非线性动态系统的稳定性和鲁棒控制理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的迅猛发展,系统对象或过程在结构、规模上变的复杂化、大型化.这就难以获得系统精确的数学模型.因此对不确定非线性动态系统的研究具有重要的理论意义和迫切的实际需要.本论文主要研究非线性动态系统模型的稳定性和鲁棒控制问题.研究工作主要集中在三个方面:首先,讨论了非线性动态神经网络系统的稳定性性质;然后,研究了非线性刚性机器人系统的鲁棒控制问题;最后,讨论了一类非完整移动机器人系统的鲁棒控制问题.本文内容共分为以下三个部分:
     第一部分主要研究了非线性动态神经网络系统的稳定性性质.首先,简单回顾了神经网络的发展历史以及稳定性理论的相关研究进展.其次,研究了一类带区间不确定性的不连续神经网络系统的全局鲁棒稳定性,利用Lyapunov-Krasovskii稳定性方法,首次给出了带区间不确定性的不连续型神经网络系统全局鲁棒稳定的充分条件.随后,研究了一类带范数有界不确定性的不连续神经网络系统的全局鲁棒稳定,并给出了基于线性矩阵不等式的系统全局鲁棒稳定条件.然后,通过利用线性矩阵不等式(LMI)技术和Filippov理论,给出了一类带区间不确定性的不连续神经网络系统的全局鲁棒稳定条件.最后,介绍了机器人补偿控制中的神经网络模型及其应用.
     第二部分深入研究了非线性刚性机器人系统的路径跟踪鲁棒控制问题.首先,简单叙述了机器人的发展历史,详细介绍了刚性机器人系统路径跟踪问题的研究进展和智能控制理论在机器人中的应用.接着,介绍了刚性机器人的动力学模型和相关性质,并给出了研究所需的相关数学基础.然后,研究了一类刚性机器人系统的智能混合轨迹跟踪控制.通过结合PD+前馈控制器和智能鲁棒补偿器,使得刚性机器人系统具有较强的抗干扰能力和良好的鲁棒跟踪性能.其次,分析了一类刚性机器人系统智能鲁棒H_∞控制问题.控制策略基于Lyapunov稳定性理论,结合计算力矩控制器和神经网络鲁棒控制器,保证了刚性机器人系统的鲁棒H_∞跟踪性能.最后,我们分析了一类带时滞的刚性机器人系统神经网络鲁棒跟踪控制问题,利用神经网络来逼近机器人系统的未知不确定部分,使得控制系统具有较强的自适应能力和跟踪性能,并基于线性矩阵不等式技术和Lyapunov稳定性理论,得到了跟踪误差闭环系统的鲁棒稳定性条件.
     第三部分针对一类非完整移动机器人系统的路径跟踪鲁棒控制问题进行了深入研究.首先,结合现代控制技术,详细介绍了非完整移动机器人系统路径跟踪问题的研究进展和智能控制理论在移动机器人中的应用.然后,介绍了移动机器人的动力学和运动学建模.接着,研究了基于小波神经网络的非完整移动机器人系统的智能鲁棒控制问题.控制策略采用了运动控制器和自适应小波神经网络控制器相结合的办法,利用小波神经网络来逼近非完整机器人系统的未知动力学部分,同时采用一个鲁棒控制器来补偿小波神经网络的逼近误差和外部干扰,设计了小波神经网络的在线学习算法,保证了权值自适应率的收敛性和跟踪误差闭环系统的鲁棒稳定性.
     论文最后总结了全文的主要创新研究成果,并对下一步研究工作进行了展望.
Along with the development of science and technology, the system object or process become larger and more complex in structure and scale than ever. Therefore, it is hard to get the accurate mathematic model of the system. In this way, it is very important to research the uncertain nonlinear dynamic systems for the purpose of theory significance and practical needs. This paper mainly deals with the study of stability and robust control for several kinds of nonlinear dynamic systems. Our research work mainly boils down to the following three parts: firstly, we discuss the stability of nonlinear dynamic neural network systems, and then, we work on the problem of trajectory tracking robust control for nonlinear rigid robot systems, finally, we discuss the problem of trajectory tracking robust control for a kind of nonlinear nonholonomic mobile robot system. The content of this paper can be listed as following three parts.
     The first part mainly deals with the study of stability for nonlinear dynamic neural network systems. At first, we brief introduce the history of neural networks and the research progress of stability theory, and then, we examine the global robust stability of delayed neural networks with discontinuous activation functions and interval uncertainties. Based on the Lyapunov-Krasovskii stability method, we originally give the sufficient conditions for the global robust stability of delayed neural networks with discontinuous activation functions and interval uncertainties. Secondly, we analyze the global robust stability of delayed neural networks with discontinuous activation functions and normal-bounded uncertainties, and give the conditions of the global robust stability of systems in terms of a linear matrix inequality. After that, based on the linear matrix inequality technology and Filippov theory, we give the sufficient conditions for the global robust stability of delayed neural networks with discontinuous activation functions and interval uncertainties. Finally, we introduce the models and applications of neural networks in robotic compensated control.
