非结构环境下的移动机器人认知与导航避障方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来人们加快了使用移动机器人代替人类在危险、恶劣环境中作业的步伐,移动机器人的工作场合也越来越多地面向室外非结构化环境。野外、行星表面等室外非结构化环境具有多样性、随机性与复杂性等特点,相应地对移动机器人的自主性和智能化提出了更高的要求。而环境的认知和导航避障是实现移动机器人自主能力的基础性问题,同时也是关键性的难点问题。为此,本文主要研究了非结构化环境下的认知与导航避障方法,首先设计了可移植性高的自主导航硬件结构和软件系统,然后针对非结构化环境下的场景理解和自主导航方法开展了研究。全文主要工作包括如下几个方面。
     论文首先介绍了研究背景及意义,系统深入地概述了移动机器人的定义与发展、典型代表及其应用,在综述移动机器人导航技术的国内外研究现状的基础上,分析移动机器人自主导航中所面临的难点问题。
     在第二部分,详细介绍了本课题组自主研制的移动机器人自主导航系统及其软、硬件构成和基本功能。通过实际系统的开发,为本论文的算法研究提供了思路,并为算法的实际应用提供了实验平台。
     障碍物检测与识别是移动机器人理解环境的基础,障碍物检测与识别的准确性直接影响后续认知结果,而非结构化环境中存在的大量随机、多样因素对障碍物的检测与识别造成极大干扰,因此,论文第三章在分析了常用的非结构化场景分割方法的基础上,将非结构化环境中的障碍物检测转化为标记非目标区域的问题,提出一种结合二维图像、三维信息和相关向量机(RVM)实时检测与识别障碍物的方法。该算法首先将场景分为感兴趣区域和非感兴趣区域两个部分。然后,利用像素的三维信息对感兴趣区域聚类,得到独立的障碍物,采用空间关系和几何特征描述障碍物。针对障碍物识别对象数量巨大、形状千差万别、难以收集全样本等问题,通过训练相关向量机分类器实现对非结构化环境下的实时障碍物分类识别。在各种非结构化环境中的实验结果表明该方法鲁棒性高,能较好地适应场景中的复杂随机变化,准确、有效、快速地检测识别障碍物。
     不同类型的地表对机器人的移动性能的影响也不一样。通过视觉分析识别地表的类型是一种较常用的方法,其中图像特征提取是决定算法可靠性和实时性的关键和难点问题。在非结构化环境中光照、灰尘等随机性因素造成即使同一类型地表的外观也有较大差异,不同类型地表的外观有时候却很相似,进一步给基于视觉的地表类型识别方法带来了困难。论文第四章分析了视觉识别地表类型方法中常用的颜色、纹理特征,提出利用Gabor小波和混合进化算法优化选取地表图像特征,以最少的图像特征节点和Gabor小波尺度方向提取地表特征,在保证可靠性的同时,有效地减少了计算量。然后提出基于相关向量机神经网络的地表类型识别方法,具有较好的识别效果。
     当移动机器人在非结构化地形上运行时,机器人需要具备实时判断地形可通过难易程度的能力。与平整室内环境中的导航任务相比,界定非结构化环境地形表面上的不可通行区域更复杂,其可通过性取决于机器人的越障能力和地形的特点。论文第五章在模糊逻辑框架下,融合视觉和空间信息从粗糙度、开阔度、坡度、不连续度和地面硬度五个方面描述地形。首先定义了地形的粗糙度、开阔度、连续性和硬度。为了正确感知斜坡地形,分析了其描述模型。根据移动机器人从不同位置观测斜坡时深度信息的变化趋势,确定移动机器人观测斜坡的方向,提出了应用RBF神经网络估算地形坡度值的方法。在此基础上,运用模糊推理机推理得到地形可通行性评价,为后续的移动机器人导航提供了决策依据。
     为实现未知环境下对目标位置的无碰撞高效导航控制,论文第六章提出一种基于混合协调机制和分层结构的反应式行为导航方法。首先将行为分为高层行为和底层基本行为两层结构,提高控制器的实时性:然后设计了底层的模糊神经网络基本行为控制器,运用遗传算法优化调整控制器,以获得控制器更好的性能。行为的切换和调度分两层进行:根据神经网络辨识环境的结果选择高层行为;在底层通过计算当前环境与环境原型之间的匹配度确定融合基本行为的权值。在此基础上,融合地形可通行性分析结果,实现了非结构化环境下的自主导航避障。实验表明,该方法对不同环境有很好的适应能力和可靠性。
     论文最后总结了全文的主要工作和创新性的研究成果,并对下一步研究工作进行了展望。
In recent decades, the pace which mobile robots are implemented their pace to expand human's ability and release them from dangerous, hard and dirty work is quickening. More and more mobile robots work in outdoor unstructured environment. Because the unstructured environment, such as field environment, planetary surface et al, has the characteristics of variability, randomness and complexity, human expect more autonomous and intelligent mobile robot. The ability of environment cognitive and navigation avoidance are two basic elements in the autonomous mobile robot and key difficult points as well. This dissertation focuses on the methods of cognitive and navigation avoidance in unstructured environment. An autonomous navigation hardware and software with high portability are developed, then the challenging problems of scene understanding and autonomous navigation are addressed and some solutions are provided. Main results and contributions of this dissertation are as follows:
     Firstly, the background and significance of research work about this thesis are introduced. Then, the definition and development of mobile robot is surveyed, and some typical series of intelligent mobile robot and its applications are presented. And the research progresses of key technologies in mobile robot autonomous navigation in unknown environment are generalized. Furthermore, on the basis of the research, the difficult problems in autonomous navigation are discussed.
