冷热交替条件下的肿瘤微循环损伤及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是危害人类健康的最严重疾病之一。传统治疗肿瘤的手术切除对病人创伤较大,而放疗和化疗具有较大的毒副作用,制约了治疗效率。肿瘤热物理治疗通过改变人体局部目标组织的温度(冷冻或热疗)来实现治疗目的,具有微创、副作用小、成本低等优点,被誉为肿瘤的微创“绿色疗法”。然而,单一的冷冻手术或热疗仍然存在各自的局限性,如热疗过程中出现的肿瘤边缘血流量增加和温度控制问题,以及低温手术后的肿瘤复发率较高等问题。冷热交替治疗这一新型治疗方法有望突破单一疗法的局限性,大大提高肿瘤治疗效果。目前该方向主要研究初步证实了其对不同肿瘤治疗的效果,但其治疗机理尚不清晰,有待进一步探讨。肿瘤新生血管为肿瘤细胞提供生长所必需的营养,对其生长以及转移有着重要影响。冷热交替作用不仅对肿瘤细胞有直接杀伤作用,而且会对肿瘤微循环造成极大的破坏。因此研究冷热交替条件下肿瘤微循环损伤及机理,对进一步优化治疗方案、揭示冷热交替治疗机制至关重要。
     本文首先利用激光共聚焦荧光显微镜,采用裸鼠脊背皮翼肿瘤视窗模型,通过尾静脉注射纳米脂质体示踪剂,成功地观察了不同热物理条件对在体肿瘤微循环损伤的动态过程与规律,并获得了肿瘤中央微血管壁对纳米脂质体渗透的三维荧光定量信息。肿瘤微循环对示踪粒子的通透性以及其在肿瘤间质中的分布浓度是定量评价血管壁结构改变及损伤的重要手段。本文根据纳米脂质体在组织间质中分布的荧光图像,建立了三维定量模型,获得了未破损血管在不同热物理作用后对纳米脂质体的渗透率,结果表明肿瘤中央血管由于其结构较完整而比边缘血管具有更好的热承受力,单冷、单热均不能造成严重的损伤。然而,在-10°C和42°C的冷热交替作用过程中,无论是在中央还是边缘,肿瘤间质内均出现大量的脂质体渗透,随后的血管结构观察表明内皮细胞间的连接完全被破坏。为了更深入了解冷热交替对肿瘤微循环的损伤程度,本研究应用组织病理切片方法对治疗后7天内的肿瘤微血管进行了跟踪观察和分析,发现-10°C/42°C冷热交替治疗后第7天仍未见肿瘤微血管修复,且肿瘤组织完全坏死。实验结果证实冷热交替治疗对肿瘤微循环造成了不可逆的结构性破坏,而这应该与肿瘤微血管在冷热交替过程中承受的应力作用相关。
     为了进一步揭示肿瘤微血管损伤机制,本研究接着对治疗过程中血管的受力情况进行了理论分析。首先,在降温过程中,生物组织发生相变而凝结,组织内温度梯度的存在,以及血管与组织间力学性能差异,使得冻结组织中的热应力产生。本研究基于肿瘤血管的实际形态,并将其与周围组织及血液区别对待,创建了描述肿瘤冷热交替治疗过程中的热应力模型。数值计算结果发现在降温过程中血管内壁承受压应力,其幅值与文献报道的一些生物材料的应力强度阈值相当,可能造成肿瘤血管壁上微小裂纹的产生。而且,结构扭曲的肿瘤血管壁上存在应力集中点,是造成血管壁损伤的重要原因。在冷热交替的加热过程中,热应力随着相变得到快速释放。同时,血流的快速恢复,对血管壁产生应力作用,造成了血管的最终破裂。
     本研究基于实验获取荧光图像重构三维肿瘤血管,建立了三维有限元模型进行血液动力学分析。计算结果表明肿瘤血管壁的分叉或者弯曲段存在应力集中现象。此外,在冷热交替的快速变化过程中,血管壁所受应力上升速率比单冷后的自然复温过程要快得多。而前者幅值略大于后者,推断应力上升的速率应是造成血管壁破裂的关键因素。同时,周边新生血管由于结构不完整而更易被破坏,造成下游流阻的升高而使上游血管壁承受更大的压力,应该是肿瘤中央区域血管相继破裂的重要原因,这解释了实验中观察到的现象。
     本研究的创新性主要包括:
     一、将激光共聚焦荧光显微技术和裸鼠脊背皮翼视窗技术相结合,成功观察了在体肿瘤三维微循环损伤的动态过程,首次发现-10°C/42°C的冷热交替过程可对整个肿瘤区域的微循环造成严重的、不可修复的结构性损伤;
     二、建立了不同热物理条件下计算肿瘤微循环对纳米脂质体通透性的三维定量方法,获得了冷热交替条件下纳米脂质体在肿瘤间质内的相对浓度值,发现纳米脂质体渗透在冷热交替的过程中快速增强。该结果为发展新型肿瘤热物理靶向治疗设计提供了思路;
     三、创建了肿瘤微循环在冷冻及复温过程中的热应力模型,从力学角度分析肿瘤微循环损伤机制。在模型中,综合考虑了冻结造成的体积膨胀、肿瘤区域的异质性、肿瘤微血管形态结构的异常性以及血管与组织物性的差异等因素,得到了血管壁的热应力空间上和时间上的分布;
     四、基于实测荧光图像建立了肿瘤血管三维构型,综合考虑多种不同的肿瘤微血管壁形态以及下游分支血管阻力增大等因素,应用流体力学理论对肿瘤微血管血流恢复过程进行了动力学研究,获得了血管壁的应力分布信息,初步揭示了肿瘤血管结构性破坏的机理。
     本研究通过实验研究发现了冷热交替治疗对肿瘤微循环造成了不可修复的结构性损伤,并且从力学角度理论分析了其损伤的机制,揭示了冷热交替疗法的肿瘤微循环损伤机理,为研发新型微创冷热交替治疗系统提供了重要依据。同时,本研究表明冷热交替造成纳米脂质体在肿瘤中央和边缘的大幅度增强,因此具有与纳米药物结合治疗的潜力,有望提高肿瘤治疗效果。而冷热交替治疗温度和循环条件的优化,以及肿瘤对冷热交替条件的耐受性等则需要进一步的研究。
Cancer has been one of the most dangerous threats to human beings. Throughchanging the temperature of local target tissue, thermal modalities, cryosurgery orhyperthermia, have advantages of minimal invasion, low side effects, low cost withless pain for patients and no dose limit over traditional surgery, chemotherapy andradiotherapy. Thus, they are known as “Green Therapy” of tumor. However, there aresome limitations for single thermal treatment, such as tumor periphery bloodperfusion rate increase resulting in the difficulty of temperature control duringhyperthermia, and the high rate of tumor cell recurrence after cryosurgery. Alternatecooling and heating, a new treatment through combining cryo-therapy withhyperthermia, has been proven to have better therapeutic outcomes over singlethermal treatment. Nevertheless, the underlying mechanisms are yet to be furtherstudied. Specifically, the damage to tumor vasculature injury may be one of the majormechanisms as blood supply is crucial to tumor growth and metastasis. Thus,investigation of the tumor microvasculature injury is extremely important to optimizethe therapeutic protocols.
