冷却塔逆用理论与水—水热泵制热运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调用冷却塔普遍用作散热冷却设备,但是,将其逆用吸热作为热泵制热的低温热源,有着独特的优势与应用前景。冷却塔逆用(RUCT)吸热工况下,塔内空气与水进行着复杂的热质交换过程,如何正确认识空气与水之间的热质交换过程是优化运行与优化设计的基础。迄今为止,针对该方面的研究并不充分。鉴于此,本文采用理论分析、数值模拟以及实验研究相结合的方法探讨了冷却塔逆用时空气与水的热质交换过程以及热质耦合机理与特性。进行的主要工作如下:
     首先,本文对既有的逆流冷却塔逆用热质交换模型进行了改进,摒弃了低温工况下刘易斯数为1的假设而带来的计算偏差,分别将温差与含湿量差作为空气与水的传热与传质驱动力,建立了较为完善的逆流冷却塔逆用的数学模型,为方便求解,进一步将模型最终以显式差分格式表达,并将模型计算结果与实验数据进行对比,结果表明,模型准确性较高。
     其次,本文对横流冷却塔逆用性能进行了理论与实验研究,对采用PVC薄膜式填料的横流冷却塔逆用进行了传热传质性能实验,在此基础之上采用多元回归分析方法处理实验数据,得出了传热传质主要性能参数:吸热效率、显热比、传热系数、传质系数以及刘易斯数与塔进口空气干球温度、湿球温度、进水温度、淋水密度以及液气比的函数关系式,并针对传热与传质系数的影响因素进行了分析,为进一步理论研究与工程运用提供了依据。
     在此基础上,本文建立了较为完善的横流冷却塔逆用热质交换二维无量纲数学模型,考虑了冷凝而引起水质量流量变化,利用实验数据回归得到的传热系数与传质系数,通过离散数值求解的方法,得到了水与空气各参数在塔内的二维分布规律,并采用实验数据验证数学模型,出水温度计算值与实验值的相关系数为0.9904,判定系数0.9809,均方差误差为0.22oC,计算结果与实验值吻合较好,且分析得到刘易斯数在0.7~1.6范围内变化。在此基础上,应用热力学第一、第二定律对室外空气参数及可调节参数对横流冷却塔逆用的性能进行了详细分析。
     另外,考虑到塔内湿空气与水热质交换过程各个参数之间复杂的非线性关系,本文针对横流冷却塔逆用进一步建立了基于遗传算法优化的BP神经网络模型。本网络模型采用6个输入、13个隐含层节点与8个输出的结构。针对出口空气干球温度、湿球温度、出水温度、吸热量、显热比、吸热效率、冷凝水比例、刘易斯数共8个主要性能参数进行预测分析。并进一步将建立好的网络模型用于不同进水温度对塔出水温度以及吸热量的预测分析。结果表明,模拟结果和实际情况基本一致,即该基于遗传算法优化的BP网络模型能较好地预测横流冷却塔逆用传热传质性能。
     最后,本文将横流冷却塔逆用模型与水-水热泵、循环水泵模型耦合,建立系统制热运行的优化模型,确立了目标函数、约束条件与控制变量。以塔风量、水量、蒸发器进出口水温、蒸发温度、冷凝温度、过冷度、吸气过热度为待优化变量,运用量子遗传算法对该多变量非线性模型进行优化计算。通过对优化模型的仿真计算,与实测工况进行了比较,系统最大综合能效比EERs得到提高。本文进一步以实验系统为例,保证系统供热量不变的前提下,针对室外空气温度5~13oC,相对湿度60-90%工况下对系统运行展开模拟研究,结果表明,为保证系统最大综合能效比运行,横流冷却塔逆用的液气比范围为0.44~0.48。
Cooling tower often acting for heat dissipation harbors unique advantages andapplication prospects when reversibly used to absorb heat as low-temperature heatsource for heat pump. It lies as the basis to optimize the operation and design to fullystudy the complicated heat and mass transfer process between air and water. Sincethere doesn’t exist enough research on this aspect, this paper aims to explore themechanism and characteristics of the heat and mass transfer and coupling between airand water for reversibly used cooling tower with theoretical analysis and experimentaldata. The main content is outlined as follows.
