Dental Papilla Mesenchymal Cells, Biochem. Biophys. Res. Commun.,2006: 342:1257-1262.
    91. Saito, A., Suzuki, Y., Kitamura, M. et al. Repair of 20-mm Long Rabbit Radial Bone Defects Using BMP-Derived Peptide Combined With anAlpha-Tricalcium Phosphate Scaffold, J. Biomed. Mater. Res. A,2006:77A:700-706.
    92. Xu, H.H., Weir, M.D. and Simon, C.G Injectable and Strong Nano-Apatite Scaffolds for Cell/Growth Factor Delivery and Bone Regeneration, Dent.Mater., 2008:24:1212-1222.
    93. Kihara, T., Hirose, M., Oshima, A. and Ohgushi, H. Exogenous Type I Collagen Facilitates Osteogenic Differentiation and Acts as a Substrate for Mineralization of Rat Marrow Mesenchymal Stem Cells In Vitro, Biochem.Biophys. Res. Commun.,2006:341:1029-1035.
    94. Jones, J.R., Tsigkou, O., Coates, E.E., Stevens, M.M., Polak, J.M. and Hench, L.L. Extracellular Matrix Formation and Mineralization on a Phosphate-Free Porous Bioactive Glass Scaffold Using Primary Human Osteoblast (HOB) Cells, Biomaterials,2007:28:1653-1663.
    95. Kusumoto K, Bessho K, Fujimura K, et al. Tissue reaction at the implantation of recombinant human bone morphogenetic protein-2 into the skeletal muscle. Int J Tissue React,2005,27(4):181-188.
    96. Meinel L, Hofmann S, Betz O. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials:comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials,2006,27:4993-5002.
    97. Kessler S, Koepp HE, Mayr-Wohlfart U,et al. Bone morphogenetic protein 2 accelerates osteointegration and remodelling of solvent-dehydrated bone substitutes. Arch Orthop Trauma Surg,2004,124(6):410-414.
    98. Kihara, T., Oshima, A., Hirose, M. and Ohgushi, H. Three-Dimensional Visualization Analysis of In Vitro Cultured Bone Fabricated by Rat Marrow Mesenchymal Stem Cells, Biochem. Biophys. Res. Commun.,2004: 316:943-948.
    99. Kitamura, S., Ohgushi, H., Hirose, M., Funaoka, H., Takakura, Y. and Ito, H. Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Cells Cultured on Alumina Ceramics, Artif. Organs.,2004:28:72-82.
    100. Murphy, W.L., Hsiong, S., Richardson, T.P., Simmons, C.A. and Mooney,D.J. Effects of a Bone-Like Mineral Film on Phenotype of Adult Human Mesenchymal Stem Cells In Vitro, Biomaterials,2005:26:303-310.
    101. Mont MA, Hungerford DS. Non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg Am 1995;77:459-474.
    102. Lavernia CJ, Sierra RJ, Grieco FR. Osteonecrosis of the femoral head. J Am Acad Orthop Surg 1999;7:250-261.
    103. Lai KA, Shen WJ, Yang CY, Shao CJ, Hsu JT, Lin RM. The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. J Bone Joint Surg Am 2005;87:2155-2159.
    104.Agarwala S, Jain D, Joshi VR, Sule A. Efficacy of alendronate, a bisphosphonate, in the treatment of AVN of the hip. A prospective open-label study. Rheumatology 2005;44:352-359.
    105. Aaron RK, Steinberg ME. Electrical stimulation of osteonecrosis of the femoral head. Semin Arthroplasty 1991;2:214-221.
    106. Reis ND, Schwartz O, Militianu D, et al. Hyperbaric oxygen therapy as a treatment for stage-I avascular necrosis of the femoral head. J Bone Joint Surg Br 2003;85:371-375.
    107. Linovitz RJ, Pathria M, Bernhardt M, et al.Combined magnetic fields accelerate and increase spine fusion:a doubleblind, randomized, placebo controlled study. Spine 2002;27:1383-1389.
    108. Wang CJ, Wang FS, Huang CC, et al. Treatment for osteonecrosis of the femoral head:comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am 2005;87:2380-2387.
    109. Radke S, Kirschner S, Seipel V,et al. Magnetic resonance imaging criteria of successful core decompression in avascular necrosis of the hip.Skeletal Radiol 2004;33:519-523.
    110. Mont MA, Ragland PS, Etienne G. Core decompression of the femoral head for osteonecrosis using percutaneous multiple snall-diameter drilling. Clin Orthop Relat Res 2004;429:131-138.
    111. Mont MA, Jones LC, Hungerford DS, et al. Non-traumatic osteonecrosis of the femoral head:ten years later. J Bone Joint Surg Am,2006,88(5):1117-1132.
    112. Yoon TR, Song EK, Rowe SM, Park CH. Failure after core decompression in osteonecrosis of the femoral head. Int Orthop 2001;24:316-318.
    113. Song WS, Yoo JJ, K im YM, et al. Results of multiple drilling compared with those of conventional methods of core decompression. Clin Orthop Relat Res, 2007,454(1):139-146.