     In this study, tumor microvasculature alterations during different thermaltreatments are observed successfully in vivo through intravital microscopy using thenude mice dorsal skin fold4T1tumor chamber model and nano-liposome tracersinjected through tail vein for the first time. Three-dimensional fluorescence intensitiesof nano-liposomes extravasated from vessels are quantified in the tumor center. Thetumor microvasculature permeability is a quantitative measure for vascular injury orstructural change. According to the acquired fluorescence images, three-dimensionalmethod has been established to measure tumor microvasculature permeability ofunbroken vessels in the present study. Results show that vessels in the tumor centerare more resistive to single cooling or heating treatment than the peripheral ones dueto their relative mature wall structure. However, cooling at-10oC for1/2hr beforeheating at42oC significantly enhances liposome extravasation in both the center andperiphery regions of a tumor. The subsequent microscope observation indicates thatthe tumor vessel endothelium structures are completely disrupted. Histo-pathologicalanalyses further confirm the damaging effect by showing rare tumor vessel recurrenceand large necrotic tumor tissue areas on the7thday after the alternate treatment. Theirreversible structural damage should be closely related to the mechanical stresses the vessels suffered thru the alternate thermal histories.
     To reveal the tumor vessel damage mechanisms of the alternate treatment,analysis of stresses on the tumor vessel wall are performed. First, during the freezingprocess, thermal stresses are often induced due to the temperature gradientsthroughout biological tissues with ice formation in phase transition and propertydifferences between vessel wall and tissue. A thermal stress model is establishedusing the tumor vessel model in real morphology, distinguished from the surroundingtissue and blood. The numerical simulations of thermal stress distributions showcompressive stresses on the inner vessel wall. The maximum value is comparable tothe compression failure strength of biomaterial reported. They are likely to inducemicro-cracks on tumor vessels. Besides, high stress concentrations existing in tumorvessel wall with irregular shape are expected to induce vessel wall rupture. During theheating process, thermal stresses are released quickly. Subsequently, mechanicalstresses on the tumor microvessel wall induced by quick blood reperfusion in theheating process would cause the final rupture of vessels in the tumor center.
     The blood reperfusion induced stresses on the vessel wall during the heatingfollowed are further investigated. Three-dimensional tumor microvessel models areestablished based on the fluorescence images. Non-uniform stress foci occur at thenarrow or flexural regions in the tumor vessel wall, and higher stress level normallyappears at the vessel bifurcations. During the heating process, the stress rising rate ismuch faster than that of the natural thawing process. It can be interpreted that thestress increasing rate should be crucial to cause collapse of the tumor vessel structure.In addition, the tumor periphery circulation can be easily injured due to the looseendothelium lining, which increases the downstream resistance of blood flow and inturn affects the vessel in the upstream via an increased flow pressure. This wellexplains the successive tumor vessel rupture as observed in the experimental study.
     In the present study, the innovative components are given in the follows:
     First, the dynamic process of tumor microvasculature damage is successfullyobserved in vivo using the laser confocal microscopy and the nude mice dorsal skinfold tumor window chamber model. It is found for the first time that the alternatecooling and heating has induced severe and irreversible damage to the microvesselstructure throughout the entire tumor;
     Secondly, three-dimensional method is established to quantify tumormicrovasculature permeability to particles under different thermal conditions. Therelative fluorescence intensities of the nano-liposomes extravasation to theinterstitium are quantified. The alternate treatment induced quick increase ofliposomes extravasation. It may provide a novel approach to improve the thermallytargeted therapy of cancer;
     Thirdly, thermal stress model of tumor microvessel in the alternate treatment hasbeen established to analyze the damage mechanisms. Variable issues are considered in the model, including volume expansion effect, tumor spatial heterogeneity, abnormalstructure of tumor vessels, and mechanical property differences between vessel andtissues. Thermal stresses are simulated both temporally and spatially;
     Fourthly, three-dimensional tumor microvessel wall models are establishedbased on the optical slices of fluorescence images for the first time to studymechanical stresses in the tumor microvessel wall induced by blood flow reperfusion.The irregular structure and the downstream resistance increase effects are analyzedand discussed. The preliminary results of the stress analysis have partly revealed themechanisms underlying the serious tumor microvasculature damage caused by thealternate cooling and heating treatment.
     The present study finds that the alternate cooling and heating treatment inducesirreversible structural damage to microvessels throughout the entire tumor throughexperimental investigations. The underlying mechanisms are revealed by thetheoretical studies of mechanical stresses on the tumor microvascular wall. The resultsobtained are expected to better understand the vascular injury induced by thealternated cooling and heating treatment, and to help develop a more effective thermaltreatment for tumor therapy. In addition, the strong enhancement of nano-liposomesextravasation provides great potentials for combining the alternate treatment withnano-medicine applications. The optimization of the end temperatures,freezing-heating cycles and tissue thermal tolerance effect to the alternate treatmentshould be further investigated in future.
引文
[1]. WORLD HEALTH STATISTICS.2008. URL: http://www.who.int/whosis/w-hostat/2008/en/index.html
    [2].卫生部召开的发布会介绍第三次全国死因调查主要情况.29April,2008.
    [3]. Gage, A. M., Montes, M., and Gage, A. A. Destruction of hepatic and splenictissue by freezing and heating. Cryobiology,1982,19(2):172-179.
    [4]. Kuz'menko, A. P., Todor, I. N., and Mosienko, V. S. The effect of the combineduse of cryosurgery and hyperthermia on an experimental tumor process. Eksp. Onkol.,1990,12(2):60-61.
    [5]. Osinsky, S. P., Rikberg, A. B., Bubnovskaja, L. N., and Trushina, V. A. TumourpH drop after cryotreatment and enhancement of hyperthermia antitumour effect. Int.J. Hyperther.,1993,9(2):297-301.
    [6]. Liu, J., Zhou, Y. X., Yu, T., Gui, L., Deng, Z. S., and Lv, Y. G. Minimally invasiveprobe system capable of performing both cryosurgery and hyperthermia treatment ontarget tumor in deep tissues. Minim. Invasive Ther. Allied. Technol.,2004,13(1):47-57.
    [7]. Khairy, P., Cartier, C., Chauvet, P., Tanguay, J. F., Simeon, B., Lalonde, J. P., andDubuc, M. A novel hybrid transcatheter ablation system that combines radiofrequencyand cryoenergy. J. Cardiovasc. Electrophysiol.,2008,19(2):188-193.
    [8]. Hoffmann, N. E., Chao, B. H., and Bischof, J. C. Cryo, hyper or both?Investigating combination cryo/hyperthermia in the dorsal skin flap chamber. Adv.Heat Mass Trans. Biotech.,2000, ASME HTD-Vol.368/BED-Vol.47157-159.
    [9].李鼎九,胡自省,钟毓斌.肿瘤热疗学.第二版.西安电子科技大学出版社,2003.
    [10]. Nah, B. S., Choi, I. B., Oh, W. Y., Osborn, J. L., and Song, C. W. Vascularthermal adaptation in tumors and normal tissue in rats. Int. J. Radiat. Oncol. Biol.Phys.,1996,35(1):95-101.
    [11]. Lin, J. C., and Song, C. W. Influence of vascular thermotolerance on theheat-induced changes in blood flow, pO2, and cell survival in tumors. Cancer Res.,1993,53(9):2076-2080.
    [12]. Seifert, J. K., and Morris, D. L. Indicators of recurrence followingcryotherapy for hepatic metastases from colorectal cancer. Brit. J. Surg.,1999,86(2):234-240.