     Firstly, based on the existing heat and mass exchange model for reversibly usedcounter-flow cooling tower, the calculation deviation due to the assumption thatLewis number is1under low temperature condition is dismissed, an improvedmathematical model is developed, with the temperature difference and moisturecontent difference as the driving force for heat and mass transfer. This model is shownin explicit difference way for easy solution. And the result of this model is comparedwith experimental data, which displays a high accuracy.
     Secondly, considering the lack of research on reversibly used cooling towerunder cross flow condition, the performance experiment of heat and mass transfer wasconducted for reversibly used cooling tower stuffed with PVC film packing undercross flow condition. Then multiple regression analysis is utilized to deal with theexperimental data, revealing the function equation relating heat absorption efficiency,sensible heat ratio, heat transfer coefficient and Lewis number with inlet dry bulbtemperature, wet bulb temperature, inlet water temperature, water drenching densityand liquid air ratio. Besides, the factors influencing heat and mass transfer areanalyzed. This research offers basis for further theoretical study and practicalapplication.
     Next, the2-D dimensionless mathematical model is built for reversibly usedcooling tower under cross flow condition, taking account of the water mass and flowchange due to condensation. The heat and mass transfer coefficients are obtainedthrough experimental data regression. The two dimension distribution regularities ofair and water parameters are acquired with discrete numerical solution. Thecalculation results of outlet water temperature validated by experimental result agree well with the experimental data, with the correlation coefficient of0.9904,determination coefficient of0.9809, mean variance error of0.22oC and Lewis numberranging from0.7to1.6. On this basis, a detailed analysis is carried out for theinfluence of ambient parameters and adjustable index on the performance ofreversibly used cooling tower under cross flow condition with the First and SecondLaw of Thermaldynamics.
     Next, with regard of complex nonlinear relation of various parameters during theheat and mass transfer between moist air and water inside the tower, a GA-BPartificial neural network model is formed or reversibly used cooling tower under crossflow condition. This network structure consists of6inputs,13neutrons at hiddenlayers and8outputs. Outlet dry bulb temperature, wet bulb temperature, outlet watertemperature, heat absorption capacity, sensible heat ratio, heat absorption efficiency,condensate water ratio and Lewis number are predicted and analyzed. This networkmodel is further used for prediction of outlet water temperature and heat absorptioncapacity under different inlet water temperatures. The agreement of simulation resultwith realistic data reveals that this GA-BP artificial neural network model caneffectively forecast heat and mass transfer characteristics reversibly used coolingtower under cross flow condition.
     In the last part, the model for reversibly used cooling tower under cross flowcondition is coupled with water-water heat pump and circulation pump models. Anoptimization model of heating operation is formed with objective function, constraintconditions and manipulated variables. Quantum genetic algorithm is applied tooptimize the multivariable nonlinear model, with air volume, water flow, inlet andoutlet water temperature of evaporator, evaporating temperature, condensingtemperature, condensate depression and inspiratory superheat as the optimizedvariables. Comparison between simulation results and realistic conditions shows theimprovement of system EERs. Under the prerequisite of fixed heat supply capacity,the experimental system is simulated and analyzed with the ambient temperature of5~13oC and relative humidity of60-90%. It is shown that the liquid air ratio is in therange of0.45~0.47under the peak EER.