     The second part mainly deals with the study of trajectory tracking robust control for nonlinear rigid robot systems. At first, we briefly tell the history of rigid robotic systems, and then, introduce in detail the research progress of trajectory tracking control problems about nonlinear rigid robot systems and the application of intelligent control theory in robotic systems. Secondly, the dynamics model and its characteristics of rigid robotic system are introduced respectively, and then, we introduce some important mathematical concepts and definitions. Thirdly, we address the problem of robust tracking control using a PD-plus-feedforward controller and an intelligent adaptive robust compensator for a rigid robotic manipulator with uncertain dynamics and external disturbances. In this way, chattering can be effectively eliminated and asymptotic error convergence can be guaranteed. After that, A novel robust H_∞intelligent control strategy is proposed for the trajectory following problem of robot manipulators. The proposed system is comprised of a computed torque controller and neural robust controller. Based on Lyapunov stability theorem, it is shown that the proposed controller can guarantee H_∞tracking performance of robotic system in the sense that all variables of the closed-loop system are bounded. Finally, the problem of the robust tracking for a class of uncertain robotic systems with delays is investigated. A neural network system is used to approximate an unknown controlled system from the strategic manipulation of the model following tracking errors. Based on the Lyapunov method and the linear matrix inequality approach, several sufficient conditions, which guarantee the robust stability of closed error systems, are derived.
     The third part mainly deals with the study of trajectory tracking robust control for a kind of nonlinear nonholonomic mobile robot systems. Firstly, we introduce in detail the research progress of trajectory tracking control problems about nonlinear mobile robot systems and the application of intelligent control theory in mobile robotic systems. Secondly, the kinematics and dynamics model and its characteristics of mobile robotic system are introduced. After that, we propose a stable tracking control rule for nonholonomic mobile robot with completely unknown robot dynamics and unmodeled disturbance. A control strategy that integrate a kinematic controller and a adaptive wavelet neural network controller for nonholonomic mobile robots is presented. The adaptive wavelet neural network control system adopts a wavelet neural network with accurate approximation capability to represent the unknown dynamics of the nonholonomic mobile robot. It also uses a robust term to confront the inevitable approximation errors due to the finite number of wavelet bases functions and to disturbances. The tracking stability of the closed loop system, the convergence of the wavelet neural network weight-updating process and boundedness of wavelet neural network weight estimation errors are all guaranteed.
     Finally, the main innovations of the thesis are summarized, and the fields for further research are expected.
引文
[1]郑大钟.线性系统理论(第2版).北京:清华大学出版社,2002
    [2]G.D.Birkhoff.Dynamical systems.American Mathematical Society,1927,9(1):1-303
    [3]张芷芬.微分方程定性理论.北京:科学出版社,2003
    [4]刘丁.自动控制理论.北京:机械工业出版社,2006
    [5]黄琳.稳定性理论.北京:北京大学,1992
    [6]H.K.Khalil.非线性系统(英文版).北京:电子工业出版社,2007
    [7]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2008
    [8]周克敏.鲁棒与最优控制.北京:国防工业出版社,2006
    [9]姚郁,贺风华.非线性系统设计-微分几何自适应及鲁棒控制.北京:电子工业出版社,2006
    [10]王耀南.机器人智能控制工程.北京:科学出版社,2004
    [11]王耀南.智能信息处理技术.北京:高等教育出版社,2003
    [12]王耀南.智能控制系统.湖南:湖南大学出版社,1996
    [13]贾英民.鲁棒H_∞控制.北京:科学出版社,2007
    [14]彭金柱.大型冷凝器清洗机器人的智能鲁棒控制方法研究[博士学位论文].湖南:湖南大学,2008
    [15]J.C.Gille,M.J.Pelegrin,P.Decaulne.Feedback Control Systems:Analysis,Synthesis,and Design.New York:McGraw-Hill,1959
    [16]R.L.Cosgriff.Stabilization of nonlinear feedback control systems.Proceedings of the I.R.E.,1953,41(3):382-385
    [17]W.Baumann,W.Rugh.Feedback control of nonlinear systems by extended linearization.IEEE Transactions on Automatic Control,1986,31(1):40-46
    [18]T.Ushio.Limitation of delayed feedback control in nonlinear discrete-time systems.IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,1996,43(9):815-816
    [19]D.M.Dawson,W.E.Dixon,F.Zhang,et al.Global adaptive output feedback tracking control of robot manipulators.IEEE Transactions on Automatic Control,2000,45(6):1203-1208
    [20]G.Zames.Feedback and optimal sensitivity:model reference transformations,multiplicative seminorms and approximate inverses.IEEE Transactions on Automatic Control,1981,26(2):301-320
    [21] B. A. Francis, G. Zames. On H_∞ optimal sensitivity theory for SISO feedback systems. IEEE Transactions on Automatic Control, 1984, 29 (1): 9- 16
    [22] J. C. Doyle, K. Glover, P. P. Khargonekar, et al. State-space solutions to standard H_2 and H_∞ optimal control problems. IEEE Transactions on Automatic Control, 1989, 34 (8): 831-847
    [23] G. H. Yang, T. L. Wang, C. B. Soh, et al. Decentralized H_∞-controller design for nonlinear systems. IEEE Transactions on Automatic Control, 1999, 44 (3): 578-583.