    [13]. Rui, J., Tatsutani, K. N., Dahiya, R., and Rubinsky, B. Effect of thermalvariables on human breast cancer in cryosurgery. Breast Cancer Res. Treat.,1999,53(2):185-192.
    [14].刘静.低温生物医学工程学原理.科学出版社,2007.
    [15]. Takahashi, D., Takahashi, T., Sone, K., and Fukumoto, I. A study ofCryosurgery-Hyperthermia Treatment System-The effects of Hyperthermia TreatmentFollowing Cryosurgery. J. Power Energ. Syst.,2008,2(5):1294-1303.
    [16]. Takahashi, D., Sone, K., Nakamura, H., Yoshii, T., and Fukumoto, I. A basicstudy of the effect of hyperthermia treatment after cryosurgery. Trans. Jpn. Soc. Med.Biol. Eng.: BME,2007,45(1):11-16.
    [17].许毳毳,隗功华,孙建奇,孙晓光,刘苹,张爱丽.肿瘤冷热交替治疗的生物学效应初步研究.中国医学物理学杂志,2009,已接收.
    [18]. Dong, J. X., Liu, P., and Xu, L. X. Immunologic Response Induced bySynergistic Effect of Alternating Cooling and Heating of Breast Cancer. Int. J.Hyperther.,2009,25(1):25-33.
    [19]. Sun, J. Q., Zhang, A. L., and Xu, L. X. Evaluation of alternate cooling andheating for tumor treatment Int. J. Heat Mass Tran.,2008,51(23-24):5478-5485.
    [20]. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T.,Felix, R., and Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev.Oncol. Hematol.,2002,43(1):33-56.
    [21]. Laszlo, A. The effects of hyperthermia on mammalian cell structure andfunction. Cell Prolif.,1992,25(2):59-87.
    [22]. Huang, S. H., Yang, K. J., Wu, J. C., Chang, K. J., and Wang, S. M. Effects ofhyperthermia on the cytoskeleton and focal adhesion proteins in a human thyroidcarcinoma cell line. J. Cell Biochem.,1999,75(2):327-337.
    [23]. Coss, R. A., and Linnemans, W. A. The effects of hyperthermia on thecytoskeleton: a review. Int. J. Hyperther.,1996,12(2):173-196.
    [24]. Kampinga, H. H., Jorritsma, J. B., and Konings, A. W. Heat-inducedalterations in DNA polymerase activity of HeLa cells and of isolated nuclei. Relationto cell survival. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.,1985,47(1):29-40.
    [25]. Mazur, P., Leibo, S. P., and Chu, E. H. A two-factor hypothesis of freezinginjury. Evidence from Chinese hamster tissue-culture cells. Exp. Cell Res.,1972,71(2):345-355.
    [26]. Hoffmann, N. E., and Bischof, J. C. The cryobiology of cryosurgical injury.Urology,2002,60(2Suppl1):40-49.
    [27]. Song, C. W. Effect of local hyperthermia on blood flow andmicroenvironment: a review. Cancer Res.,1984,44(10Suppl):4721s-4730s.
    [28]. McDonald, D. M., and Choyke, P. L. Imaging of angiogenesis: frommicroscope to clinic. Nat. Med.,2003,9(6):713-725.
    [29]. Baluk, P., Morikawa, S., Haskell, A., Mancuso, M., and McDonald, D. M.Abnormalities of basement membrane on blood vessels and endothelial sprouts intumors. Am. J. Pathol.,2003,163(5):1801-1815.
    [30]. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R. K., and McDonald,D. M. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors.Am. J. Pathol.,2002,160(3):985-1000.
    [31]. Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K., and Jain, R. K. Absenceof functional lymphatics within a murine sarcoma: a molecular and functionalevaluation. Cancer Res.,2000,60(16):4324-4327.
    [32]. Jain, R. K. Transport of molecules in the tumor interstitium: a review. CancerRes.,1987,47(12):3039-3051.
    [33]. Song, C. W., Kang, M. S., Rhee, J. G., and Levitt, S. H. The effect ofhyperthermia on vascular function, pH, and cell survival. Radiology,1980,137(3):795-803.
    [34]. Gage, A. A., and Baust, J. Mechanisms of tissue injury in cryosurgery.Cryobiology,1998,37(3):171-186.
    [35]. Dieing, A., Ahlers, O., Hildebrandt, B., Kerner, T., Tamm, I., Possinger, K.,and Wust, P. The effect of induced hyperthermia on the immune system. Prog. BrainRes.,2007,162:137-152.
    [36]. Hoffmann, N. E., Coad, J. E., Huot, C. S., Swanlund, D. J., and Bischof, J. C.Investigation of the mechanism and the effect of cryoimmunology in the Copenhagenrat. Cryobiology,2001,42(1):59-68.
    [37]. Wells, A. D., and Malkovsky, M. Heat shock proteins, tumor immunogenicityand antigen presentation: an integrated view. Immunol. Today,2000,21(3):129-132.
    [38]. Calderwood, S. K., Theriault, J. R., and Gong, J. How is the immuneresponse affected by hyperthermia and heat shock proteins? Int. J. Hyperther.,2005,21(8):713-716.
    [39]. Ablin, R. J., Soanes, W. A., and Gonder, M. J. Elution of in vivo boundantiprostatic epithelial antibodies following multiple cryotherapy of carcinoma ofprostate. Urology,1973,2(3):276-279.
    [40]. Hamad, G. G., and Neifeld, J. P. Biochemical, hematologic, and immunologicalterations following hepatic cryotherapy. Semin. Surg. Oncol.,1998,14(2):122-128.
    [41]. Joosten, J. J., Muijen, G. N., Wobbes, T., and Ruers, T. J. In vivo destructionof tumor tissue by cryoablation can induce inhibition of secondary tumor growth: anexperimental study. Cryobiology,2001,42(1):49-58.
    [42].王伦长.临床冷冻治疗学.河南科技出版社,2005.
    [43]. Sabel, M. S. Cryo-immunology: a review of the literature and proposedmechanisms for stimulatory versus suppressive immune responses. Cryobiology,2009,58(1):1-11.
    [44]. Konerding, M. A., Miodonski, A. J., and Lametschwandtner, A.Microvascular corrosion casting in the study of tumor vascularity: a review. ScanningMicrosc.,1995,9(4):1233-1243; discussion1243-1234.
    [45]. Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G.,Roberge, S., Jain, R. K., and McDonald, D. M. Openings between defectiveendothelial cells explain tumor vessel leakiness. Am. J. Pathol.,2000,156(4):1363-1380.
    [46]. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res.,1988,48(10):2641-2658.
    [47]. Falk, P. Patterns of vasculature in two pairs of related fibrosarcomas in the ratand their relation to tumour responses to single large doses of radiation. Eur. J. Cancer,1978,14(3):237-250.
    [48]. Uchegbu, I. F., and Bpharm, P. D. Science in Pharmacy. Pharmaceutical J.,1999,263(7060):309-318.
    [49]. Hanahan, D., and Folkman, J. Patterns and emerging mechanisms of theangiogenic switch during tumorigenesis. Cell,1996,86(3):353-364.
    [50]. Shioda, T., Munn, L. L., Fenner, M. H., Jain, R. K., and Isselbacher, K. J.Early events of metastasis in the microcirculation involve changes in gene expressionof cancer cells. Tracking mRNA levels of metastasizing cancer cells in the chickembryo chorioallantoic membrane. Am. J. Pathol.,1997,150(6):2099-2112.