    114. Steinberg ME, Larcom PG, Strafford B, et al.Core decompression with bone grafting for osteonecrosis of the femoral head.Clin Orthop Relat Res 2001;386:71-78.
    115. Mont MA, Einhorn TA, Sponseller PD, et al. The trapdoor procedure using autogenous cortical and cancellous bone grafts for osteonecrosis of the femoral head. J Bone Joint Surg Br 1998;80:56-62.
    116. Boss JH. Experimentalmodels of osteonecrosis of the femoral head.J Orthop Sci, 2004,9 (5):533-534.
    117. Levin D,Norman D, Zinman C, et al. Osteoaxthritie-like disorder in ratswith vascular dep rivation2induced necrosis of the femoral head. Clin Orthop,1999,195(9):637-647.
    118. Conzemius MG,Brown TD, Zhang Y, et al. Anew animal model of femoral head osteonecrosis:one that p rogresses to human-like me2 chanical failure. J Orthopaedic Research,2002,20 (2):303-309.
    119.熊文,陈安民,郭风劲,等.联合应用创伤和酸碱法制备股骨头缺血性坏死动物模型.中国康复,2007,22(3):153-155.
    120.王江泳,王保芝,崔慧先,等.改良液氮冷冻法制备家兔股骨头坏死模型的形态学研究.河北医科大学学报,2008,29(1):5-7.
    121.彭吾训,龚跃坤,李世和,等.液氮冷冻建立犬股骨头缺损坏死模型的实验研究.中国康复,2005,20(2):76-77.
    122.汪璟,马勇,程细高,等.液氮冷冻治疗仪辅助建立兔股骨头缺血性坏死模型.实用临床医学,2007,8(10):11-13.
    123. Manggold J, Sergi C,Becker K, et al. A new animalmodel of femoral head necrosis induced by intraosseous injection of ethanoi. Lab Anim,2002,36(2):173-180.
    124.李鸿帅,张长青,曾炳芳.酒精灭活性股骨头坏死犬模型中松质骨骨矿密度和三维结构的变化.中国修复重建外科杂志,2008,33(3):281-289.
    125. Irisa T, Yamamoto T,Miyanishi K, et al. Osteonecrosis induced by a single administration of low-dose lipopolysaccharide in rabbits. Elsevier Science, 2001,28(6):641-649.
    126.马焕之,曾炳芳,李晓林,等.甲基强的松联合内毒素诱导兔股骨头缺血坏死的实验研究.中国修复重建外科杂志,2008,22(3):265-269.
    127.杨建平,王黎明,徐燕,等.单次低剂量脂多糖联合甲基强的松龙诱导股骨头坏死的实验研究.中国修复重建外科杂志,2008,22(3):271-275.
    128.彭吾训,王蕾,邓进,等.微波灭活建立兔股骨头坏死模型:最适宜灭活的温度和作用时间的筛选.中国组织工程研究与临床康复,2008,12(2):390-393.
    129. Rijnen WH, Gardeniers JW, Schreurs BW,et al. Impacted bone and calcium phosphate cement for repair of femoral head defects:a pilot study.Clin Orthop Relat Res.2007 Jun;459:216-221.
    130. Wood ML, McDowell CM,et al. Cementation for femoral head osteonecrosis:a preliminary clinic study.Clin Orthop Relat Res.2003 Jul;(412):94-102.
    131.黄相杰,姜红江,刘德忠,等.磷酸钙骨水泥/丹参缓释系统植入治疗股骨头缺血性坏死.中国修复重建外科杂志。2008,22(3):307-310.
    132. Schneider G, Blechschmidt K, Linde D,et al. Bone regeneration with glass ceramic implants and calcium phosphate cements in a rabbit cranial defect model.J Mater Sci Mater Med.2010 Oct;21(10):2853-2859.
    133. Hernigou P, Poignard A, Zilber S, et al. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop,2009,43(1):40-45.
    134. Mukisi Mukaza M, Manicom O, Alexis C, et al. Treatment of sickle cell diseases hip necrosis by core decompression:a prospective case control study. Orthop Traumatol Surg Res,2009,95 (7):498-504.
    1. Buckley PD, Gearen PF, Petty RW. Structural bone -grafting for early atraumatic avascular necrosis of the femoral head. J Bone Jonit Surg Am. 1991:73(9):1357-1364
    2.戴海,曾心一.髓芯减压加骨条植入治疗Ⅰ期股骨头缺血性坏死临床分析临床和实验医学杂志,2008,7(10):33-35.
    3.林志炯,苏培基,伍中庆,等.股骨头坏死髓芯减压加异体腓骨移植术治疗股骨头缺血坏死.中国骨伤,2009,22(8):628-630.
    4. Perdersen DR, Brown TD, Poggie RA. Finite element characterization of a porous tantalum material for treatment of avascular necrosis. Trans Orthop Res Soc.1997,22:598-564.
    5. Bobyn JD, Hacking SA,Chan SP, et al. Characterizaion of a new porous tantalum biomaterial for reconstructive orthopaedic. Presented as a scientific exhibital the Annual Meeting of the American Academy of Orthopaedic Surgens. Anaheim. 1999:4-8
    6. Bobyn JD, Poggie RA, Krygier JJ, et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. J Bone Joint Surg Am. 2004;86(suppl 2):123-129.