    [24] W. Lin, C. I. Byrnes. Discrete-time nonlinear H_∞ control with measurement feedback. Automatica, 1995, 31 (3): 419-434
    [25] L. Acho, Y. Orlov, V. Solis. Nonlinear measurement feedback H_∞ -control of time-periodic systems with application to tracking control of robot manipulators. International Journal of Control, 2001, 74 (2): 190-198
    [26] Y. Miyasato. Adaptive H_∞ control of nonholonomic mobile robot based on inverse opti- mality. In: Proceedings of American Control Conference. Washington, USA, 2008, 11-13
    [27] V. Schaft. L _2-gain analysis of nonlinear systems and nonlinear state-feedback H_∞ control. IEEE Transactions on Automatic Control, 1992, 37 (6): 770-784
    [28] A. Isidori, A. Astolfi. Disturbance attenuation and H_∞ control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control, 1992, 37 (9): 1283-1293
    [29] V. I. Utkin. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 1977, 22 (2): 212-222
    [30] Y. Stepanenko, C. Y. Su. Variable structure control of robot manipulators with nonlinear sliding manifolds. International Journal of Control, 1993, 58 (2): 285-300
    [31] H. S. Ramirez. Nonlinear variable structure systems in sliding mode: the general case. IEEE Transactions on Automatic Control, 1989, 34 (11): 1186-1188
    [32] S. H. Zak, S. Hui. On variable structure output feedback controllers for uncertain dynamic systems. IEEE Transactions on Automatic Control, 1993, 38 (10): 1509-1512
    [33] S. Hui, S. H. Zak. On discrete-time variable structure sliding mode control. Systems and control letters, 1999, 38 (4): 283-288
    [34] N. Derbel, A. M. Alimi. Design of a sliding mode controller by fuzzy logic. International Journal of Robotics and Automation, 2006, 38 (4): 241-246
    [35] C. H. Chou, C. C. Cheng. A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems. IEEE Transactions on Automatic Control, 2003, 48 (7): 1213- 1217
    [36] M. L. Corradini, G. Orlando. A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV. IEEE Transactions on Control Systems Technology, 1997, 5 (3): 349-359
    [37] J. J. E. Slotine, S. S. Sastry. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. International Journal of Control, 1983, 38 (2): 465-492
    [38] J. J. E. Slotine, W. Li. On the adaptive control of robot manipulators. International Journal of Robotics Research. 1987, 6 (3): 49-59
    [39] Y. Stepanenko, Y. Cao, C. Y. Su. Variable structure control of robotic manipulator with PID sliding surface. International Journal of Robust and Nonlinear Control, 1998, 8 (1): 79-90
    [40] C. Y. Su, T. P. Leung, Y. Stepanenko. Real-time implementation of regressor based sliding mode control scheme for robot manipulators. IEEE Transactions on Industrial Electronics, 1993, 40 (1): 71-79
    [41] S. S. Sastry, A. Isidori. Adaptive control of linearizable systems. IEEE Transactions on Automatic Control, 1989, 34 (11): 1123-1131
    [42] I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control, 1991, 36 (11): 1241-1253
    [43] K. S. Narendra, K. Parthasarathy. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1 (1): 4-27
    [44] K. S. Narendra, S. Mukhopadhyay. Adaptive control using neural networks and approximate models. IEEE Transactions on Neural Networks, 1997, 8 (3): 475-485
    [45] F. C. Chen, H. K. Khalil. Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Transactions on Automatic Control, 1995, 40 (5): 791-801
    [46] J. T. Spooner, K. M. Passino. Decentralized adaptive control of nonlinear systems using radial basis neural networks. IEEE Transactions on Automatic Control, 1999, 44 (11): 2050-2057
    [47] J. Ye. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot. Neurocomputing, 2008, 71 (7): 1561-1565
    [48] L. G. Kraft, D. P. Campagna. A comparison between CMAC neural network control and two traditional adaptive control systems. IEEE Control Systems Magazine, 1990, 10 (1): 36-43
    [49] Y. Li, S. Qiang, X. Zhuang, et al. Control and estimation-robust and adaptive backstep- ping control for nonlinear systems using RBF neural networks. IEEE Transactions on Neural Networks, 2004, 15 (3): 693-701
    [50] L. A. Zadeh. Fuzzy sets. Information and Control, 1965, 8 (3): 338-353
    [51] S. C. Lee, E. T. Lee. Fuzzy sets and neural networks. Cybernetics and Systems, 1974, 4 (2): 83-103
    [52] Y. J. Leu, T. T. Lee, W. Y. Wang. Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1999, 29 (5): 583-591
    [53] C. H. Lee, B. S. Chen, Y. C. Chang. H_∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Transactions on Fuzzy Systems, 1996, 4 (1): 32-43
    [54] M. C. Hwang, X. Hu. A robust position/force learning controller of manipulators via nonlinearH_∞ control and neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000, 30 (2): 310-321
    [55] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 1982, 79 (8): 2554-2558
    [56] J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 1984, 81 (10): 3088-3092
    [57] L. O. Chua, L. Yang. Cellular neural networks: theory. IEEE Transactions on Circuits and Systems, 1988, 35 (10): 1257-1272
    [58] L. O. Chua, L. Yang. Cellular neural networks: applications. IEEE Transactions on Circuits and Systems, 1988, 35 (10): 1273-1290
    [59] Q. Zhang, R. N. Ma, C. Wang, et al. On the global stability of delayed neural networks. IEEE Transactions on Automatic Control, 2003, 48 (5): 794-797
    [60] S. Y. Xu, J. Lam, D. W. C. Ho, et al. Improved global robust asymptotic stability criteria for delayed cellular neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35 (6): 1317-1321
    [61] D. Yue, Y. J. Zhang, E. G. Tian, et al. Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic delay. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 19 (7): 1299-1306
    [62] M. Wu, F. Liu, P. Shi, et al. Exponential stability analysis for neural networks with time- varying delay. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38 (4): 1152-1156