    [51]. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. Tumorangiogenesis and metastasis--correlation in invasive breast carcinoma. N. Engl. J.Med.,1991,324(1):1-8.
    [52]. Zetter, B. R. Angiogenesis and tumor metastasis. Annu Rev Med,1998,49407-424.
    [53]. Ou, Y. C., Chen, J. T., Yang, C. R., Horng, Y. Y., Kao, Y. L., and Cheng, C. L.Tumor angiogenesis and metastasis: correlation in invasive renal cell carcinoma. Chin.Med. J.,1998,61(8):441-447.
    [54]. Abe, R. Angiogenesis in tumor growth and metastasis. Curr. Pharm. Des.,2008,14(36):3779.
    [55]. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.,1971,285(21):1182-1186.
    [56]. Hayes, A. J., Li, L. Y., and Lippman, M. E. Science, medicine, and the future.Antivascular therapy: a new approach to cancer treatment. B. M. J.,1999,318(7187):853-856.
    [57]. Hida, K., Hida, Y., and Shindoh, M. Understanding tumor endothelial cellabnormalities to develop ideal anti-angiogenic therapies. Cancer Sci.,2008,99(3):459-466.
    [58]. Eddy, H. A. Alterations in tumor microvasculature during hyperthermia.Radiology,1980,137(2):515-521.
    [59]. Fajardo, L. F., and Prionas, S. D. Endothelial cells and hyperthermia. Int. J.Hyperther.,1994,10(3):347-353.
    [60]. Song, C. W., Rhee, J. G., and Levitt, S. H. Blood flow in normal tissues andtumors during hyperthermia. J. Natl. Cancer Inst.,1980,64(1):119-124.
    [61]. Vaupel, P., Muller-Klieser, W., Otte, J., Manz, R., and Kallinowski, F. Bloodflow, tissue oxygenation, and pH-distribution in malignant tumors upon localizedhyperthermia. Basic pathophysiological aspects and the role of various thermal doses.Strahlentherapie,1983,159(2):73-81.
    [62]. Dudar, T. E., and Jain, R. K. Differential response of normal and tumormicrocirculation to hyperthermia. Cancer Res.,1984,44(2):605-612.
    [63]. Song, C. W., Lokshina, A., Rhee, J. G., Patten, M., and Levitt, S. H.Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans. Biomed.Eng.,1984,31(1):9-16.
    [64]. Song, C. W. Physiological factors in hyperthermia. Natl. Cancer Inst.Monogr.,1982,61169-176.
    [65]. Gullino, P. M., Jain, R. K., and Grantham, F. H. Temperature gradients andlocal perfusion in a mammary carcinoma. J. Natl. Cancer Inst.,1982,68(3):519-533.
    [66]. Badylak, S. F., Babbs, C. F., Skojac, T. M., Voorhees, W. D., and Richardson,R. C. Hyperthermia-induced vascular injury in normal and neoplastic tissue. Cancer,1985,56(5):991-1000.
    [67]. Emami, B., Nussbaum, G. H., Hahn, N., Piro, A. J., Dritschilo, A., andQuimby, F. Histopathological study on the effects of hyperthermia onmicrovasculature. Int. J. Radiat. Oncol. Biol. Phys.,1981,7(3):343-348.
    [68]. Emami, B., Nussbaum, G. H., TenHaken, R. K., and Hughes, W. L.Physiological effects of hyperthermia: response of capillary blood flow and structureto local tumor heating. Radiology,1980,137(3):805-809.
    [69]. Fajardo, L. F., Schreiber, A. B., Kelly, N. I., and Hahn, G. M. Thermalsensitivity of endothelial cells. Radiat. Res.,1985,103(2):276-285.
    [70]. Denekamp, J., and Hobson, B. Endothelial-cell proliferation in experimentaltumours. Br. J. Cancer,1982,46(5):711-720.
    [71]. Lin, P. S., Ho, K. C., Sung, S. J., and Gladding, J. Effect of tumour necrosisfactor, heat, and radiation on the viability and microfilament organization in culturedendothelial cells. Int. J. Hyperther.,1992,8(5):667-677.
    [72]. Chen, B. G., Zhou, M. J., and Xu, L. X. Study of vascular endothelial cellmorphology during hyperthermia. J. Therm. Biol.,2005,30(2):111-117.
    [73]. Schuster, J. M., Zalutsky, M. R., Noska, M. A., Dodge, R., Friedman, H. S.,Bigner, D. D., and Dewhirst, M. W. Hyperthermic modulation of radiolabelledantibody uptake in a human glioma xenograft and normal tissues. Int. J. Hyperther.,1995,11(1):59-72.
    [74]. Lefor, A. T., Makohon, S., and Ackerman, N. B. The effects of hyperthermiaon vascular permeability in experimental liver metastasis. J. Surg. Oncol.,1985,28(4):297-300.
    [75]. Fujiwara, K., and Watanabe, T. Effects of hyperthermia, radiotherapy andthermoradiotherapy on tumor microvascular permeability. Acta Pathol. Jpn.,1990,40(2):79-84.
    [76]. Kong, G., Braun, R. D., and Dewhirst, M. W. Hyperthermia enablestumor-specific nanoparticle delivery: effect of particle size. Cancer Res.,2000,60(16):4440-4445.
    [77]. Liu, P., Zhang, A., Xu, Y., and Xu, L. X. Study of non-uniform nanoparticleliposome extravasation in tumour. Int. J. Hyperther.,2005,21(3):259-270.
    [78]. Kong, G., Braun, R. D., and Dewhirst, M. W. Characterization of the effect ofhyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res.,2001,61(7):3027-3032.
    [79]. Kang, M. S., Song, C. W., and Levitt, S. H. Role of vascular function inresponse of tumors in vivo to hyperthermia. Cancer Res.,1980,40(4):1130-1135.
    [80]. Hoffmann, N. E., and Bischof, J. C. Cryosurgery of normal and tumor tissuein the dorsal skin flap chamber: Part II--injury response. J. Biomech. Eng.,2001,123(4):310-316.
    [81]. Rabb, J. M., Renaud, M. L., Brandt, P. A., and Witt, C. W. Effect of freezingand thawing on the microcirculation and capillary endothelium of the hamster cheekpouch. Cryobiology,1974,11(6):508-518.
    [82]. Bellman, S., and Strombeck, J. O. Transformation of the vascular system incold-injured tissue of the rabbits ear. Angiology,1960,11108-125.
    [83]. Ackerman, N. B., and Makohon, S. The effects of cooling, freezing andthawing on vascular permeability and perfusion in experimental liver metastases. Surg.Gynecol. Obstet.,1981,152(3):262-267.
    [84]. Daum, P. S., Bowers, W. D., Jr., Tejada, J., and Hamlet, M. P. Vascular castsdemonstrate microcirculatory insufficiency in acute frostbite. Cryobiology,1987,24(1):65-73.
    [85]. Marzella, L., Jesudass, R. R., Manson, P. N., Myers, R. A., and Bulkley, G. B.Morphologic characterization of acute injury to vascular endothelium of skin afterfrostbite. Plast. Reconstr. Surg.,1989,83(1):67-76.