     In chapter 2, an autonomous navigation system is developed, and the software and hardware structure of this system is introduced. This system provides us ideas to present these methods in this dissertation, and it can be used as an experiment platform to verify methods.
     The performance of obstacle detection and recognition are two of basic problems for the mobile robot understanding environment, which affect the following sensing result directly. As the unstructured environment is usually ramdom and variability, it is difficult to detect and recognize accurately by the traditional method. In chapter 3, on the basis of analyzing traditional unstructured environment scene segementation methods, we propose an obstacle detection and recognition approach using image information,3-D information and relevance vector machine(RVM). Firstly, the scene is divided into two distinct regions:interest regions and uninterested regions. Then detected obstacle points are clustered into objects on the basis of their three-dimensional information, connectivity. The key obstacle features are described using geometric property. The RVM is used to categorizing the objects into three groups:stone, rock and slope. Extensive experiments show the utility and performance of the proposed approach. According to the large quantity and various shapes of obstacle, the real-time obstacle classification and recognition in the unstructured environment is realized by training RVM Classifier. In various unstructured environments, results of experiments show that this method is highly robustness, better adapt to random changes in complex scene.
     Different ground materials have different effect on the motion ability of mobile robots. To determine the surface types through visual analysis, feature extraction is the main difficulty which determine the real-time and reliability of the algorithm. In the unstructured environment, random factors, like illumination and dust, may resulting that the same type of surface appear very differently but different types of surface sometimes appear very similar, which brings further difficulties to the surface types identification based on vision method. In the fourth chapter, the paper analyzed the color, texture feature which commonly used in identification of surface type with vision method. An approach using Gabor wavelet and hybrid evolutionary algorithm optimize selection of surface image characteristics, extract surface features with fewest number of image features nodes and Gabor wavelet scales direction. Then, Relevance Vector Machines neruo-based approach to surface type identification is proposed. Results of experiments show that this method is reliability, and the computation is reduced as well.
     The mobile robot must have the ability of determining weather the terrain is traversable when operating on the unstructured terrain. Compared with navigation task in planar indoor environment, it is more complex to decide the untraversable region. The key terrain characteristics are identified as roughness, openness, slope, discontinuity and hardness. These characteristics are extracted from vision data and spatial information, and are represented in a fuzzy logic framework. Firstly, we define roughness, openness, discontinuity and hardness. In order to correctly perceive slope terrain, its discription model is discussed. Then, a novel method of estimating the slope of terrain using RBF neural network is proposed. Even on the condition that the position the robot observe the slope is unknown, the slope of the terrain can still be estimated correctly, the relative position between the robot and the slope can be obtained as well. Based on this method, we achieved the terrain traversability assessment through fuzzy inference machine, providing decision-making basis for subsequent mobile robot navigation
     In order to realize the effective navigation of mobile robot to target position without collision, this thesis proposed a fast navigation and obstacle avoidance algorithm based on hybrid coordination mechanisms and hierarchical behaviors in chapter 6. This method has a hierarchical architecture that divides the controller into several smaller subsystems will reduce the negative effect that a large rule-based may have on real-time performace. Consequently, the neruo-fuzzy navigation behavior controllers are designed, and the performance of these controllers can be solved by using genetic algorithm. Then, the higher behavior is selected according to the result of identigied environment using neurel network. The weigh of fused basic behaviors are decided by computing the matching degree between the current environment and prototype environment. At last, fusing the terrain traversablity assessment, the autonomous navigation system is realized in the unstructured environment. Results of experiments have been shown that the introduced method has good navigation performance, and it is reliable to different environments.
     Finally, the main innovations of the dissertation are summarized, and the fields for further research are prospected at the end of the dissertation.
