基于激光雷达的移动机器人自主导航研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,人类的研究和活动领域已由陆地扩展到深海和太空。利用移动机器人进行空间探测和开发,已成为21世纪世界各科技发达国家开发空间资源的主要手段之一。移动机器人在月球和火星等外星球表面导航时,将面临复杂的未知环境。尽管在移动机器人导航控制理论和方法的研究中,确定性环境的导航控制方法已取得了大量的研究和应用成果,但是却不能直接应用于机器人处于未知环境中的自主导航。因此本文针对未知环境中的移动机器人的自主导航的问题展开研究,提出了基于激光雷达的自主导航系统,经过实验以及仿真研究证明了该系统具有一定的前瞻性和可应用性。
     首先,本文概述了移动机器人的定义与发展现状、主要应用领域和典型代表机器人。综述了移动机器人自主导航技术的研究现状,分析移动机器人自主导航中所面临的难点问题,介绍了现有的一些自主导航方法并分析了其利弊。
     其次,本文介绍了基于激光的移动机器人自主导航系统的系统设计,首先详细介绍了自主导航系统的硬件系统的各个组成部分,包括了Pioneer2移动机器人平台、激光测距仪、惯性测量系统。其次介绍了所开发的软件功能模块组成、基本功能和工作流程。
     然后,本文介绍了基于激光测距仪的室内环境建模。首先针对研究的室内的环境特点,对激光传感器进行了数学建模。接着介绍了直线检测与拟合的方法。引入了Hough变换对激光扫描的距离数据进行分簇,并用最小二乘法进一步拟合线段,然后构建出室内环境线段特征地图的方法。接着介绍了软件的界面设计,代码设计,相关实验等内容。
     最后,主要介绍了移动机器人在自主导航中的路径规划方面的研究,讨论了现有的各种现有路径规划的方法的优缺点,分析了至今还未很好解决的问题。针对一些复杂障碍物提出了一种基于行为的路径规划方法,将整个路径规划行为分为逼近目标行为、避障行为、子目标规划行为。通过合理的行为转换规则控制机器人在几种行为中切换与相互配合来完成路径规划任务。机器人在同一时间内只采用其中一种行为。接着分别详细介绍了几种子行为的方法,并在其后进行了仿真实验,证明了该方法的有效性。接着介绍了两种移动机器人的慎思规划方法作为后续的研究方法,对其适用领域与实现方法进行了详细介绍。
With the development of science and technology, the fields of human studies and areas of human activity have been extended to the deep sea and land space. Using mobile robots for space exploration and development has become one important way to develop space resources in worldwide technology developed countries of 21st century. When navigate on the surface of alien planet, such as moon and Mars, mobile robots will face a complex unknown environment. Although in the study of mobile robot navigation control theory and methods, a lot of research and application results of navigation and control approach under deterministic environment had been made, but they can not be directly applied to the mobile robot navigation in unknown environments. So this paper mainly researched the problems of the robot’s autonomous navigation under complex unknown environments. This paper proposed a kind of mobile robot navigation system based on laser radar and proved that this system had certain forward-looking and can be applied.
     First, this paper outlined the definition, the development status, the main applications and a typical representative of mobile robots. And, this paper summarized the research status of autonomous navigation for mobile robot, analyzed the problems which was faced in autonomous navigation for mobile robot,and introduced same existed means of autonomous navigation and their pros and cons .
     Next, the design of the laser-based mobile robot autonomous navigation system was presented in this paper. Firstly, the various components of autonomous navigation hardware system, including the Pioneer2 mobile robot, laser range finders, inertial measurement systems, were detailed. Then, the composition of the designed software function module, basic function and software workflow were presented.
     Then, the indoor environment modeling based on the laser range finder was introduced. Firstly, laser’s Mathematical model was made for the features of the indoor environment. Secondly, the line detection and fitting methods were introduced. A indoor environment feature mapping way which clustered the range data from the laser and fitted lines with least squares was introduced. Then, this paper detailed the interface design, program design of the navigation software system and some related experiments.
     Finally, this paper introduced some researches on the path planning of the mobile robot autonomous navigation., discussed the pros and cons of the various existed path planning methods, and analyzed some problems unresolved until now. Aiming at some complex unknown obstacle, this paper proposed a path planning method based on behavior control which separated the entire path planning behavior into 3 sub behaviors which was approximation behavior, Obstacle Avoidance behavior, and sub goal planning behavior. Rational behavior change rules were set to control robot change behavior among the 3 rules and cooperate each behavior to finish the navigation task. Mobile robot can only use one behavior at one time. Then this paper detailed the 3 sub behaviors, and did some simulation which proved that this algorithm is effective and verified the applicability of the proposed method for some complex environments. Then 2 deliberation path planning methods for mobile robot were introduced for further research, and their application field and realization method were detailed.