    [86]. Carpenter, H. M., Hurley, L. A., Hardenbergh, E., and Williams, R. B.Vascular injury due to cold. Affects of rapid rewarming. Arch. Pathol.,1971,92(3):153-161.
    [87]. Bowers, W. D., Jr., Hubbard, R. W., Daum, R. C., Ashbaugh, P., and Nilson,E. Ultrastructural studies of muscle cells and vascular endothelium immediately afterfreeze-thaw injury. Cryobiology,1973,10(1):9-21.
    [88]. Bourne, M. H., Piepkorn, M. W., Clayton, F., and Leonard, L. G. Analysis ofmicrovascular changes in frostbite injury. J. Surg. Res.,1986,40(1):26-35.
    [89].华泽钊.低温生物医学技术.科学技术出版社,1994.
    [90]. Manson, P. N., Jesudass, R., Marzella, L., Bulkley, G. B., Im, M. J., andNarayan, K. K. Evidence for an early free radical-mediated reperfusion injury infrostbite. Free Radic. Biol. Med.,1991,10(1):7-11.
    [91]. Iyengar, J., George, A., Russell, J. C., and Das, D. K. The effects of an ironchelator on cellular injury induced by vascular stasis caused by hypothermia. J. Vasc.Surg.,1990,12(5):545-551.
    [92].张艳婷,刘静.低温外科复温过程中的热应力研究.航天医学与医学工程,2002,15(4):291-295.
    [93]. Zhang, Y. T., and Liu, J. Numerical study on three-region thawing problemduring cryosurgical re-warming. Med. Eng. Phys.,2002,24(4):265-277.
    [94]. Zhao, G., and Liu, Z. F. Finite element analysis of transient thermal stress incryosurgery (in Chinese). J. Chem. Eng.,2007,58(1):33-39.
    [1]. Bjornaes, I., and Rofstad, E. K. Microvascular permeability to macromolecules inhuman melanoma xenografts assessed by contrast-enhanced MRI--intertumor andintratumor heterogeneity. Magn. Reson. Imaging,2001,19(5):723-730.
    [2]. McDonald, D. M., and Baluk, P. Significance of blood vessel leakiness in cancer.Cancer Res.,2002,62(18):5381-5385.
    [3]. Wu, N. Z., Da, D., Rudoll, T. L., Needham, D., Whorton, A. R., and Dewhirst, M.W. Increased microvascular permeability contributes to preferential accumulation ofStealth liposomes in tumor tissue. Cancer Res.,1993,53(16):3765-3770.
    [4]. Yuan, F. Transvascular drug delivery in solid tumors. Semin. Radiat. Oncol.,1998,8(3):164-175.
    [5]. Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., andJain, R. K. Vascular permeability in a human tumor xenograft: molecular sizedependence and cutoff size. Cancer Res.,1995,55(17):3752-3756.
    [6]. Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge,S., Jain, R. K., and McDonald, D. M. Openings between defective endothelial cellsexplain tumor vessel leakiness. Am. J. Pathol.,2000,156(4):1363-1380.
    [7]. Schuster, J. M., Zalutsky, M. R., Noska, M. A., Dodge, R., Friedman, H. S.,Bigner, D. D., and Dewhirst, M. W. Hyperthermic modulation of radiolabelledantibody uptake in a human glioma xenograft and normal tissues. Int. J. Hyperther.,1995,11(1):59-72.
    [8]. Lefor, A. T., Makohon, S., and Ackerman, N. B. The effects of hyperthermia onvascular permeability in experimental liver metastasis. J. Surg. Oncol.,1985,28(4):297-300.
    [9]. Fujiwara, K., and Watanabe, T. Effects of hyperthermia, radiotherapy andthermoradiotherapy on tumor microvascular permeability. Acta Pathol. Jpn.,1990,40(2):79-84.
    [10]. Kong, G., Braun, R. D., and Dewhirst, M. W. Hyperthermia enablestumor-specific nanoparticle delivery: effect of particle size. Cancer Res.,2000,60(16):4440-4445.
    [11]. Kong, G., Braun, R. D., and Dewhirst, M. W. Characterization of the effect ofhyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res.,2001,61(7):3027-3032.
    [12]. Liu, P., Zhang, A., Xu, Y., and Xu, L. X. Study of non-uniform nanoparticleliposome extravasation in tumour. Int. J. Hyperther.,2005,21(3):259-270.
    [13]. Liu, P., Zhang, A., Zhou, M., Xu, Y., and Xu, L. X. Real time3D detection ofnanoparticle liposomes extravasation using laser confocal microscopy. Conf. Proc.IEEE Eng. Med. Biol. Soc.,2004,2662-2665.
    [14]. Baust, J. G., Gage, A. A., Clarke, D., Baust, J. M., and Van Buskirk, R.Cryosurgery--a putative approach to molecular-based optimization. Cryobiology,2004,48(2):190-204.
    [15].田牛.微循环方法学.原子能出版社,1991.
    [16]. Huang, Q., Shan, S., Braun, R. D., Lanzen, J., Anyrhambatla, G., Kong, G.,Borelli, M., Corry, P., Dewhirst, M. W., and Li, C. Y. Noninvasive visualization oftumors in rodent dorsal skin window chambers. Nat. Biotechnol.,1999,17(10):1033-1035.
    [17]. Li, C. Y., Shan, S., Huang, Q., Braun, R. D., Lanzen, J., Hu, K., Lin, P., andDewhirst, M. W. Initial stages of tumor cell-induced angiogenesis: evaluation via skinwindow chambers in rodent models. J. Natl. Cancer Inst.,2000,92(2):143-147.
    [18]. Sandison, J. C. The transparent chamber of the rabbit's ear giving a completedescription of improved techniques of construction and introduction and generalaccount of growth and behavior of living cells and tissues as seen with the microscope.Am. J. Anat.,1928,41:447-472.
    [19]. Algire, G. H. An adaptation of the transparent chamber technique to themouse. J. Natl. Cancer Inst.,1943,4:1-11.
    [20]. Jain, R. K. Delivery of molecular medicine to solid tumors: lessons from invivo imaging of gene expression and function. J. Control. Release,2001,74(1-3):7-25.
    [21]. Huang, Q., Shan, S., Braun, R. D., Lanzen, J., Anyrhambatla, G., Kong, G.,Borelli, M., Corry, P., Dewhirst, M. W., and Li, C. Y. Noninvasive visualization oftumors in rodent dorsal skin window chambers. Nat. Biotechnol.,1999,17(10):1033-1035.
    [22].王春梅,黄晓峰,杨家骥,陈志南.激光扫描共聚焦显微镜技术.第四军医大学出版社,2004.
    [23]. Yuan, F., Leunig, M., Huang, S. K., Berk, D. A., Papahadjopoulos, D., andJain, R. K. Microvascular permeability and interstitial penetration of stericallystabilized (stealth) liposomes in a human tumor xenograft. Cancer Res.,1994,54(13):3352-3356.
    [24]. Wu, N. Z., Klitzman, B., Rosner, G., Needham, D., and Dewhirst, M. W.Measurement of material extravasation in microvascular networks using fluorescencevideo-microscopy. Microvasc. Res.,1993,46(2):231-253.
    [25]. Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R. Production of largeunilamellar vesicles by a rapid extrusion procedure: Characterization of sizedistribution, trapped volume and ability to maintain a membrane potential. Biochem.Biophys. Acta,1985,812:55-65.