引文
[1]T. Braunl. Embedded robotics:mobile robot design and applications with embedded systems. Springer,2008
    [2]王耀南.机器人智能控制工程.北京:科学出版社,2004
    [3]余洪山.移动机器人地图创建和自主探索方法研究:[湖南大学博士学位论文].长沙:湖南大学,2007,1-110
    [4]Wei Wang, Boyan Tang, Houxiang Zhang, et al. Robotic cleaning system for glass facade of high-rise airport control tower. Industrial Robot:An International Journal,2010,37(5):469-478
    [5]F. B. Font, A. Ortiz, G. Oliver. Visual navigation for mobile robot:A survey, 2008,53:263-296
    [6]L. Matthies, M. Maimone, A. Johnson, et al. Computer vision on Mars. International Journal of Computer Vision,2007,75(1):67-92
    [7]Lirx, Dike, Howard A B, et al. Rock modeling and matching for Autonomous long-range Mars rover localization. Journal of Field Robotics,2007,24(3): 187-203
    [8]M. Buehler, K. Iagnemma, S. Singh. The 2005 DARPA grand challenge:The great robot race. Berlin:Springer-Verlag,2007
    [9]岳海媛,解玉文,丁希仑.星球探测机器人导航定位技术研究进展.机器人技术与应用,2008,(3):20-25
    [10]张毅,罗元,郑太雄.移动机器人技术及其应用.北京:电子工业出版社,2007
    [11]Rosier J C, Woerden J A,Wander L W, et al. Rehabilitation robotics:The manus concept. Fifth International Conference on Advanced Robotics,Pisa, 1991:893-898
    [12]Topping M. The development of Handyl a robotic aid to independence for the sever disabled. IEE Colloquium on Mechatronic Aids for the Disabled, 1995,(2):1-6
    [13]Christian martens, Nils ruchel, Oliver lang, et al. A friend for assisting handicapped people. IEEE Robotics and Automation,2001,8:57-65
    [14]王田苗,张大朋,刘达.医用机器人的发展方向.中国医疗器械杂志,2008,32(4):235-238
    [15]熊光明,赵涛,龚建伟.服务机器人发展综述及若干问题探讨.机床与液压,2007,35(3):212-215
    [16]李建军,张济川,金德闻.移动式护理机器人的开发.中国康复医学杂志,1996,10(3):126-128
    [17]Lu T, Yuan K, Zou W, et al. Study on navigation strategy of intelligent wheelchair in narrow spaces. Proceedings of the 6th World Congress on Control and Automation,Dalian,2006:9252-9256
    [18]李瑞峰,胡雨滨,赵立军.基于双目视觉的双臂作业型服务机器人的研制.机械设计与制造,2010,(4):161-162
    [19]C. Thorpe. Vision and navigation. The Carnegie Mellon Navlab, Kluwer Acadmic Publishers,1990:52-71.
    [20]A. Romuald, G. Jay. Perception for collision avoidance and autonomous driving. Mechatronics,2003,13(10):1149-1161
    [21]H. Wax. Autonomous vehicle development:No accident. IEEE Women in Engineering,2008,2(1):34-37
    [22]C. Armbrust, T. Braun, T. Fohst, et al. Ravon—The robust autonomous vehicle for off-road navigation. Proceedings of the IARP International Workshop on Robotics for Risky Interventions and Environmental Surveillance,2009:1-28
    [23]E D. Dickmanns. An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles, Man and Cybernetics,1990,20 (6):1273-1284.
    [24]D. Schleicher, L. M. Bergasa, M. Ocana, et al. Real-time hierarchical outdoor slam based on stereovision and gps fusion. IEEE Transactions on Intelligent Transportation Systems,2009,10(3):440-452.
    [25]郭木河,孙健.室外智能移动机器人导航中路标识别算法的研究.清华大学学报,1998,51(38):104-107.
    [26]郭木河,杨磊.视觉导航中基于模糊神经网的消阴影算法研究.软件学报,1999,10(2):155-159.