引文
[1]. F. B. Font, A. Ortiz, G. Oliver. Visual navigation for mobile robot: A survey, 2008,53:263-296
    [2].王耀南.机器人智能控制工程.北京:科学出版社,2004
    [3]. Robin Murphy. Introduction to AI robotics. Cambridge, MA: MIT Press, 2000
    [4].张毅,罗元,郑太雄等.移动机器人技术及其应用.北京:电子工业出版社,2007
    [5].余洪山.移动机器人地图创建和自主探索方法研究:[湖南大学博士学位论文].长沙:湖南大学,2007,1-110
    [6]. H. M. Barbera, D. H. Perez. Development of a flexible AGV for flexible manufacturing systems. Industrial Robot: An International Journal, 2010,37(5):459-468
    [7].张莹.大型冷凝器清洗机器人视觉控制方法研究:[湖南大学博士学位论文].长沙:湖南大学,2010,10-20
    [8].朱江,王耀南,余洪山,等.大型冷凝设备水下智能清洗机器人的研制.中国机械工程,2010,21(14):1830-1835
    [9]. Rosier J C, Woerden J A,Wander L W, et al. Rehabilitation robotics: The manus concept. Fifth International Conference on Advanced Robotics,Pisa, 1991:893-898
    [10]. Topping M. The development of Handy1 a robotic aid to independence for the sever disabled. IEE Colloquium on Mechatronic Aids for the Disabled, 1995,(2):1-6
    [11]. Christian martens, Nils ruchel, Oliver lang, et al. A friend for assisting handicapped people. IEEE Robotics and Automation,2001,8:57- 65
    [12].王田苗,张大朋,刘达.医用机器人的发展方向.中国医疗器械杂志,2008,32(4):235-238
    [13].熊光明,赵涛,龚建伟,等.服务机器人发展综述及若干问题探讨.机床与液压,2007,35(3):212-215
    [14].李建军,张济川,金德闻.移动式护理机器人的开发.中国康复医学杂志,1996,10(3):126-128C.
    [15]. Lu T, Yuan K, Zou W, et al. Study on navigation strategy of intelligent wheelchair in narrow spaces. Proceedings of the 6th World Congress onControl and Automation,Dalian,2006:9252-9256
    [16].李瑞峰,胡雨滨,赵立军,等.基于双目视觉的双臂作业型服务机器人的研制.机械设计与制造,2010,(4):161-162
    [17]. M. Bajracharya, M. W. Maimone, D. Helmick. Autonomy for Mars rovers: past, present, and future. Computer,2008,41(12):44-50
    [18]. Ji Liu, Yuechao Wang, Chuan Zhou, et al. A navigation simulation system of lunar rover. IEEE International Conference on Networking, Sensing and Control,2008:556-561
    [19]. Peng Zhang, Zongquan Deng, Ming Hu, et al. Mobility performance analysis of lunar rover based on terrain mechanics. Proceedings of the 2008 IEEE International Conference on Advanced Intelligent Mechatronics,2008:120-125
    [20]. Haining Pan, Zhenwu Lei, Pingyuan Cui, et al. Obstacle avoidance learning for a wheeled lunar rover based on its local relative pose. Proceedings of the 7th Asian Control Conference,2009:1662-1666
    [21]. Chang Yong, Wang Hongguang, Ma Shugen, et al. Locomotion performance analysis of the lunar rover on a slope. Control and Decision Conference,2009:436-641
    [22]. T. Balch, R. C. Arkin. Behavior-based formation control for multi-robot teams. IEEE Robotics and Automation,1998,14(6):14
    [23]. National Research Council (U.S.).Technology developmentfor army unmanned groundvehicles. Washington:The National Academies Press,2002
    [24]. R. C. Arkin. Governing lethal behavior: embedding ethics in a hybrid deliberative/reactive robot architecture part I: motivation and philosophy. Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction,2008:121-128
    [25]. B. M. Yamauchi. Packbot: a versatile platform for military robotics. Proc. SPIE,2004,5422:228-237
    [26]. B. Yamauchi. All-weather perception for man-portable robots using ultra-wideband radar. IEEE International Conference on Robotics and Automation,2010:3610-3615
    [27]. M. Raibert, K. Blankespoor, G. Nelson, et al. Bigdog, the rough-terrain quadruped robot. Proceedings of the 17th World Congress, The International Federation of Automatic Control,2008:1-5
    [28]. R. R. Murphy, J. Kravitz, S. L. Stover, et al. Mobile robots in mine rescue and recovery. IEEE Robotics and Automation Magazine,2009,16(2):91-103
    [29]. S.Thrun, S.Thayer, W.Whittaker, et al. Autonomous exploration and mapping of abandoned mines. IEEE Robotics and Automation Magazine, 2004,(12):79-91
    [30].赵杰,刘刚峰,朱磊,等.基于WSN的矿井事故搜索探测多机器人系统.煤炭学报,2009,34(7):997-1002
    [31].郭晏,包加桐,宋爱国,等.基于地形预测与修正的搜救机器人可通过度.机器人,2009,31(5):445-452
    [32]. Thorpe. Vision and navigation. The Carnegie Mellon Navlab, Kluwer Acadmic Publishers, 1990:52-71.