    [63] W. H. Chen, W. X. Zheng. Improved delay-dependent asymptotic stability criteria for delayed neural networks. IEEE Transactions on Neural Networks, 2008, 19 (12): 2154- 2161
    [64] R. Ortega, M. W. Spong. Adaptive motion control of rigid robot: a tutorial. Automatica, 1989, 25 (6): 877-888
    [65] C. J. Tsaprounis, N. A. Aspragathos. Sliding mode with adaptive estimation force control of robot manipulators interacting with an unknown passive environment. Robotica, 1999, 17 (4): 447-458
    [66] P. Tomei. Robust adaptive control of robots with arbitrary transient performance and disturbance attenuation. IEEE Transactions on Automatic Control, 1999, 44 (3): 654-658
    [67] C. L. Chen, R. L. Xu. Tracking control of robot manipulator using sliding mode controller with performance robustness. Transactions of the ASME- Journal of Dynamic Systems, Measurement and Control, 1999, 121 (1): 64-70
    [68] Y. Stepanenko, Y. Cao, C. Y. Su. Variable structure control of robotic manipulator with PID sliding surfaces. International Journal of Robust and Nonlinear Control, 1998, 8 (1): 79-90
    [69] V. P. Vega, S. Arimoto, Y. H. Liu, et al. Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Transactions on Robotics and Automation, 2003, 19 (6): 967-976
    [70] J. J. E. Slotine, S. S. Sastry. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. International Journal of Control, 1983, 38 (2): 465-492
    [71] B. S. Chen, Y. C. Chang, T. C. Lee. Adaptive control in robotic systems with H_∞ tracking performance. Automatica, 1997, 33 (2): 227-234
    [72] B. S. Chen, Y. C. Chang. Nonlinear mixed H_2/H_∞ control for robust tracking design of robotic systems. International Journal of Control, 1997, 67 (6): 837-857
    [73] Y. C. Chang. Neural network-based L_∞, tracking control for robotic system. IEE Proceedings- Control Theory and Applications, 2000, 147 (3): 303-311
    [74] B. Daachi, A. Benallegue. A neural network control based observer for robot manipulators. International Journal of Robotics and Automation, 2003, 18 (4): 166-171
    [75] T. Das, I. N. Kar. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, 2006, 14 (3): 501-510
    [76] C. C. Tsai, M. B. Cheng, S. C. Lin. Dynamic modeling and tracking control of a non- holonomic wheeled mobile manipulator with dual arms. Journal of Intelligent and Robotic Systems, 2006, 47 (4): 317-340
    [77] Z. Li, J. Gu, A. Ming. Intelligent compliant force/motion control of nonholonomic mobile manipulator working on the nonrigid surface. Journal of Intelligent and Robotic Systems, 2006, 15 (3): 204-216
    [78] W. Dong, K. D. Kuhnert. Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Transactions on Robotics, 2005, 21 (2): 261-266
    [79] S. Lin, A. A. Goldenberg. Neural-network control of mobile manipulators. IEEE Transactions on Neural Networks, 2001, 12 (5): 1121-1133
    [80] T. Fukao, H. Nakagawa, N. Adachi. Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 2000, 16 (5): 609-615
    [81] Y. Kanayama, Y. Kimura, F. Miyazaki, et al. A stable tracking control method for an autonomous mobile robot. In: Proceedings of the IEEE Conference on Robotics and Automation, Cincinnati, USA, 384-389, 1990
    [82] B. Novel, G. Campion, G. Bastin. Control of nonholonomic wheeled mobile robots by state feedback linearization. International Journal of Robotics Research, 1995, 14 (6): 543-559
    [83] R. Fierro, F. Lewis. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, USA, 1995, 3805-3810
    [84] J. J. E. Stotine, W. P. Li. On the adaptive control of robot manipulators. International Journal of Robotics Research, 1987, 6 (3): 49-59
    [85] W. S. Lu, Q. H. Meng. Regressor formulation of robot dynamics: computation and application. IEEE Transactions on Robotics and Automation, 1993, 9 (3): 323-333
    [86] R. Fierro, F. L. Lewis. Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 1998, 9 (4): 389-400
    [S7] S. X. Yang, M. Meng. Real time fine motion control of robot manipulators with unknown dynamics. Dynamics in Continuous, Discrete and Impulse Systems, Series B, 2001, 8 (3): 339-358
    [88] T. Hu, S. Yang. A novel tracking control method for a wheeled mobile robot. In: Proceedings of 2th Workshop on Computational Kinematics, Seoul, Korea, 2001, 104-116
    [89] T. Fukao, H. Nakagawa, N. Adachi. Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 2000, 16 (5): 609-615
    [90] W. J. Dong, W. Huo, S. K. Tso, et al. Sliding mode adaptive neural network control for nonholonomic mobile modular manipulators. IEEE Transactions on Robotics and Automation, 2000, 16 (6): 870-874
    [91] W. J. Dong, K. D. Kuhnert. Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Transactions on Robotics, 2005, 21 (2): 261-266
    [92]Y.G.Liu,Y.M.Li.Sliding mode adaptive neural network control for nonholonomic mobile modular manipulators.Journal of Intelligent and Robotic Systems,2005,44(3):203-224
    [93]L.Wang,X.F.Zou.Capacity of stable periodic solutions in discrete-time bidirectional associative memory neural networks.IEEE Transactions on Neural Networks,2004,51(6):315-319
    [94]Y.Liu,Z.You,L.Cao.On the almost periodic solution of cellular neural networks with distributed delays.IEEE Transactions on Neural Networks,2007,18(1):295-300
    [95]X.Lou,B.Cui.Delay-dependent criteria for global robust periodicity of uncertain switched recurrent neural networks with time-varying delay.IEEE Transactions on Neural Net-works,2008,19(4):549-557
    [96]W.S.McCulloch,W.Pitts.A logical calculus of the ideas immanent in nervous activity.Bulletin of Mathematical Biology,1943,5(4):115-133
    [97]E.R.Caianiello.Outline of a theory of thought processes and intelligent machines.Journal of theoretical biology,1961,1(1):209-235
    [98]J.I.Nagumo,S.Sato,A.Noda.Real-time display system of response characteristics of manual tracking systems.IEEE Transactions on Man-Machine Systems,1970,11(4):211-216
    [99]黄立宏,李雪梅.细胞神经网络动力学.北京:科学出版社,2007
    [100]R.Feraund,O.J.Bernier,J.E.Viallet,et al.A fast and accurate face detector based on neural networks.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(1):42-53