    [27]胡斌,张朋飞,何克忠.一种用于室外移动机器人的快速有效的车道线识别方法.机器人,2006,28(4):394-399
    [28]孙振平,安向京,贺汉根.CITAVT-IV——视觉导航的自主车.机器人,2002,24(2):115-121
    [29]Li, Q, N. Zheng, H. Cheng. Springrobot:a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. on Intelligent Transportation Systems,2004,5(4):300-308
    [30]Zhang Ronghui,Wang Rongben,You Feng,et al. Platform and steady kalman state observer design for intelligent vehicle based on visual guidance.IEEE International Conference on Industrial Technology,2008,:1-5
    [31]Jin Lisheng, Guo Lie, Wang Rongben, et al. System design and navigation control for vision based cybercar. IEEE International Conference on Vehicular Electronics and Safety,2006:13-15
    [32]Zhang Ronghui, Wang Rongben, You Feng,et al. Study on navigation control method for cybercar based on machine vision. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,2007:1882-1887
    [33]H. M. Barbera, D. H. Perez. Development of a flexible AGV for flexible manufacturing systems. Industrial Robot:An International Journal, 2010,37(5):459-468
    [34]张莹.大型冷凝器清洗机器人视觉控制方法研究:[湖南大学博士学位论文].长沙:湖南大学,2010,10-20
    [35]朱江,王耀南,余洪山,等.大型冷凝设备水下智能清洗机器人的研制.中国机械工程,2010,21(14):1830-1835
    [36]R. R. Murphy, J. Kravitz, S. L. Stover, et al. Mobile robots in mine rescue and recovery. IEEE Robotics and Automation Magazine,2009,16(2):91-103
    [37]S.Thrun, S.Thayer, W.Whittaker, et al. Autonomous exploration and mapping of abandoned mines. IEEE Robotics and Automation Magazine, 2004,(12):79-91
    [38]赵杰,刘刚峰,朱磊,等.基于WSN的矿井事故搜索探测多机器人系统.煤炭学报,2009,34(7):997-1002
    [39]郭晏,包加桐,宋爱国,等.基于地形预测与修正的搜救机器人可通过度.机器人,2009,31(5):445-452
    [40]T. Balch, R. C. Arkin. Behavior-based formation control for multi-robot teams. IEEE Robotics and Automation,1998,14(6):14
    [41]National Research Council (U.S.).Technology developmentfor army unmanned groundvehicles. Washington:The National Academies Press,2002
    [42]R. C. Arkin. Governing lethal behavior:embedding ethics in a hybrid deliberative/reactive robot architecture part I:motivation and philosophy. Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction,2008:121-128
    [43]B. M. Yamauchi. Packbot:a versatile platform for military robotics. Proc. SPIE,2004,5422:228-237
    [44]B. Yamauchi. All-weather perception for man-portable robots using ultra-wideband radar. IEEE International Conference on Robotics and Automation,2010:3610-3615
    [45]M. Raibert, K. Blankespoor, G. Nelson, et al. Bigdog, the rough-terrain quadruped robot. Proceedings of the 17th World Congress, The International Federation of Automatic Control,2008:1-5
    [46]M. Bajracharya, M. W. Maimone, D. Helmick. Autonomy for Mars rovers:past, present, and future. Computer,2008,41(12):44-50
    [47]Ji Liu, Yuechao Wang, Chuan Zhou, et al. A navigation simulation system of lunar rover. IEEE International Conference on Networking, Sensing and Control,2008:556-561
    [48]Peng Zhang, Zongquan Deng, Ming Hu, et al. Mobility performance analysis of lunar rover based on terrain mechanics. Proceedings of the 2008 IEEE International Conference on Advanced Intelligent Mechatronics,2008:120-125
    [49]Haining Pan, Zhenwu Lei, Pingyuan Cui, et al. Obstacle avoidance learning for a wheeled lunar rover based on its local relative pose. Proceedings of the 7th Asian Control Conference,2009:1662-1666
    [50]Chang Yong, Wang Hongguang, Ma Shugen, et al. Locomotion performance analysis of the lunar rover on a slope. Control and Decision Conference,2009:436-641
    [51]张广军.机器视觉.北京:科学出版社,2005
    [52]C. Fruh, A. Zakhor. An automated method for large-scale, ground-based city model acquisition. Journal of Computer Vision,2004,60(1):5-24
    [53]S. Thrun, C. Martin, Y. Liu, et al. A real-time expectation maximization algorithm for acquiring multi-planar maps of indoor environments with mobile robots. IEEE Transactions on Robotics and Automation,2004,20(3):433-443
    [54]H. Surmann, A. Nuchter, Hertzbergj. An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. International Journal of Robotics and Autonomous Systems,2003,45:181-198
    [55]A. Nuchter, H. Surmann, K. Lin Gemann, et al.6D Slam with an application in autonomous mine mapping. Proceedings of IEEE. International Conference on Robotics & Automation,2004:1998-2003
    [56]A. Kolb, E. Barth, R. Koch, et al. Time-of-flight sensors in computer graphics. The Eurographics Association - State of the Art Reports,2009:119-134
    [57]E. Stoykava, A. Alatan, P. Benzie, et al.3-D Time-Varying scene capture technologies—a survey. IEEE Transactions on Circuits and Systems For Video Technology,2007,17(11):1568-1586
    [58]S. Hussmann, T. Edeler. Pseudo-four-phase-shift algorithm for performance enhancement of 3D-TOF vision systems. IEEE Transactions on Instrumention and Measurement,2010,59(5):1175-1181
    [59]J. W. Weingarten, G. Gruener, R. Siegwart. A state-of-the-art 3D sensor for robot navigation. Proceedings of 2004 IEEE International Conference on Intelligent Robots and Systems,2004:2155-2160