    [26]. Rabin, Y., and Shitzer, A. Combined solution of the inverse Stefan problemfor successive freezing/thawing in nonideal biological tissues. J. Biomech. Eng.,1997,119(2):146-152.
    [27]. Hua, Z. Z., Xu, H. Y., Zhou, G. Y., Liu, J. F., Huang, H. M., and Ding, W. X.Analyses of thermal stress and fracture during cryopreservation of blood vessel.Science in China (Series E),2001,44(2):158-163.
    [28]. Gage, A. A., and Baust, J. Mechanisms of tissue injury in cryosurgery.Cryobiology,1998,37(3):171-186.
    [29]. New Breast Cancer Therapy at Duke Comprehensive Cancer Center BoostsDrugs' Effects, Dramatically Shrinks Tumors. Duke Medicine News andCommunications, May18,2002.
    [30]. Gross, J. F., Roemer, R., Dewhirst, M., and Meyer, T. A Uniform ThermalField in A Hyperthermia Chamber for Microvascular Studies. Int. J. Heat Mass Trans.,1982,25(9):1313-1320.
    [31]. Huxley, V. H., Curry, F. E., and Adamson, R. H. Quantitative fluorescencemicroscopy on single capillaries: alpha-lactalbumin transport. Am. J. Physiol.,1987,252(1Pt2):188-197.
    [32]. Lichtenbeld, H. C., Yuan, F., Michel, C. C., and Jain, R. K. Perfusion ofsingle tumor microvessels: application to vascular permeability measurement.Microcirculation,1996,3(4):349-357.
    [33]. Bates, D. O., Hillman, N. J., Williams, B., Neal, C. R., and Pocock, T. M.Regulation of microvascular permeability by vascular endothelial growth factors. J.Anat.,2002,200(6):581-597.
    [34]. Yuan, F., Leunig, M., Berk, D. A., and Jain, R. K. Microvascularpermeability of albumin, vascular surface area, and vascular volume measured inhuman adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res.,1993,45(3):269-289.
    [35]. Yuan, F., Salehi, H. A., Boucher, Y., Vasthare, U. S., Tuma, R. F., and Jain, R.K. Vascular permeability and microcirculation of gliomas and mammary carcinomastransplanted in rat and mouse cranial windows. Cancer Res.,1994,54(17):4564-4568.
    [36]. Daldrup-Link, H. E., Rydland, J., Helbich, T. H., Bjornerud, A., Turetschek,K., Kvistad, K. A., Kaindl, E., Link, T. M., Staudacher, K., Shames, D., Brasch, R. C.,Haraldseth, O., and Rummeny, E. J. Quantification of breast tumor microvascularpermeability with feruglose-enhanced MR imaging: initial phase II multicenter trial.Radiology,2003,229(3):885-892.
    [37]. Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metast.Rev.,1987,6(4):559-593.
    [38].刘育英.实用微循环图解.人民军医出版社,2005.
    [39]. Badylak, S. F., Babbs, C. F., Skojac, T. M., Voorhees, W. D., and Richardson,R. C. Hyperthermia-induced vascular injury in normal and neoplastic tissue. Cancer,1985,56(5):991-1000.
    [40]. Leunig, M., Yuan, F., Menger, M. D., Boucher, Y., Goetz, A. E., Messmer, K.,and Jain, R. K. Angiogenesis, microvascular architecture, microhemodynamics, andinterstitial fluid pressure during early growth of human adenocarcinoma LS174T inSCID mice. Cancer Res.,1992,52(23):6553-6560.
    [41]. Vajkoczy, P., Schilling, L., Ullrich, A., Schmiedek, P., and Menger, M. D.Characterization of angiogenesis and microcirculation of high-grade glioma: anintravital multifluorescence microscopic approach in the athymic nude mouse. J.Cereb. Blood Flow Metab.,1998,18(5):510-520.
    [42]. Vajkoczy, P., Ullrich, A., and Menger, M. D. Intravital fluorescencevideomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia,2000,2(1-2):53-61.
    [43]. Pluen, A., Boucher, Y., Ramanujan, S., McKee, T. D., Gohongi, T., di Tomaso,E., Brown, E. B., Izumi, Y., Campbell, R. B., Berk, D. A., and Jain, R. K. Role oftumor-host interactions in interstitial diffusion of macromolecules: cranial vs.subcutaneous tumors. Proc. Natl. Acad. Sci.,2001,98(8):4628-4633.
    [44]. Gerlowski, L. E., and Jain, R. K. Microvascular permeability of normal andneoplastic tissues. Microvasc. Res.,1986,31(3):288-305.
    [45]. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. Tumor vascularpermeability and the EPR effect in macromolecular therapeutics: a review. J. Control.Release,2000,65(1-2):271-284.
    [46]. Childs, E. W., Udobi, K. F., and Hunter, F. A. Hypothermia reducesmicrovascular permeability and reactive oxygen species expression after hemorrhagicshock. J. Trauma,2005,58(2):271-277.
    [47]. Zhou, M., Zhang, A., Lin, B., Liu, J., and Xu, L. X. Study of heat shockresponse of human umbilical vein endothelial cells (HUVECs) using cDNAmicroarray. Int. J. Hyperther.,2007,23(3):225-258.
    [48]. Suehiro, E., Ueda, Y., Wei, E. P., Kontos, H. A., and Povlishock, J. T.Posttraumatic hypothermia followed by slow rewarming protects the cerebralmicrocirculation. J. Neurotrauma,2003,20(4):381-390.
    [49]. Berger, C., Xia, F., Kohrmann, M., and Schwab, S. Hypothermia in acutestroke--slow versus fast rewarming an experimental study in rats. Exp. Neurol.,2007,204(1):131-137.
    [50]. Wakiyama, S., Yanaga, K., Soejima, Y., Nishizaki, T., and Sugimachi, K.Reduction of rewarming injury of the hepatic graft by a heat insulator. Br. J. Surg.,1997,84(4):459-463.
    [51]. Russel, J. C., Lu, D., Iyengar, J., and Das, D. K. Reperfusion injury duringfrostbite and non-freezing cold exposure. In: Pathophysiology of reperfusion injury,Das, D. K., Ed. CRC Press: Boca Raton,1993;472-490.
    [52]. Theodorescu, D. Cancer cryotherapy: evolution and biology. Rev. Urol.,2004,6Suppl4: S9-S19.
    [53]. Hoffmann, N. E., and Bischof, J. C. The cryobiology of cryosurgical injury.Urology,2002,60(2Suppl1):40-49.
    [54]. Rubinsky, B., Cravalho, E. G., and Mikic, B. Thermal stresses in frozenorgans. Cryobiology,1980,17(1):66-73.
    [55]. Shi, X., Datta, A. K., and Mukherjee, Y. Thermal stresses from largevolumetric expansion during freezing of biomaterials. J. Biomech. Eng.,1998,120(6):720-726.
    [56]. Zhang, A., Cheng, S., Gao, D., and Xu, L. X. Thermal stress study of twodifferent artery cryopreservation methods. Cryoletters,2005,26(2):113-120.
    [57]. Shen, Y., Liu, P., Zhang, A., and Xu, L. X. Study on tumor microvasculaturedamage induced by alternate cooling and heating, Ann. Biomed. Eng.,2008,36(8):1409-1419.
    [1]. Rubinsky, B.,Cravalho, E. G., and Mikic, B. Thermal stresses in frozen organs.Cryobiology, Feb,1980,17(1):66-73.