    [101]T.L.Liao,F.C.Wang.Global stability for cellular neural networks with time delay.IEEE Transactions on Neural Networks,2000,11(6):1481-1484
    [102]H.S.Hippert,C.E.Pedreira,R.C.Souza.Neural networks for short-term load forecasting:a review andevaluation.IEEE Transactions on Power Systems,2001,16(1):44-55
    [103]M.Brameier,W.Banzhaf.A comparison of linear genetic programming and neural net-works in medical data mining.IEEE Transactions on Evolutionary Computation,2001,5(1):17-26
    [104]G.P.Zhang.Neural networks for classification:a survey.IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2000,30(4):451-462
    [105]S.Q.Wu,M.J.Er,Y.Gao.A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks.IEEE Transactions on Fuzzy Systems,2001,9(4):578-594
    [106] F. Aminian, M. Aminian, H. W. J. Collins. Analog fault diagnosis of actual circuits using neural networks. IEEE Transactions on Instrumentation and Measurement, 2002, 51 (3): 544-550
    [107] K. H. Kim, H. S. Youn, Y. C. Kang. Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method. IEEE Transactions on Power Systems, 2000, 15 (2): 559-565
    [108] Q. J. Zhang, K. C. Gupta, V. K. Devabhaktuni. Artificial neural networks for RF and microwave design- from theory to practice. IEEE Transactions on Microwave Theory and Techniques, 2003, 51 (4): 1339-1350
    [109] W. L. Zhu, J. Hu. Stability analysis of stochastic delayed cellular neural networks by LMI approach. Chaos, Solitons and Fractals, 2006, 29 (1): 171-174
    [110] P. Li, J. D. Cao. Stability in static delayed neural networks: A nonlinear measure approach. Neurocomputing, 2006, 69 (13): 1776-1781
    [111] V. Singh. Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix. Chaos, Solitons and Fractals, 2007, 32 (1): 259-263
    [112] Z. D. Wang, Y. R. Liu, X. H. Liu. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Physics Letters A, 2006, 356 (4): 346-352
    [113] Q. Zhang, X. P. Wei, J. Xu. A new global stability result for delayed neural networks. Nonlinear Analysis: Real World Applications, 2007, 8 (3): 1024-1028
    [114] C. Li, X. Liao. Global robust stability criteria for interval delayed neural networks via an LMI approach. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2006, 53 (9): 901-905
    [115] C. D. Li, X. F. Liao, R. Zhang. A global exponential robust stability criterion for interval delayed neural networks with variable delays. Neurocomputing, 2006, 69 (7): 803-809
    [116] C. D. Li, X. F. Liao, R. Zhang. Global robust asymptotical stability of multi-delayed interval neural networks: an LMI approach. Physics Letters A, 2004, 328 (6): 452-462
    [117] M. Forti, P. Nistri. Global convergence of neural networks with discontinuous neuron activations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50 (11): 1421-1435
    [118] M. Forti, P. Nistri, D. Papini. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Transactions on Neural Networks, 2005, 16 (6): 1449-1463
    [119] M. Forti, M. Grazzini, P. Nistri, et al. Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. IEEE Transactions on Neural Networks, 2006, 214 (1): 88-99
    [120]D.Papini,V.Taddei.Global exponential stability of the periodic solution of a delayed neural network with discontinuous activations.Physics Letters A,2005,343(1):117-128
    [121]W.L.Lu,T.P.Chen.Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions.Neural networks,2005,18(3):231-242
    [122]W.L.Lu,T.P.Chen.Dynamical behaviors of delayed neural network systems with discontinuous activation functions.Neural Computation,2006,18(3):683-708
    [123]H.D.Qi.New sufficient conditions for global robust stability of delayed neural networks.IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2007,54(5):1131-1141
    [124]V.Singh.Novel LMI condition for global robust stability of delayed neural networks.Chaos,Solitons and Fractals,2007,34(2):503-508
    [125]S.Arik.Global robust stability stability of delayed neural networks.IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2003,50(1):156-160
    [126]J.D.Cao,J.Wang.Global asymptotic and robust stability of recurrent neural networks with time delays.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2005,52(2):417-426
    [127]J.D.Cao,D.S.Huang,Y.Z.Qu,Global robust stability of delayed recurrent neural networks.Chaos,Solitons and Fractals,2005,23(1):221-229
    [128]Z.Zuo,Y.Wang,Robust stability criterion for delayed cellular neural networks with norm-bounded uncertainties.IET- Control Theory and Applications,2007,1(1):387-392
    [129]V.Singh.LMI approach to the global robust stability of a larger class of neural networks with delay.Chaos,Solitons and Fractals,2007,32(5):1927-1934
    [130]V.Singh.Robust stability of cellular neural networks with delay:linear matrix inequality approach.IET- Control Theory and Applications,2004,151(1):125-129
    [131]S.Y.Xu,J.Lam,D.W.C.Ho,et al.Improved global robust asymptotic stability criteria for delayed cellular neural networks.IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2005,35(6):1317-1321
    [132]A.Filippov.Differential Equations with Discontinuous Right-Hand Side.Boston:Kluwer Academic,1988
    [133]严加安.测度论讲义.北京:科学出版社,2000
    [134]S.P.Boyd,L.E.Ghaoui,E.Feron,et al.Linear Matrix Inequalities in System and Control Theory.Hiladelphia:SIAM,1994
    [135]J.P.Aubin,A.Cellina.Differential Inclusions.Berlin:Springer,1984
    [136]F.H.Clarke.Optimization and Nonsmooth Analysis.New York:Wiley,1994
    [137] A. Baciotti, R. Conti, P. Marcellini. Discontinuous Ordinary Differential Equations and Stabilization. Universita di Firenze, 2000
    [138] J. K. Hale. Ordinary Differential Equations. New York: Wiley, 1969
    [139] Y. N. Wang, Y. Zuo, L. H. Huang, et al. Global robust stability of delayed neural networks with discontinuous activation functions and interval uncertainties. IET- Control Theory and Applications, 2008, 2 (1): 543-553.