    7. Tsao AK, Roberson JR, Christie MJ, et al. Biomechanical and clinical evaluations of a porous tantalum implant for early-stage osteonecrosis. J Bone Jonit Surg Am.2005:87(supply2):22-27
    8. Varitimidis SE, Dimitroulias AP, Karachalios TS, Dailiana ZH, Malizos KN. Outcome after tantalum rod implantation for treatment of femoral head osteonecrosis:26 hips followed for an average of 3 years. Acta Orthop.2009 Feb;80(1):20-5.
    9. Fernandez-Fairen M, Murcia A, Iglesias R, et al. Osteointegration of porous tantalum stems implanted in avascular necrosis of the hip. Acta Ortop Mex.2008 Jul-Aug;22(4):215-21.
    10. Shuler MS, Rooks MD, Roberson JR. Porous tantalum implant in rarly osteonecrosis of the hip:preliminary report on operative, survival, and outcomes results. J Arthroplasty.2007:22:26-31.
    11.杨述华,许伟华,叶树楠,等.异体螺纹骨笼结合脱钙骨基质和自体骨植入术治疗早期股骨头坏死的临床疗效.中国骨与关节外科,2009,2(2):95-99.
    12. Wang RY, Gao Y, Yang SH, et al. Titanium alloy cage implantation for the treatment of ischemicnecrosis of femoral head in dogs.J Huazhong Univ Sci Technol Med Sci 2008,28(2):163-166.
    13.李军伟,王义生,杨国辉,等.股方肌蒂骨柱加钛网伞状支撑术治疗非创伤性股骨头坏死的初步疗效临床观察.中华骨科杂志,2010,30(1):37-40.
    14. Wang Y, Chai Y, Wang ZG, Zhou YG, Zhang GQ, Chen JY. Superelastic cage implantation:a new technique for treating osteonecrosis of the femoral head with midterm follow-ups. J Arthroplasty.2009 Oct;24(7):1006-1014.
    15. Wood ML, McDowell CM, Kelley SS. Cementation for femoral head osteonecrosis:a preliminary clinic study. Clin Orthop Relat Res,2003(412) 94-102.
    16. Chang CH, Liao TC, Hsu YM, Fang HW, Chen CC, Lin FH.A poly(propylene fumarate)--calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis. Biomaterials.2010 May;31(14):4048-4055.
    17. Jiang HJ, Huang XJ, Tan YC, Liu DZ, Wang L. Core decompression and implantation of calcium phosphate cement/Danshen drug delivery system for treating ischemic necrosis of femoral head at Stages I, II and III of antigen reactive cell opsonization. Chin J Traumatol.2009 Oct; 12(5):285-290.
    18. Huang X, Jiang H, Liu D, Zhou Z, et al. Implantation of calcium phosphate cement/Danshen drug delivery system for avascular necrosis of femoral head. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2008 Mar;22(3):307-310
    19. Rijnen WH, Gardeniers JW, Schreurs BW, Buma P.Impacted bone and calcium phosphate cement for repair of femoral head defects:a pilot study. Clin Orthop Relat Res.2007 Jun;459:216-21.
    20. Mukisi Mukaza M, Manicom O, Alexis C, et al. Treatment of sickle cell diseases hip necrosis by core decompression:a prospective case control study. Orthop Traumatol Surg Res,2009,95 (7):498-504.
    21. Mont MA, Jones LC, Hungerford DS, et al. Non-traumatic osteonecrosis of the femoral head:ten years later. J Bone Joint Surg Am,2006,88(5):1117-1132.
    22. Song WS, Yoo JJ, K im YM, et al. Results of multiple drilling compared with those of conventional methods of core decompression. Clin Orthop Relat Res, 2007,454(1):139-146.
    23. Muller I, Vaegler M, Holzwarth C, et al. Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis.Leukemia,2008,22 (11):2054-2061.
    24.张宏军,高书图,胡永成,等.髓芯减压术联合自体骨髓干细胞移植治疗股骨头坏死的早期临床观察.中华骨科杂志,2010,30(1):48-52.
    25. Hernigou P, Poignard A, Zilber S, et al. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop,2009,43(1):40-45.
    26. Babhulkar S. Osteonecrosis of femoral head:treatment by core decompression and vascular pedicle grafting. Indian J Orthop,2009,43(1):27-35.
    27. Korompilias AV, Lykissas MG, Beris AE, et al. Vascularised fibular graft in the management of femoral head osteonecrosis:twenty years later. J Bone Join t Surg Br,2009,91(3):287-293.
    28. Sun LY, Hsieh DK, Lin PC, et al. Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bio electro magnetics, 2010,31(3):209-219.
    29. Martino CF, Perea H, Hopfner U, et al. Effects of weak static magnetic fields on endothelial cells. Bio electro magnetics,2010,31(4):296-301.
    30. Leo M, Milena F, Ruggero C, et al. Biophysical stimulation in osteonecrosis of the femoral head. Indian J Orthop,2009,43(1):17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700