    [2]. Rabin, Y., and Steif, P. S. Analysis of Thermal Stresses around a CryosurgicalProbe. Cryobiology, Apr,1996,33(2):276-290.
    [3]. Rabin, Y., and Steif, P. S. Thermal stresses in a freezing sphere and its applicationto cryobiology. Trans. ASME1998,65(2):328-333.
    [4]. Shi, X.,Datta, A. K., and Mukherjee, Y. Thermal stresses from large volumetricexpansion during freezing of biomaterials. J. Biomech. Eng., Dec,1998,120(6):720-726.
    [5]. He, X., and Bischof, J. C. Analysis of thermal stress in cryosurgery of kidneys. J.Biomech. Eng., Aug,2005,127(4):656-661.
    [6]. Rabin, Y.,Olson, P.,Taylor, M. J.,Steif, P. S.,Julian, T. B., and Wolmark, N. Grossdamage accumulation on frozen rabbit liver due to mechanical stress at cryogenictemperatures. Cryobiology, Jun,1997,34(4):394-405.
    [7]. Rabin, Y., and Steif, P. S. Thermal stress modeling in cryosurgery. Int. J. SolidsStruct.,2000,37(17):2363-2375.
    [8]. Pegg, D. E.,Wusteman, M. C., and Boylan, S. Fractures in cryopreserved elasticarteries. Cryobiology, Mar,1997,34(2):183-192.
    [9]. Hua, Z. Z.,Xu, H. Y.,Zhou, G. Y.,Liu, J. F.,Huang, H. M., and Ding, W. X.Analyses of thermal stress and fracture during cryopreservation of blood vessel.Science in China (Series E),2001,44(2):158-163.
    [10]. Zhang, A.,Cheng, S.,Gao, D., and Xu, L. X. Thermal stress study of twodifferent artery cryopreservation methods. Cryoletters, Mar-Apr,2005,26(2):113-20.
    [11]. Liu, P.,Zhang, A.,Xu, Y., and Xu, L. X. Study of non-uniform nanoparticleliposome extravasation in tumour. Int. J. Hyperther., May,2005,21(3):259-270.
    [12]. Pennes, H. H. Analysis of tissue and arterial blood temperatures in the restingforearm. J. Appl. Physiol.,1948,1(2):93-122.
    [13]. Song, C. W.,Kang, M. S.,Rhee, J. G., and Levitt, S. H. Effect of hyperthermiaon vascular function in normal and neoplastic tissues. Ann. N. Y. Acad. Sci.,1980,335:35-47.
    [14]. Rabin, Y., and Shitzer, A. Combined solution of the inverse Stefan problemfor successive freezing/thawing in nonideal biological tissues. J. Biomech. Eng., May,1997,119(2):146-152.
    [15]. Zhao, G., and Liu, Z. F. Finite element analysis of transient thermal stressduring cryosurgery. J. Chem. Ind. Eng.(China),2007,58(1):33-39.
    [16]. Weill, A.,Shitzer, A., and Bar-Yoseph, P. Finite element analysis of thetemperature field around two adjacent cryo-probes. J. Biomech. Eng., Nov,1993,115(4A):374-379.
    [17]. Alexiades, V., and Solomon, A. D. Mathematical modeling of melting andfreezing processes. Washington D. C.: Taylor&Francis,1992.
    [18]. Rabin, Y., and Shitzer, A. Numerical solution of the multidimensionalfreezing problem during cryosurgery. J. Biomech. Eng., Feb,1998,120(1):32-37.
    [19]. Zhang, A.,Xu, L. X.,Sandison, G. A., and Zhang, J. A microscale model forprediction of breast cancer cell damage during cryosurgery. Cryobiology, Oct,2003,47(2):143-154.
    [20]. Zhang, J.,Sandison, G. A.,Murthy, J. Y., and Xu, L. X. Numerical simulationfor heat transfer in prostate cancer cryosurgery. J. Biomech. Eng., Apr,2005,127(2):279-294.
    [21]. Intaglietta, M.,Richardson, D. R., and Tompkins, W. R. Blood pressure, flow,and elastic properties in microvessels of cat omentum. Am. J. Physiol., Sep,1971,221(3):922-928.
    [22].竹内洋一郎.热应力.北京:科学出版社,1977.
    [23]. Elliott, G. D., and McGrath, J. J. Freezing response of mammary tissue: amathematical study. In Proceedings of the ASME Advances in Heat and MassTransfer in Biotechnology,1999;59-64.
    [24]. Shi, X.,Datta, A. K., and Throop, J. A. Mechanical property changes duringfreezing of a biomaterial. Trans. ASAE,1998,41(5):1407-1414.
    [25]. Devireddy, R. V.,Smith, D. J., and Bischof, J. C. Effect of microscale masstransport and phase change on numerical prediction of freezing in biological tissues. J.Heat Trans.-T. ASME,2002,124(2):365-374.
    [26].屈钧利,和韩江水.工程结构的有限元方法.西北工业大学出版社,2005.
    [27]. Timoshenko, S., and Goodier, J. N. Theory of Elasticity. Second ed. NewYork: Mcgraw-Hill Book Company Inc.,1970; Chap.14.
    [28]. Zhang, A.,Cheng, S.,Lei, D.,He, L.,Luo, D., and Gao, D. An experimentalstudy of the mechanical behavior of frozen arteries at low temperatures. Cryoletters,Nov-Dec,2002,23(6):389-396.
    [29]. Jain, R. K. Transport of molecules in the tumor interstitium: a review. CancerRes., Jun15,1987,47(12):3039-3051.
    [30]. Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metast.Rev.,1987,6(4):559-593.
    [31]. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res., May15,1988,48(10):2641-2658.
    [32]. Marzella, L.,Jesudass, R. R.,Manson, P. N.,Myers, R. A., and Bulkley, G. B.Morphologic characterization of acute injury to vascular endothelium of skin afterfrostbite. Plast. Reconstr. Surg., Jan,1989,83(1):67-76.
    [33]. Bourne, M. H.,Piepkorn, M. W.,Clayton, F., and Leonard, L. G. Analysis ofmicrovascular changes in frostbite injury. J. Surg. Res., Jan,1986,40(1):26-35.
    [34]. Bowers, W. D., Jr.,Hubbard, R. W.,Daum, R. C.,Ashbaugh, P., and Nilson, E.Ultrastructural studies of muscle cells and vascular endothelium immediately afterfreeze-thaw injury. Cryobiology, Apr,1973,10(1):9-21.
    [35]. Hoffmann, N. E., and Bischof, J. C. The cryobiology of cryosurgical injury.Urology, Aug,2002,60(2Suppl1):40-49.
    [1]. Fung, Y. C. Biomechanics: Circulation Second edition. Springer,1996.
    [2]. Di Martino, E. S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P.,and Redaelli, A. Fluid-structure interaction within realistic three-dimensional modelsof the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm.Med. Eng. Phys.,2001,23(9):647-655.
    [3]. Leung, J. H., Wright, A. R., Cheshire, N., Crane, J., Thom, S. A., Hughes, A. D.,and Xu, Y. Fluid structure interaction of patient specific abdominal aortic aneurysms:a comparison with solid stress models. Biomed. Eng. Online,2006,5(33).
    [4]. Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata, K., Shirouzu, I., Morita,A., and Kirino, T. Role of the bloodstream impacting force and the local pressureelevation in the rupture of cerebral aneurysms. Stroke,2005,36(9):1933-1938.