    [140] L. Xie, M. Fu, C. E. D. Souza. H_∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Transactions on Automatic Control, 1992, 37 (8): 1253-1256
    [141] L. Wang. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliff, NJ: Prentice-Hall, 1994
    [142] R. M. Sanner, J. J. E. Slotine. Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks, 1992, 3 (6): 837-863
    [143] J. T. Spooner, K. M. Passino. Stable adaptive control using fuzzy systems and neural networks. IEEE Transactions on Fuzzy Systems, 1996, 4 (3): 339-359
    [144] A. Ferreira, S. Agrawal. Planning and optimization of dynamic systems via decomposition and partial feedback linearization. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, USA, 1999, 740-745
    [145] Z. H. Man, H. R. Wu, M. Palaniswami. An adaptive tracking controller using neural networks for a class of nonlinear systems. IEEE Transactions on Neural Networks, 1998, 9 (5): 947-955
    [146] W. S. Yu. H_∞ tracking based adaptive fuzzy neural control for MIMO uncertain robotic systems with time delays. Fuzzy Set and Systems, 2004, 146 (3): 375-401
    [147] J. J. Craig. Adaptive control of mechanical manipulators. New York: Addison-Wesley, 1988
    [148] J. J. E. Slotine, W. Li. Applied Nonlinear Control. NJ: Prentice-Hall, 1991
    [149] S. Oucheriah. Adaptive robust control of a class of dynamic delay systems with unknown uncertainty bounds. International Journal of Adaptive Control and Signal Processing, 2001, 15 (1): 53-63
    [150] J. T. Wen, D. S. Bayard. New class of control laws for robotic manipulators, Part 1: Nonadaptive case, International Journal of Control, 1988, 47 (5): 1361-1385
    [151] D. S. Bayard, J. T. Wen. New class of control laws for robotic manipulators, Part 2: adaptive case, International Journal of Control, 1988, 47 (5): 1387-1406
    [152] L. L. Whitcomb, A. A. Rizzi, D. E. Koditschek. Comparative experiments with a new adaptive controller for robot arms. IEEE Transactions on Robotics and Automation, 1993, 9 (1): 59-70
    [153] H. Berghuis, R. Ortega, H. Nijmeijer. A robust adaptive robot controller, IEEE Transactions on Robotics and Automation, 1993, 9 (6): 825-830
    [154] J. T. Wen, K. D. Kenneth, D. S. Bayard. Lyapunov function-based control laws for revolute robot arms: tracking control, robustness, and adaptive control. IEEE Transactions on Robotics and Automation, 1992, 37 (2): 231-239
    [155] R. Kelly, R. Carelli. A class of nonlinear PD-type controllers for robot manipulators, Journal of Robotic Systems, 1996, 13 (12): 793-802
    [156] Z. H. Man, X. H. Yu, K. Eshraghian, et al. A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators, In: Proceedings of the IEEE International Conference on Neural Network, Pittsburgh, USA, 1995, 1101-1106
    [157] S. S. Ge, C. C. Hang. Direct adaptive neural network control of robots. International Journal of Systems Science, 1996, 27 (6): 533-542
    [158] J. B. Mbede, X. Huang, M. Wang. Robust neuro-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators. International Journal of Systems Science, 2003, 11 (2): 249-261
    [159] S. Purwar, I. N. Kar, A. N. Jha. Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. IEEE Transactions on Fuzzy Systems, 2005, 152 (3): 651-664
    [160] Z. Song, J. Yi, D. Zhao, et al. A computed torque controller for uncertain robotic manipulator systems: fuzzy approach, Fuzzy Sets and Systems, 2005, 154 (2): 208-226
    [161] F. Sun, Z. Sun, L. Li, et al. Neuro-fuzzy adaptive control based on dynamic inversion for robotic manipulators, Fuzzy Sets and Systems, 2003, 134 (1): 117-133
    [162] B. Daachi. A neural network adaptive controller for end-effector tracking of redundant robot manipulators. Journal of Intelligent and Robotic Systems, 2006, 46 (3): 245-262
    [163] H. Hu, P. Y. Woo. Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators, IEEE Transactions on Industrial Electronics, 2006, 53 (3): 929-940
    [164] Z. Qi, J. E. Mclnroy, F. Jafari. Trajectory tracking with parallel robots using low chattering, fuzzy sliding mode controller. Journal of Intelligent and Robotic Systems, 2007, 48 (3): 333-356
    [165] J. J. Craig. Introduction to Robotics. Boston: Addison-Wesley, 1986
    [166] M. Liu, Decentralized control of robot manipulators: nonlinear and adaptive approaches, IEEE Transactions on Automatic Control, 1999, 44 (2): 357-363
    [167] S. Sastry, M. Bodson. Adaptive Control: Stability, Convergence and Robustness. Engle- wood Cliffs, NJ: Prentice Hall, 1989
    [168]Y.J.Leu,T.T.Lee,W.Y.Wang.Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems.IEEE Transactions on Systems,Man,and Cyber-netics,Part B:Cybernetics,1999,29(5):583-591
    [169]代颖.不确定性机器人鲁棒自适应控制方法的研究[博士学位论文].西安:西安交通大学,1998
    [170]F.Pourboghrat,M.P.Karlsson.Adaptive control of dynamic mobile robots with non-holonomic constraints,Computer and Electronics Engineering Technology,2002,28(4):241-253
    [171]S.Labiod,M.S.Boucherit,T.M.Guerra.Adaptive fuzzy control of a class of MIMO nonlinear systems.Fuzzy Sets and Systems,2005,151(1):59-77