引文
[1]张国强,龚光彩, Haghighat F,等.能源、环境与空调制冷.制冷学报,2000,(3):1-6
    [2] Lang S.Progress in energy-efficiency standards for residential buildings inChina.Energy and Buildings,2004,36(12):1191-1196
    [3] Siwei L,Yu Joe H. Energy conservation standard for space heating in Chineseurban residential buildings. Energy,1993,18(8):871-892
    [4]陈兰英,赵洪平.建筑节能的技术措施.建筑技术开发,2004,31(2):1-3
    [5] Omer AM.Green energy saving mechanisms.Renewable and SustainableEnergy Reviews,doi:10.1016/j.rser.2007.01.003
    [6] Khire RA,Messac A,Van Dessel S.Design of thermoelectric heat pump unitfor active building envelope systems.International Journal of Heat and MassTransfer,2005,48(19):4028-4040
    [7] Zogou O,Stamatelos A.Optimization of thermal performance of a buildingwith ground source heat pump system. Energy Conversion and Management,2007,48(11):2853-2863
    [8] Mileni D,Vasiljevi P,Vranje A.Criteria for use of groundwater asrenewable energy source in geothermal heat pump systems for buildingheating/cooling purposes.Energy and Buildings,2010,42(5):649-657
    [9] Byrd H,Leardini P.Green buildings:Issues for New Zealand.ProcediaEngineering,2011,21:481-488
    [10] Zhai XQ,Yang Y.Experience on the application of a ground source heat pumpsystem in an archives building.Energy and Buildings,2011,43(11):3263-3270
    [11] Wang E,Fung AS,Qi C,et al.Performance prediction of a hybrid solarground-source heat pump system. Energy and Buildings,2012,47:600-611
    [12]柴沁虎,马国远.空气源热泵低温适应性研究的现状及进展.能源工程,2002,(5):25-31
    [13]陈镇凯.制约空气源热泵推广应用的技术因素的研究现状.制冷与空调,2012,12(1):12-18
    [14]封家平,许涛,杨飞,等.空气源热泵在我国暖通空调中的应用与发展.建筑热能通风空调,2005,24(5):20-23
    [15]姜益强,姚杨,马最良.空气源热泵冷热水机组供热最佳能量平衡点的研究.哈尔滨建筑大学学报,2001,34(3):83-87
    [16]巨永平,张永铨,吕灿仁,等.空气源热泵的节能效果及经济可行性分析.天津大学学报,1996,29(5):105-112
    [17]沈炜,周晋,李树林.空气源热泵在中国北方地区的运行经济性分析.建筑热能通风空调,2007,26(1):63-66
    [18]王伟,张富荣,郭庆慈,等.空气源热泵在我国应用结霜区域研究.湖南大学学报(自然科学版),2009,36(12):9-13
    [19]余丽霞,付祥钊,肖益民.空气源热泵在长江流域的气候适宜性研究.暖通空调,2011,41(6):96-99
    [20]俞丽华,马国远,徐荣保.低温空气源热泵的现状与发展.建筑节能,2007,35(3):54-57
    [21]白雪莲,林真国,张岩宝.地表水水源热泵空调系统综合节能技术的应用.流体机械,2009,37(6):73-77
    [22]白雪莲,张言军,王厚华.地表水水源热泵水输配系统的能效分析.土木建筑与环境工程,2010,32(6):86-91
    [23]高伟.地表水水源热泵系统节能问题及适用性研究:[重庆大学硕士学位论文].重庆:重庆大学城市建设与环境工程学院,2010,59-67
    [24]谢厚礼,林学山,陈红霞,等.若干地表水水源热泵示范工程投资回收期分析.节能技术,2011,29(5):429-431
    [25]李世君,刘文臣,辛宝东.北京地区地下水源热泵利用现状及存在问题.城市地质,2006,1(1):16-20
    [26]汪训昌.关于发展地源热泵系统的若干思考.暖通空调,2007,37(03):38-43
    [27]薛玉伟,李新国,赵军,等.地下水水源热泵的水源问题研究.能源工程,2003,(2):10-13
    [28]丁勇,李百战,卢军,等.地源热泵系统地下埋管换热器设计(1).暖通空调,2005,35(3):86-89
    [29]丁勇,李百战,卢军,等.地源热泵系统地下埋管换热器设计(2).暖通空调,2005,35(11):81-84
    [30]何雪冰,刘宪英.北方地区应用地源热泵应注意的问题.低温建筑技术,2004,(02):85-86
    [31]王景刚,马一太,张子平,等.地源热泵的运行特性模拟研究.工程热物理学报,2003,24(3):361-366
    [32]王勇.地源热泵的技术经济分析.建筑热能通风空调,2001,(05):12-13
    [33]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的热阻.煤气与热力,2003,23(3):134-138
    [34]周亚素.土壤导热系数的现场测试方法.东华大学学报(自然科学版),2008,34(4):482-485