    [5]. Choi, I. S., and David, C. Giant intracranial aneurysms: development, clinicalpresentation and treatment. Eur. J. Radiol.,2003,46(3):178-194.
    [6]. Torii, R., Oshima, M., Kobayashi, T., Takagi, K., and Tezduyar, T. E.Fluid-structure interaction modeling of aneurysmal conditions with high and normalblood pressures. Comput. Mech.,2006,38:482-490.
    [7]. Kleinstreuer, C., Li, Z., and Farber, M. A. Fluid-structure interaction analyses ofstented abdominal aortic aneurysms. Annu. Rev. Biomed. Eng.,2007,9:169-204.
    [8]. Endrich, B., and Vaupel, P. The role of the microcirculation in the treatment ofmalignant tumors: facts and fiction. In: Blood perfusion and microenvironment ofhuman tumors: Implications for Clinical Radiooncology, M. Molls, L.W. Brady, H.P. Heilmann, P. Vaupel, Ed. Springer Verlag: New York,2000.
    [9]. Jain, R. K. Transport of molecules in the tumor interstitium: a review. CancerRes.,1987,47(12):3039-3051.
    [10]. Fillinger, M. F., Marra, S. P., Raghavan, M. L., and Kennedy, F. E. Predictionof rupture risk in abdominal aortic aneurysm during observation: wall stress versusdiameter. J. Vasc. Surg.,2003,37(4):724-732.
    [11]. Perktold, K., Kenner, T., Hilbert, D., Spork, B., and Florian, H. Numericalblood flow analysis: arterial bifurcation with a saccular aneurysm. Basic Res. Cardiol.,1988,83(1):24-31.
    [12]. Ujiie, H., Tachibana, H., Hiramatsu, O., Hazel, A. L., Matsumoto, T.,Ogasawara, Y., Nakajima, H., Hori, T., Takakura, K., and Kajiya, F. Effects of size andshape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index forsurgical treatment of intracranial aneurysms. Neurosurgery,1999,45(1):119-129;discussion129-130.
    [13]. Raghavan, M. L., Ma, B., and Harbaugh, R. E. Quantified aneurysm shapeand rupture risk. J. Neurosurg.,2005,102(2):355-362.
    [14]. Utter, B., and Rossmann, J. S. Influence of Shape on Saccular AneurysmHemodynamics and Risk of Rupture..Bioengineering Conference,2006Proceedingsof the IEEE32nd Annual Northeast,2006;21-22.
    [15]. Ahmed, S., utalo, I. D., Kavnoudias, H., and Madan, A. Fluid StructureInteraction Modelling of a Patient Specific Cerebral Aneurysm: Effect ofHypertension and Modulus of Elasticity,16th Australasian Fluid MechanicsConference (AFMC) Gold Coast, Queensland, Australia,2007;75-81.
    [16].陶祖莱.生物流体力学.北京:科学出版社,1984.
    [17]. Intaglietta, M., Richardson, D. R., and Tompkins, W. R. Blood pressure, flow,and elastic properties in microvessels of cat omentum. Am. J. Physiol.,1971,221(3):922-928.
    [18]. Fung, Y. C., Zweifach, B. W., and Intaglietta, M. Elastic environment of thecapillary bed. Circ. Res.,1966,19(2):441-461.
    [19].叶修梓. SOLIDWORKS基础教程:零件与装配体.机械工业出版社,2006.
    [20]. Windberger, U., Bartholovitsch, A., Plasenzotti, R., Korak, K. J., and Heinze,G. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in ninemammalian species: reference values and comparison of data. Exp. Physiol.,2003,88(3):431-440.
    [21]. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res.,1988,48(10):2641-2658.
    [22]. Endrich, B., Zweifach, B. W., Reinhold, H. S., and Intaglietta, M.Quantitative studies of microcirculatory function in malignant tissue: influence oftemperature on microvascular hemodynamics during the early growth of the BA1112rat sarcoma. Int. J. Radiat. Oncol. Biol. Phys.,1979,5(11-12):2021-2030.
    [23]. Reinhold, H. S., and Van den Berg-Blok, A. E. Hyperthermia-inducedalteration in erythrocyte velocity in tumors. Int. J. Microcirc. Clin. Exp.,1983,2(4):285-295.
    [24].小飒工作室.最新经典ANSYS及Workbench教程.电子工业出版社,2004.
    [25]. Neal, C. R., and Michel, C. C. Effects of temperature on the wall strengthand compliance of frog mesenteric microvessels. J. Physiol.,2000,526Pt3:613-622.
    [26]. Leunig, M., Yuan, F., Menger, M. D., Boucher, Y., Goetz, A. E., Messmer, K.,and Jain, R. K. Angiogenesis, microvascular architecture, microhemodynamics, andinterstitial fluid pressure during early growth of human adenocarcinoma LS174T inSCID mice. Cancer Res.,1992,52(23):6553-6560.
    [27]. Konerding, M. A., Van Ackern, C., Fait, E., Steinberg, F., and Streffer, C.Morphological Aspects of Tumor Angiogenesis and Microcirculation. In: Bloodperfusion and microenvironment of human tumors: Implications for ClinicalRadiooncology, M. Molls, L.W. Brady, H. P. Heilmann, P. Vaupel, Ed. SpringerVerlag: New York,2000;5-17.
    [28]. Liu, P., Zhang, A., Zhou, M., Xu, Y., and Xu, L. X. Real time3D detection ofnanoparticle liposomes extravasation using laser confocal microscopy. Conf. Proc.IEEE Eng. Med. Biol. Soc.,2004,2662-2665.
    [29]. Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F., andGaehtgens, P. Resistance to blood flow in microvessels in vivo. Circ. Res.,1994,75(5):904-915.
    [30]. Lecklin, T., Egginton, S., and Nash, G. B. Effect of temperature on theresistance of individual red blood cells to flow through capillary-sized apertures.Pflugers. Arch.,1996,432(5):753-759.
    [31]. Neumann, F. J., Schmid-Schonbein, H., and Malotta, H. Effect oftemperature dependent changes in mechanical stability of red cell aggregates onrelative apparent whole blood viscosity. Biorheology,1987,24(5):463-472.
    [32]. Singh, M., and Stoltz, J. F. Influence of temperature variation from5degreesC to37degrees C on aggregation and deformability of erythrocytes. Clin. Hemorheol.Microcirc.,2002,26(1):1-7.
    [33]. Nash, G. B., and Meiselman, H. J. Alteration of red cell membraneviscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.Biorheology,1985,22(1):73-84.
    [34]. Hoffmann, N. E., and Bischof, J. C. The cryobiology of cryosurgical injury.Urology,2002,60(2Suppl1):40-49.
    [35]. Bhaumik, G., Srivastava, K. K., Selvamurthy, W., and Purkayastha, S. S. Therole of free radicals in cold injuries. Int. J. Biometeorol.,1995,38(4):171-175.
    [36]. Endrich, B., Hammersen, F., and Messmer, K. Microvascular ultrastructure innon-freezing cold injuries. Res. Exp. Med.(Berl),1990,190(5):365-379.
    [1].杨文胜,高明远,白玉白.纳米材料与生物技术.北京:化学工业出版社材料科学与工程出版中心,2005.
    [2]. Jain, R. K. Barriers to drug delivery in solid tumors. Sci. Am.,1994,271(1):58-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700