    [33]. A. Romuald, G. Jay. Perception for collision avoidance and autonomous driving. Mechatronics,2003, 13(10):1149-1161
    [34]. H. Wax. Autonomous vehicle development: No accident. IEEE Women in Engineering,2008,2(1):34-37
    [35]. C. Armbrust, T. Braun, T. Fohst, et al. Ravon—The robust autonomous vehicle for off-road navigation. Proceedings of the IARP International Workshop on Robotics for Risky Interventions and Environmental Surveillance,2009:1-28
    [36]. E D. Dickmanns. An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles, Man and Cybernetics, 1990, 20 (6):1273-1284.
    [37]. D. Schleicher, L. M. Bergasa, M. Ocana, et al. Real-time hierarchical outdoor slam based on stereovision and gps fusion. IEEE Transactions on Intelligent Transportation Systems, 2009,10(3):440-452.
    [38].郭木河,孙健.室外智能移动机器人导航中路标识别算法的研究.清华大学学报,1998,51(38):104-107.
    [39].郭木河,杨磊.视觉导航中基于模糊神经网的消阴影算法研究.软件学报,1999,10(2):155-159.
    [40].胡斌,张朋飞,何克忠.一种用于室外移动机器人的快速有效的车道线识别方法.机器人,2006,28(4):394-399
    [41].孙振平,安向京,贺汉根.CITAVT-IV——视觉导航的自主车.机器人,2002,24(2):115-121
    [42]. Li, Q, N. Zheng, H. Cheng. Springrobot: a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. on Intelligent Transportation Systems, 2004,5(4): 300-308
    [43]. Zhang Ronghui,Wang Rongben,You Feng,et al. Platform and steady kalman state observer design for intelligent vehicle based on visual guidance.IEEEInternational Conference on Industrial Technology,2008,:1-5
    [44]. Jin Lisheng, Guo Lie, Wang Rongben, et al. System design and navigation control for vision based cybercar. IEEE International Conference on Vehicular Electronics and Safety,2006:13-15
    [45]. Zhang Ronghui, Wang Rongben, You Feng,et al. Study on navigation control method for cybercar based on machine vision. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,2007:1882-1887
    [46].邓剑文,安向京,贺汉根.基于道路结构特征的自主视觉导航.机器人,2004,26(4):415-419
    [47]. Brooks R, Robies A.Layered control system for a mobile robot.IEEE Trans.On Robotics&Automation,1986,2(1):14-23
    [48]. Arkin R C.Motor schema-based mobile robot navigation.Int.Journal of Robotics Research, 1989,8(4) :92-112
    [49]. Gat E.Integrating planning and reacting in a heterogeneous architecture for controlling real-world mobile robots.Proc.of the AAAI-92,1992:809-815
    [50]. Moravaec H P, Elfes A . High resolution maps from wide angle sonar . Proc . IEEE International Conf . Robotics and Automation, St.Louis,1985:116-121
    [51]. Kuipers B, Byun Y T.A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations . Journal of Robotics and Autonomous System, 1991, 8:47-63
    [52]. Chatila R, Laumond J P.Position referencing and consistent world modeling for mobile robots.Proc.IEEE International Conf.Robotics and Automation, St.Louis,1985:138-145
    [53]. Avots D, Lim E, Thibaux R, et al.A probalilistic technique for simultaneous localization and door state estimation with mobile robots in dynamic environments.Proc.IEEE/RSJ International Conference on Intelligent Robots and System,2002,1:521-526
    [54]. Thrun S.Robotic Mapping: A Survey.Technical Report.CMU-CS-02-111, Carnegie Mellon University, 2002.