    [60]S. May, D. Droeschel, D. Holz, et al. Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics,2009,26(11-12):934-965
    [61]S. Hussmann, T. Liepert. Robot vision system based on a 3D-TOF camera. Instrumentation and Measurement Technology Conference,2007:1-5
    [62]B. Kohoutek. Analysis and processing the 3D-range-image-data for robot monitoring. Geodezija IR Kartografija/Geodesy and Cartography,2008,34(3): 92-96
    [63]S. Knoop, S. Vacek, R. Dillmann. Fusion of 2d and 3d sensor data for articulated body tracking. Robotics and Autonomous Systems,2009, 57:321-329
    [64]B. A. Merhy, P. Payeur, E. M. Petriu. Application of segmented 2-D probabilistic occupancy maps for robot sensing and navigation. IEEE Transactions on Instrumentation and Measurement,2008,57(12):2827-2837
    [65]B. Kuipers, Y. T. Byun. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems,1991,8:47-63
    [66]P. Ranganathan, J. B. Hayet, M. Devy, et al. Topological navigation and qualitative localization for indoor environment using multi-sensory perception. Robot Autonomous System,2002,41(2/3):137-144
    [67]A. Nuchter, K. Lingemann, J. Hertzberg, et al.6D Slam-3D mapping outdoor environments. Field Robot,2007,24(8-9):699-722
    [68]J. L. Blanco, J. A. Fernandez-Madrigal, J. Gonzalez. Toward a unified Bayesian approach to hybrid metric—topological slam. IEEE Transactions on Robotics,2008,24(2):259-270
    [69]H. P. Moravec. Robot spatial perception by stereoscopic vision and 3D evidence grids. Technical Report CMU-R1-TR-96-34,CMU Robotics Institue,1996
    [70]A. Chilian, H. Hirschmuller. Stereo camera based navigation of mobile robots on rough terrain. Proc. of IEEE International Conference on Intelligent Robots and System,2009:4571-4576
    [71]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法.北京:科学出版社,2009
    [72]庄严,陈东,王伟.移动机器人基于室外自然场景理解的研究与进展.自动化学报,2010,36(1):1-11
    [73]J. G. Avina-Cervantes, M. D. J. Estudillo-Ayala, S. Ledesma-Orozco, et al. Boosting for image interpretation by using natural features. Proc. of IEEE International Conference on Artificial Intelligence,2008:117-122
    [74]A. Angelova, L. Matthies, D. Helmick, et al. Fast terrain classification using variable-length representation for autonomous navigation. IEEE Conference on Computer Vision and Pattern Recognition,2007:1-8
    [75]C. A. Brooks, K. Iagnemma. Vibration-based terrain classification for planetary exploration rovers. IEEE Transactions on Robots,2005, 21(6):1185-1191.
    [76]D. G. Lowe. Distinctive image features from scale-invariant key-points. International Journal of Computer Vision,2004,60(2):91-110
    [77]C. Valgren, A. Lilienthal. SIFI, Surf and seasons:long-term outdoor localization using local feature. Proc. of the 3rd European Conference on Mobile Robots,2007:253-258
    [78]H. Schafer, A. Hach, M. Proetzsch,et al.3D obstacle detection and avoidance in vegetated off-road terrain. IEEE International Conference on Robotics and Automation,2008:923-928
    [79]王璐,陆筱霞,蔡自兴.基于局部显著区域的自然场景识别.中国图像图形学报,2008,13(8):1594-1600
    [80]B. Sofman, E. Lin, J. A. Bagnell, et al. Improving robot navigation through self-supervised online learning. Journal of Field Robotics,2006, 23(11-12):1059-1075
    [81]R. Hadsell, P. Sermanet, J. Ben, et al. Learning long-range vision for autonomous off-road driving. Journal of Field Robotics,2009,26(2):120-144
    [82]A. Oliva, A. Torralba. Scene-centered description from spatial envelope properties. Proc. of the 2nd International Workshop on Biologically Motivated Computer Vision,2002:263-273
    [83]G. N. DeSouza, A. C. Kak. Vision for mobile robot navigation:a survey. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(2):237-267
    [84]J. Borenstein, Y. Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Transaction System Man Cybern,1989,19(5):1179-1187
    [85]A. Masoudand, A. A. Masoud. Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields:a physical metaphor. IEEE Transaction on System, Man, and Cybernetics. Part A,2002,32(6):705-723
    [86]S. S. Ge, Y. J. Cui. New potential functions for mobile robot path planning. IEEE Transactions on Robotics and Automation,2000,16(5):615-620
    [87]N. J. Nilsson. Introduction to artificial intelligence principles. Rivista di Informatica,1981,11(1):13-38
    [88]A. Stentz. Optimal and efficient path planning for partially known environments. The IEEE International Conf. on Robotics and Automation, 1994,4:3310-3317
    [89]A. Stentz. The focused D* algorithm for real-time replanning. The 14th International Joint Conference on Artificial Intelligence,1995:1652-1659
    [90]L. Podsedkowski, J. Nowakowski, M. Idzikowski, et al. A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots. Robotics and Autonomous Systems,2001,34:145-152
    [91]D. Ferguson, A. Stentz. Field D*:An interpolation-based path planner and replanner. Robotics Research,2007,28/2007:239-253