    [35]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2009.北京:中国建筑工业出版社,2009,109-123
    [36] Dowdy JA,Karabash NS.Experimental determination of heat and mass transfercoefficient in rigid impregnated cellulose evaporative media. ASHRAETransactions,1988,93(2):382-395
    [37] Yan W-M,Soong C-Y.Convective heat and mass transfer along an inclinedheated plate with film evaporation.International Journal of Heat and MassTransfer,1995,38(7):1261-1269
    [38] Kachhwaha SS,Dhar PL,Kale SR.Experimental studies and numericalsimulation of evaporative cooling of air with a water spray—I. Horizontalparallel flow.International Journal of Heat and Mass Transfer,1998,41(2):447-464
    [39] Inaba H,Aoyama S,Haruki N,et al.Heat and mass transfer characteristics ofair bubbles and hot water by direct contact.Heat and Mass Transfer,2002,38(6):449-457
    [40] Liao C-M,Chiu K-H.Wind tunnel modeling the system performance ofalternative evaporative cooling pads in Taiwan region. Building andEnvironment,2002,37(2):177-187
    [41] Naphon P.Study on the heat transfer characteristics of an evaporative coolingtower.International Communications in Heat and Mass Transfer,2005,32(8):1066-1074
    [42]倪波,郁履方.瑞士Luwa喷水室热湿交换计算曲线的回归.中国纺织大学学报,1991,17(4):158-163
    [43]倪波.法国Carrier喷嘴绝热加湿过程的研究.中国纺织大学学报,1995,21(1):68-73
    [44]刘刚.喷水初温与水气比的关系及热湿交换理论的研究.中国纺织大学学报,1996,22(5):102-107
    [45]葛克山,王群,任迪峰.湿帘中气液传质系数及压降的测定.中国农业大学学报,1999,2(2):1-5
    [46]张继扶,李新禹,赵汉权.空调喷淋室热湿交换效率的研究.天津纺织工学院学报,2000,19(2):15-18
    [47]由世俊,华君,涂光备,等.金属填料表面热质传递实验研究.制冷学报,2000,(04):35-39
    [48]黄翔,武俊梅,宣永梅.两种填料直接蒸发冷却式空调机性能的实验研究.制冷学报,2001,(3):33-40
    [49]邢永杰,魏东.淋水金属填料的直接蒸发冷却实验研究.制冷,2001,20(4):16-19
    [50]李莎,马立山,郭连,等.高速空调喷水室中冷却减湿过程的工程实验研究.天津工业大学学报,2005,24(4):69-72
    [51]孙贺江,由世俊,涂光备.空调用金属填料传热传质性能实验.天津大学学报,2005,38(6):561-564
    [52]张丹,黄翔,吴志湘.蒸发冷却空调最佳淋水密度的实验研究.西安工程科技学院学报,2006,20(2):191-194
    [53]马红利,刘智勇.空调喷淋室热湿交换过程实验研究.沈阳工程学院学报(自然科学版),2007,3(3):232-236
    [54] Majumdar AK,Singhal AK,Spalding DB.Numerical modeling of wet coolingtowers—Part1: mathematical and physical models.Journal of Heat Transfer,1983,105(4):728-735
    [55] Majumdar AK,Singhal AK,Reilly HE,et al.Numerical modeling of wetcooling towers—Part2: application to natural and mechanical drafttowers.Journal of Heat Transfer,1983,105(4):736-743
    [56] Jaber H,Webb RL.Design of cooling towers by the effectiveness-NTUmethod.Journal of Heat Transfer,1989,111(4):837-843
    [57] Braun JE,Klein SA,Mitchell JW.Effictiveness models for cooling towers andcooling coils.ASHRAE Transactions,1989,95(2):164-174
    [58] Osterle F.On the analysis of counter-flow cooling towers.International Journalof Heat and Mass Transfer,1991,34(4-5):1313-1316
    [59] El-Dessouky HTA,Al-Haddad A,Al-Juwayhel F. A Modified analysis ofcounter flow wet cooling towers.Journal of Heat Transfer,1997,119(3):617-626