    [55]. Hahnel D, Schulz D, Burgard W.Map building with mobile robots in populated environments.Advanced Robotics, 2003,17(7):579-598
    [56]. Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization.Robotics and Autonomous System,2006,54(3):205-220
    [57]. Thrun S, Koller D Ghahmarani Z, et al . Simultaneous mapping andlocalization for mobile robots.Machine Learning,1998,31(1-3):29-53
    [58]. Linaker F, Ishikawa M . Real-time appearance-based Monte Carlo localization.Robotics and Autonomous System,2006,54(3):205-220
    [59]. Leonard J J, Durrant Whyte H F.Mobile robot localization by tracking geometric beacons.IEEE Trans.On Robotics&Automation,1991,7(3):376-382
    [60].邹小兵,蔡自兴.基于传感器信息的环境非光滑建模与路径规划.自然科学进展,2002,12(11):1188-1192
    [61]. Zou X, Cai Z.Non-smooth environment modeling and global path planning for mobile robot.Journal of Central South University of Technology(English Edition),2003,10(3):248-254
    [62].邹小兵,蔡自兴.基于近似于Voronoi图的增量式环境建模方法.WCICA2004,杭州,2004:4618-4622
    [63].王璐,蔡自兴.未知环境中基于视觉的增量式拓扑建模及导航.高技术通讯,2007,17(3):255-261
    [64].邹小兵,蔡自兴,于金霞,等.基于激光测距仪的移动机器人3-D环境感知系统设计.高技术通讯,2005,15(9):38-43
    [65].马兆青.基于栅格方法的移动机器人实时导航避障.机器人,1996,18(6):344-348
    [66].袁曾任,高明.在动态环境中移动机器人实时导航避障.机器人,2000,22(2):81-88
    [67]. N. J. Nilsson. Introduction to artificial intelligence principles. Rivista di Informatica,1981,11(1):13-38
    [68]. A. Stentz. Optimal and efficient path planning for partially known environments. The IEEE International Conf. on Robotics and Automation, 1994,4:3310-3317
    [69]. A. Stentz. The focused D* algorithm for real-time replanning. The 14th International Joint Conference on Artificial Intelligence,1995:1652-1659
    [70]. L. Podsedkowski, J. Nowakowski, M. Idzikowski, et al. A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots. Robotics and Autonomous Systems,2001,34:145-152
    [71]. A. Chilian, H. Hirschmuller. Stereo camera based navigation of mobile robots on rough terrain. Proc. of IEEE International Conference on Intelligent Robots and System, 2009:4571-4576
    [72]. D. Ferguson, A. Stentz. Field D*: An interpolation-based path planner and replanner. Robotics Research,2007,28/2007:239-253
    [73]. J. Carsten, D. Ferguson, A. Stentz. 3D Field D*: Improved path planning and replanning in Three dimensions. Proceedings of IEEE Int1. Conference on International Robots and Systems,2006:3381-3386
    [74]. A. Cappalunga, S. Cattani, A. Broggi, et al. Real time 3D terrain elevation mapping using ants optimization algorithm and stereo vision. IEEE Intelligent Vehicles Symposium,2010:902-909
    [75]. Wing Kwong Chung, Yangsheng Xu. A generalized 3-D path planning method for robots using genetic algorithm with an adaptive evolution process. 8th World Congress on Intelligent Control and Automation,2010:1354-1360
    [76]. J. Borenstein, Y. Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Transaction System Man Cybern,1989,19(5):1179-1187
    [77]. S. S. Ge, Y. J. Cui. New potential functions for mobile robot path planning. IEEE Transactions on Robotics and Automation, 2000,16(5):615-620
    [78].蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法.北京:科学出版社,2009
    [79]. Campion G, Bastin G, D’Andrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robot.IEEE Trans. On Robot.and Automat.,1996,12(1):47-62
    [80].欧青立,何克忠.室外智能移动机器人的发展及其相关技术研究平,机器人,2000,22( 6 ) :519-526
    [81].李磊,叶涛,谭民等.移动机器人技术研究现状与未来.机器人,2002,24(5):475-480
    [82]. Khatib O. Read-time obstacle avoidance for manipulators and mobile robots. Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE. 1985. 500-505
    [83]. Borenstein J, Koren Y.The vector field histogram-fast obstacle avoidance for mobile robot .IEEE Transaction on Robotics and Automation, 1991, 7(3): 278-288
    [84]. Xu W L, TSO S K.Sensor based fuzzy reactive navigation of a mobile robot through local target switching. IEEE Transaction Systems, 1999, 29.
    [85]. Kazuo Sugihara, John Smith. Genetic Algorithms for adaptive Motion Planning of an autonomous Mobile Robot. Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997
    [86]. Mabrouk M H, McInnes C R. Solving the potential field local minimumproblem using internal agent states.Robotics and Autonomous System.2008, 56(12): 1050-1060
    [87].朱毅,张涛,宋靖雁.未知环境下势场法路径规划的局部极小问题研究.自动化学报,2010,36(8):1122-1130
    [88]. Chang H. A new technique to handle local minimum for imperfect potential field based motion planning. In: Proceedings of IEEE International Conference on Robotics and Automation. Minnesota, USA: IEEE, 1996. 108-112
    [89].李云翀,何克忠.基于激光雷达的室外移动机器人避障与导航新方法.机器人,2006,28(3):275-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700