    [92]J. Carsten, D. Ferguson, A. Stentz.3D Field D*:Improved path planning and replanning in Three dimensions. Proceedings of IEEE Intl. Conference on International Robots and Systems,2006:3381-3386
    [93]A. Cappalunga, S. Cattani, A. Broggi, et al. Real time 3D terrain elevation mapping using ants optimization algorithm and stereo vision. IEEE Intelligent Vehicles Symposium,2010:902-909
    [94]Wing Kwong Chung, Yangsheng Xu. A generalized 3-D path planning method for robots using genetic algorithm with an adaptive evolution process.8th World Congress on Intelligent Control and Automation,2010:1354-1360
    [95]A. Howard, H. Seraji. Vision-based terrain characterization and traversability assessment. Journal of Robotic Systems,2001,18(10):577-587
    [96]A. R. Norouzzadeh Ravari, H. D. Taghirad, A. H. Tamjidi. Vision-based fuzzy navigation of mobile robots in grassland environments. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009:1441-1446
    [97]徐璐,曹亮,居鹤华,等.基于三维通行性的月球车自主导航.系统仿真学报,2007,19(2):2852-2856
    [98]S. May, B. W erner, H. Surmann, et al.3D time-of-flight cameras for mobile robotics. Proceedings of the 2006 IEEE International Conference on intelligent Robots and Systems,2006:790-795
    [99]S. A. Guemundsson, H. Aanes, R. Larsen. Environmental effects on measurement uncertain ties of time-of-flight cameras. International Symposium on Signals, Circuits and Systems,2007,1:1-4
    [100]Martin T. Hagan, Howard B. Demuth, Mark H. Beale. Neural Network Design (1st edition). PWS Publishing Company,1996
    [101]N. Otsu. A threshold selection method form gray level histogram. IEEE Transactions on System, Man Cybernetics,1979,9(1):62-67
    [102]P. Comaniciu, P. Meer. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5):603-609
    [103]D. R. Martin, C. C. Fowlkes, J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):530-549
    [104]C. S. Zhu, A. Yuille. Region competition:unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):884-900
    [105]赵一兵,王荣本,李琳辉,等.基于传感器信息的前方障碍物检测.计算机工程与应用,2007,43(26):174-177
    [106]石德乐,叶培建,贾阳,等.月面巡视探测器的图像分割及识别方法.吉林大学学报,2007,37(1):212-217
    [107]Wannes van der Mark, C. Johan, van den Heuvel, et al. Stereo based obstacle detection with uncertainty in rough terrain. Proceedings of the 2007 IEEE Intelligent Vehicles Symposium,2007:1005-1012
    [108]M. Verauwen, M. Pollefeys, L. V. Gool. A stero-vision system for support of planetary surface exploration. Journal Machine Vision and Application, 2003,14(1):5-14
    [109]R. Manduchi, A. Castano, A. Talukder, et al. Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots,2005, 18:81-102
    [110]王耀南,李树涛,毛建旭.计算机图像处理与识别技术.北京:高等教育出版社,2001
    [111]N. Critianini, J. Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods. Cambridge:Cambridge University Press,2000
    [112]V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks,1999,10 (5):988-999
    [113]Huanhuan, Chen, P. Tino, Xin Yao.Probabilistic classification vector machines. IEEE Transactions on Neural Networks,2009,20(6):901-914
    [114]M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research,2001,1:211-244
    [115]B. Gholami, W. M. Haddad, A. R. Tannenbaum. Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging. IEEE Transactions on Biomedical Engineering,2010,57(6):1457-1466
    [116]A. Mathur, G. M. Foody. Multiclass and binary SVM classification: implications for training and classification users. IEEE Geoscience and Remote Sensing Letters,2008,5(2):241-245
    [117]M. Pal, G. M. Foody. Feature selection for classification of hyperspectral data by SVM. IEEE Transactions on Geoscience and Remote Sensing,2010,48(5): 2297-2307
    [118]张立峰,王化祥.基于SVM及电容层析成像的两相流流型识别.仪器仪表学报,2009,30(4):812-816
    [119]L. Ojeda, J. Borenstein, G. Witus, et al. Terrain characterization and classification with a mobile robot. Journal of Field Robotics, 2006,23(3):103-122
    [120]T. Kurban, E. Besdok. A comparison of RBF neural network training algorithms for inertial sensor based terrain classification. Sensors, 2009,9:6312-6329
    [121]I. Halatci, C. A. Brooks, K. Iagnemma. A study of visual and tactile terrain classification and classifier fusion for planetary exploration rovers.Robotica, 2008,26:767-779
    [122]B. Upcroft, M. Ridley, L.L. Ong, et al. Multi-level state estimation in an outdoor decentralised sensor network. Experimental Robotics,2008, 39:355-365
    [123]Y. Alon, A. Ferencz, A. Shashua. Off-road path following using region classification and geometric projection constraints. Proc. Of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006:1-8
    [124]D. Helmick, A. Angelova, L. Matthies. Terrain adaptive navigation for planetary rovers. Journal of Field Robotics,2009,26(4):391-410
    [125]刘广海.基于彩色基元特征的图像检索:[南京理工大学博士学位论文].南京:南京理工大学,2009,4-27
    [126]唐旭晟.基于机器学习和互信息分析的人脸检测和识别:[大连理工大学博士学位论文].大连:大连理工大学,2007,30-50
    [127]K. Diamantaras, S. Y. Kung. Principal component neural networks:theory and applications. New York:Wiley,1996.