    [172]K.W.Lee,H.K.Khalil.Adaptive output feedback control of robot manipulators using high-gain observer.International Journal of Control,1997,67(6):869-886
    [173]R.A.Decarlo,S.H.Zak,G.P.Matthews.Variable structure control of nonlinear multi-variable systems:a tutorial,Proceedings of the IEEE,1988,76(3):212-232
    [174]Y.Stepanenko,Y.Cao,C.Y.Su.Variable structure control of robotic manipulator with PID sliding surfaces,International Journal of Robust and Nonlinear Control,1998,8(1):79-90
    [175]A.L.Elshafei,F.Karray.Variable structure based fuzzy logic identification of a class of nonlinear systems.IEEE Transactions Control Systems Technology,2005,13(4):646-653
    [176]C.M.Kwan,F.L.Lewis.Robust backstepping control of induction motors using neural networks.IEEE Transactions on Neural Networks,2000,11(5):1178-1187
    [177]G.W.Lee,F.T.Cheng.Robust control of manipulators using the computed torque plus H_∞ compensation method,IEE Proceedings- Control Theory and Applications,1996,143(1):64-72
    [178]F.H.Hsiao,J.D.Hwang,C.W.Chen,et al.Robust stabilization of nonlinear multiple time-delay Large-Scale systems via decentralized fuzzy control.IEEE Transactions on Fuzzy Systems,2005,13(1):152-163
    [179]K.M.Hornik,M.Stinchcombe,K.Parthasarathy.Multilayer feedforward networks are universal approximations,Neural Networks,1989,2(5):359-366
    [180]M.Chen,C.S.Jiang,Q.S.Wu.Backstepping control for a class of uncertain nonlinear systems with neural network,International Journal of Nonlinear Science,2007,3(2):137-143
    [181]O.Barambones,V.Etxebarria.Robust neural control for robotic manipulator.Automatica,2002,38(2):235-242
    [182]R.J.Wai.Hybrid fuzzy neural network control for nonlinear motor-toggle servomechanism.IEEE Transactions on Control Systems Technology,2002,10(4):519-532
    [183] L. Behera, S. Chaudhury, M. Gopal. Neuro-adaptive hybrid controller for robot manipulator tracking control, IEE Proceedings- Control Theory and Applications, 1996, 143 (3): 270-275
    [184] Y. C. Chang, B. S. Chen. A nonlinear adaptive H_∞ tracking control design in robotic systems via neural networks. IEEE Transactions on Control Systems Technology, 1997, 5 (1): 13-29
    [185] Y. H. Kim, F. L. Lewis. Neural network output feedback control of robot manipulators. IEEE Transactions on Robotics and Automation, 1999, 15 (2): 301-309
    [186] W. Y. Wang, M. L. Chan, C. C. J. Hsu, T. T. Lee. H_∞ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32 (4): 483-492
    [187] C. C. Kung, T. H. Chen. H_∞ tracking-based adaptive fuzzy sliding mode controller design for nonlinear systems, IEE Proceedings- Control Theory and Applications, 2007, 1 (1): 82-89
    [188] T. L. Shen, K. Tamura. Robust H_∞ control of uncertain nonlinear system via state feedback, IEEE Transactions on Automatic Control, 1995, 40 (4): 766-768
    [189] A. Astolfi, L. Lanari. Disturbance attenuation and set-point regulation of rigid robots via H_∞ control. In: Proceedings of the 33th IEEE Conference on Decision and Control, Orlando, USA, 1994, 2578-2583
    [190] J. H. Park, W. K. Chung. Design of a robust H_∞ PID control for robot manipulators. ASME Journal of Dynamic Systems, Measurement and Control, 2000, 122 (4): 803-812
    [191] B. S. Chen, T. S. Lee, J. H. Feng. A nonlinear H_∞ control design in robotic systems under parameter perturbation and external disturbance. International Journal of Control, 1994, 59 (2): 439-461
    [192] S. Battilotti, L. Lanari. Robust control of rigid robots: an H_∞ approach. In: Proceedings of European Control Conference, Rome, Italy, 1995, 3462-3467
    [193] L. Xie, W. Su, Robust H_∞ control for a class of cascaded nonlinear systems, IEEE Transactions on Automatic Control, 1997, 42 (10): 1465-1469
    [194] S. Y. Yi, M. J. Chung. A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1997, 27 (4): 706-713
    [195] R. H. Middleton, G. C. Goodwin. Adaptive computed torque control for rigid link manipulators. Systems and control letters, 1988, 10 (1): 9-16 [196] H. Yu, L. D. Seneviratne, S. W. E. Earles. Exponentially stable robust control law for robot manipulators, IEE Proceedings- Control Theory and Applications, 1994, 141 (6): 389-395
    [197] F. L. Lewis, K. Liu, A. Yesildirek. Neural net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 1995, 6 (3): 703-715
    [198] K. Watanabe, K. Izumi, T. Otsubo. A nonlinear robust control using a fuzzy reasoning and its application to a robot manipulator. Journal of Intelligent and Robotic Systems, 1997, 20 (5): 275-294
    [199] J. Q. Huang, F. L. Lewis. Neural-network predictive control for nonlinear dynamic systems with time-delay. IEEE Transactions on Neural Networks, 2003, 14 (2): 377-389
    [200] H. K. Khalil. Adaptive output feedback control of nonlinear systems represented by input- output models. IEEE Transactions on Automatic Control, 1996, 41 (2): 177-188
    [201] S. M. Djouadi. MIMO disturbance and plant uncertainty attenuation by feedback, IEEE Transactions on Automatic Control, 2004, 49 (12): 2099-2112.