    [128]J. Venna, J. Peltonen, K. Nybo, et al. Information retrieval perspective to nolinear dimensionality reduction for data visualization. Jounal of Machine Learning Research,2010,11(2):451-490
    [129]Ji wen Lu, Yap peng Tan. Regularized Locality Preserving Projections and Its Extensions for Face Recognition. IEEE Transactions on Systems, Man, and Cybernetics—Part B:Cybernetics,2010,40(3):958-963
    [130]M. Lades, J. V. Vorbruggen, J. Buhmann, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers,1993,42(3):300-311
    [131]D. J. Kenneth. Evolutionary computation. Wiley Interdisciplinary Revews: Computational Statistics,2009,1(1):52-56
    [132]P. H. Batavia, S. Singh. Obstacle detection in smooth high curvature terrain. Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:3062-3067
    [133]H. Seraji. Traversability index:a new concept for planetary rover. Proc. of the IEEE International Conference on Robotics and Automation,1999:2006-2013
    [134]Weiqiang Wang, Minyi Shen, Jin Xu, et al. Visual traversability analysis for micro planetary rover. IEEE International Conference on Robotics and Biomimetics,2009:907-912
    [135]D. B. Gennery. Traversability analysis and path planning for a planetary rover. Autonomous Robots,1999,6(2):131-146
    [136]A. Howard, H. Seraji. An intelligent terrain-based navigation system for planetary rovers. IEEE Robotics & Automation Magazine,2001,18(10):9-7
    [137]S. Singh, R. Simmons, T. Smith, et al. Recent progress in local and global traversability for planetary rovers. Proc IEEE International Conference on Robotics and Automations,2000,1194-1200
    [138]Gang-Gyoo Jin, Yun-Hyung Lee, Hyun-Sik Lee, et al. Traversability analysis for navigation of unmanned robots. SICE Annual Conference,2008:1806-1811
    [139]C. Ye. Navigating a mobile robot by a traversavility field histogram. IEEE Transactions on Systems, Man, and Cybernetics PartB:Cybernetics, 2007,37(2):361-372
    [140]刘华军,陆建峰,杨靖宇.基于相对特征的越野地形可通过性分析.数据采集与处理,2006,21(3):58-63
    [141]K. Iagnermma, K. Shinwoo, H. Shibly, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Transactions on Robotics,2004,20(5):921-927
    [142]L. A. Zadeh. Fuzzy Sets. Information Control,1965,8:338-353.
    [143]E. H. Mamdani. Application of Fuzzy Algorithms for Simple Dynamic Plant. Proc. IEE Control and Science, Part D,1974,121(2):1585-1588.
    [144]C. Castejon, D. Blanco. Compact modeling technique for outdoor navigation. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2008,38(1):9-24
    [145]S. Williams, M. Aynna, Howard. A single camera terrain slope estimation technique for natural arctic environments.2008 IEEE International Conference on Robotics and Automation Pasadena,2008:2729-2734
    [146]樊绍胜,王耀南.基于特征选取与多RBF神经网络的冷凝器污垢软测量.仪器仪表学报,2008,29(4):723-728
    [147]Yuan XiaoFang, Wang Yaonan, Sun Wei, et al. RBF network-based adaptive inverse model control system for electronic throttle. IEEE Transactions on Control Systems Technology,2010,18(3):750-756
    [148]陈勇强,刘开培.一种基于径向基函数动态阈值模型的机组状态监测方法.中国电机工程学报,2007,27(26):96-101
    [149]D. R. Parhi, M. K. Singh. Intelligent fuzzy interface technique for controller of mobile robot. Journal of Mechanical. Engineering—Part C,2008,222 (11):2281-2292
    [150]S. K. Pradhan, D. K. Parhi, A. K. Panda. Fuzzy logic techniques for navigation of several mobile robots. Application Soft Computer,2009,9:290-304
    [151]Caihong Li, Ping Chen, Yibin Li. Adaptive behavior design based on FNN for the mobile robot. IEEE International Conference on Automation and Logistics,2009:1952-1956
    [152]S. M. Kumar, R. P. Dayal, P. J. Kumar. ANFIS approach for navigation of mobile robots. IEEE International Conference on Advances in Recent Technologies in Communication and Computing,2009:727-731
    [153]N. Marichal, L. Acosta, L. Moreno, et al. Obstacle avoidance for a mobile robot:A neuro-fuzzy approach. Fuzzy Sets and Systems,2001,124:172-179
    [154]A. Zhu, S. X. Yang. Neurofuzzy-based approach to mobile robot navigation in unknown environment. IEEE Transactions on Systems, Man and Cybernetics. Part C:Applications and Reviews,2007,37(4):610-621
    [155]P. Rusu, E. Petriu, T. E. Whalen, et al. Behavior-based neuro-fuzzy controller for mobile robot navigation. IEEE Transactions Instrum. Meas, 2003,52(4):1335-1340
    [156]Chia Feng Juang, Chia Hung Hsu. Reinforcement ant optimized fuzzy controller for mobile robot wall-following control. IEEE Transactions on Industrial Electronics,2009,56(10):3931-3940
    [157]K. S. Senthilkumar, K. K. Bharadwaj. Hybrid genetic-fuzzy approach to autonomous mobile robot. IEEE International Conference on Technologies for Practical Robot Applications,2009:29-34
    [158]段勇,徐心和.基于强化学习的机器人模糊控制系统设计.系统仿真学报,2006,18(6):1597-1600
    [159]Velappa Ganapathy, Soh Chin Yun, Halim Kusama Joe. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009,863-868
    [160]H. Hagras, V. Callaghan, M. Colley. Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online Fuzzy-Genetic system. Fuzzy sets and systems,2004,141:107-160
    [161]Hao Ju, Jianxun Zhang, Xiaoxu Pei, et al. Evolutionary fuzzy navigation for security robots. World Congress on Intelligent Control and Automation, 2008:5739-5743
    [162]Yi Zhou, Meng Joo Er. An evolutionary approach toward dynamic self-generated fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics—Part B:Cybernetics,2008,38(4):963-969
    [163]E. Zalama, J. Gomez, M. Paul, et al. Adaptive behavior navigation of a mobile robot. IEEE Transactions on Systems. Man and Cybernetics—Part A:Systems and Humans,2002,32(1):160-168
    [164]J. K. Rosenblatt, J. Handler. Architectures for mobile robot control. Advanced Computer,1999,48:315-353
    [165]E. Gat, R. Ivlev, J. Loch, et al. Behavior control for exploration of planetary surfaces. IEEE Trans. Robot Automat,1994,10(4):490-503
    [166]R.C. Arkin. Motor schema-based mobile robot navigation. Int. J. Robot. Res, 1989,8(4):93-112
    [167]段勇,徐心和.基于模糊神经网络的强化学习及其在机器人导航中的应用.控制与决策,2007,22(5):525-534
    [168]S. J. Han, S. Y. Oh. An optimized modular neural network controller based on environment classification and selective sensor usage for mobile robot reactive navigation. Neural Compute & Application,2008,17:161-173
    [169]P. Vadakkepat, O. C. Miin, X. Peng, et al. Fuzzy behavior-based control of mobile robots. IEEE Transactions Fuzzy System,2004,12(4):559-565
    [170]E. Aguirre, Antonio Gonzalez. A fuzzy perceptual model for ultrasound sensors applied to intelligence navigation of mobile robots. Applied Intelligence, 2003,19:171-187
    [171]E. Tunstel. Coordination of distributed fuzzy behaviors in mobile robot control. In Proceedings IEEE International Systems, Man and Cybernetics, 1995:4009-4014
    [172]K. Y. Im, S. Y. Oh, S. J. Han. Evolving a modular neural network-based behavioral fusion using extended VFF and environment classification for mobile robot navigation. IEEE Transactions on Evolutionary Computation, 2002,6(4):413-419
    [173]Junfei Qiao, Zhangjun Hou, Xiaogang Ruan. Application of reinforcement learning based on neural network to dynamic obstacle avoidance. IEEE International Conference on Information and Automation,2008:784-788
    [174]J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms. New York:Plenum Press,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700