    [202] A. W. Saif, D. W. Gu, D. Kavranoglu, et al. Simultaneous stabilization of MIMO systems via robustly stabilizing a central plant. IEEE Transactions on Automatic Control, 2002, 47 (2): 363-369
    [203] M. S. Ahmed. Neural servocontroller for nonlinear MIMO plant. IEE Proceedings- Control Theory and Applications, 1998, 145 (3): 277-290
    [204] W. H. Steyn. Fuzzy control for a non-linear MIMO plant subject to control constraints. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24 (10): 1565-1571
    [205] O. Yaniv. Robust design of MIMO feedback systems having an uncertain non-linear plant. International Journal of Control, 1991, 53 (6): 1283-1294
    [206] I. N. Ivan, W. C. Wagner, L. V. Arruda. A novel approach based on recurrent neural networks applied to nonlinear systems optimization, Applied Mathematical Modelling, 2007, 31 (1): 78-92
    [207] T. Ali, G. Kenne, F. Lagarrigue. Nonlinear systems parameter estimation using neural networks: application to synchronous machines. Mathematical and Computer Modelling of Dynamical Systems, 2007, 13 (4): 1-18
    [208] Z. Hu, S. N. Balakrishnan. Parameter estimation in nonlinear systems using Hopfield neural networks. Journal of Aircraft, 2005, 42 (1): 41-53
    [209] J. H. Park, S. H. Huh, S. H. Kim, et al. Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Transactions on Neural Networks, 2005, 16 (2): 414-422
    [210] F. Abdollahi, H. A. Talebi, R. V. Patel. Stable identification of nonlinear systems using neural networks: theory and experiments. IEEE/ASME Transactions on Mechatronics, 2006, 11 (4): 488-495
    [211] P. Balasubramaniama, J. A. Samathb, N. Kumaresan. Optimal control for nonlinear singular systems with quadratic performance using neural networks, Applied Mathematics and Computation, 2007, 187 (2): 1535-1543
    [212] C. S. Tseng, B. S. Chen. Multiobjective PID control design in uncertain robotic systems using neural network elimination scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2001, 31 (6): 632-644
    [213] Y. H. Kim, F. L. Lewis. Optimal design of CMAC neural-network controller for robot manipulators. IEEE Transactions on Systems, Man and Cybernetics. Part C: Applications and Reviews, 2000, 30 (1): 22-31
    [214] S. I. Niculescu, C. E. Souza, L. Dugard, et al. Robust exponential stability of uncertain systems with time-varying delays. IEEE Transactions on Automatic Control, 1998, 43 (5): 743-748
    [215] M. S. Mahmoud, S. Bingulac. Robust design of stabilizing controllers for interconnected time-delay systems, Automatica, 1998, 34 (6): 795-800.
    [216] E. Fridman, U. Shaked. H_∞ control of linear state delay descriptor systems: an LMI approach. Linear Algebra and its Applications, 2002, 351 (1): 271-302
    [217] Y. Li, Y. Liu. Basic theory of singular systems of linear differential difference equations. In: Proceedings of 13th IFAC World Congress, San Francisco, USA, 1996, 79-84
    [218] S. Xie, L. Xie. Stabilization of a class of uncertain large-scale stochastic systems with time delays. Automatica, 2000, 36 (1): 161-167
    [219] S. Oucheriah. Decentralized stabilization of large scale systems with multiple delays in the interconnections. International Journal of Control, 2000, 73 (13): 1213-1223
    [220] M. Corless, G. Leitmann, Bounded controllers for robust exponential convergence. Journal of Optimization Theory and Applications, 1993, 76 (1): 1-12
    [221] R. M. Sanner, J. J. E. Slotine. Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks, 1992, 3 (6): 837-863 [222] Y. C. Chang, B. S. Chen, A nonlinear adaptive H_∞ tracking control design in robotic sytems via neural networks. IEEE Transactions on Neural Networks, 1997, 5 (1): 13-29
    [223] T. K. Yim, C. S. G. Lee. Fuzzy model-reference adaptive control. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25 (12): 1606-1615
    [224] F. L. Lewis, S. Jagannathan, A. Yesildirek. Neural Network Control of Robot Manipulators and Nonlinear Systems. London: Taylor and Francis, 1999
    [225] J. Barraquand, J. C. Latombe. Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. In: Proceedings of the IEEE Conference on Robotic and Automation, Sacramento, USA, 1991, 2328-2335
    [226] F. L. Lewis, D. M. Dawson, C. T. Abdallah. Control of Robot Manipulators. New York: MacMillan, 1993
    [227] A. Isidori. Nonlinear Control Systems: an Introduction (2nd edition). New York: Springer Verlag, 1989
    [228] I. Kolmanovsky, N. H. McClamroch. Developments in nonholonomic control systems, IEEE control systems magazine, 1995, 15 (6): 20-36
    [229] Z. P. Jiang, H. Nijmeijer. Tracking control of mobile robots: a case study in backstepping. Automatica, 1N. Sarker, X. Yun, V. Kumar. Control of mechanical system with rolling constraints: applicat997, 33 (7): 1393-1399
    [230] ion to dynamic control of mobile robots. International Journal of Robotics Research, 1994, 13 (1): 55-69
    [231] Y. Qussar, I. Rivals, L. Personnaz, et al. Training wavelet networks for nonlinear dynamic input-output modeling. Neurocomputing, 1998, 20 (1): 173-188
    [232] J. M. Maciejowski. Multivariable Feedback Design. London: Addison-Wesley, 1989
    [233] F. L. Lewis, A. Yesildirek, K. Liu. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 1996, 7 (2): 388-399

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700