    [60] Milosavljevic N,Heikkil P.A comprehensive approach to cooling towerdesign.Applied Thermal Engineering,2001,21(9):899-915
    [61] Fisenko SP,Petruchik AI,Solodukhin AD.Evaporative cooling of water in anatural draft cooling tower.International Journal of Heat and Mass Transfer,2002,45(23):4683-4694
    [62] Khan J-U-R,Yaqub M,Zubair SM.Performance characteristics of counter flowwet cooling towers.Energy Conversion and Management,2003,44(13):2073-2091
    [63] Kloppers JC,Kr ger DG.A critical investigation into the heat and mass transferanalysis of counterflow wet-cooling towers.International Journal of Heat andMass Transfer,2005,48(3-4):765-777
    [64]张寅平,朱颖心,江亿.水-空气处理系统全热交换模型和性能分析.清华大学学报(自然科学版),1999,39(10):35-38
    [65]杨强生,饶钦阳,范云良,等.喷雾强化空气冷却器的实验研究.上海交通大学学报,1999,33(3):1-10
    [66]张旭,陈沛霖.空气热湿处理的不可逆热力学分析及Le研究.同济大学学报(自然科学版),1999,27(5):561-566
    [67]王新泉,王晓璐,田传胜.有限空间空气与水热湿交换过程的数学模型.郑州纺织工学院学报,2001,12(3):12-15
    [68]王新泉,田传胜,王晓璐,等.有限空间空气与水热湿交换过程的计算机数值模拟.郑州纺织工学院学报,2001,12(4):17-20
    [69]颜苏芊,黄翔.空调用喷水室热质交换方程组的精确解.纺织高校基础科学学报,2004,17(2):146-149
    [70]杜鹃,武俊梅,黄翔.直接蒸发冷却系统传热传质过程的数值模拟.制冷与空调,2005,5(2):28-33
    [71]宋垚臻,吕金虎,卓献荣.空气与水直接接触热质交换顺流和逆流过程特性比较.化工进展,2005,24(7):783-787
    [72]宋垚臻.空气与水顺流直接接触热质交换过程模型计算及分析.农业工程学报,2006,22(1):6-10
    [73]宋垚臻.空气与水逆流直接接触热质交换模型计算及与实验比较.化工学报,2005,999-1003(6)
    [74]葛柳平,张欢,孙贺江,等.金属填料内空气热湿处理的热质传递.煤气与热力,2005,25(3):16-19
    [75]王助良,张敏,颜学升,等.车间湿帘降温系统热湿交换的研究.农业机械学报,2006,37(12):5
    [76]张涛,刘晓华,江亿.空气-水/吸湿溶液热湿传递特性分析(II)传质特性分区.化工学报,2011,62(11):3009-3016
    [77]张涛,刘晓华,江亿.空气-水/吸湿溶液热湿传递特性分析(I)可及处理区域.化工学报,2011,62(11):3001-3008
    [78]井上宇市.空气调和卫生工学.1962,36(4)
    [79]范存养.大空间建筑空调设计及工程实录.北京:中国建筑工业出版社,2001,386-388
    [80]范存养.大空间建筑空调设计及工程实录.北京:中国建筑工业出版社,2001,443-445
    [81]朱颖心,王刚,江亿.区域供冷系统能耗分析.暖通空调,2008,38(1):36-40
    [82] Tan KX,Song ZY,Deng SM.Service hot water supply using central airconditioning systems for buildings in subtropics.Beijing: China Machine Press,1998:16-21
    [83] Tan KX,Deng SM.A method for evaluating the heat and mass transfercharacteristics in a reversibly used water cooling tower (RUWCT) for heatrecovery.International Journal of Refrigeration,2002,25(5):552-561
    [84] Tan KX,Deng SM.A numerical analysis of heat and mass transfer inside areversibly used water cooling tower.Building and Environment,2003,38(1):91-97
    [85] Tan KX,Deng SM.A simulation study on a water chiller complete with adesuperheater and a reversibly used water cooling tower (RUWCT) for servicehot water generation.Building and Environment,2002,37(7):741-751
    [86]张晨,杨洪海,刘秋克,等.闭式热源塔用作空调冷热源的分析.建筑热能通风空调,2009,28(6):71-73
    [87]张晨,杨洪海,刘秋克,等.开式热源塔在热泵系统中的应用分析.能源研究与信息,2010,26(1):52-56
    [88]张晨,杨洪海,吴建兵,等.三种典型结构热源塔的比较.制冷与空调,2009,9(6):81-83
    [89]梁彩华,文先太,张小松.基于热源塔的热泵系统构建与试验.化工学报,2010,61(S2):142-146
    [90]文先太,梁彩华,张小松.过渡季节冷却塔辅助供热的理论分析与研究.暖通空调,2011,41(2):90-93
    [91]文先太,梁彩华,张小松,等.热源塔传质特性的分析和实验研究.化工学报,2011,62(4):901-907
    [92]苏湛航.开式热源塔热泵系统在北方冬季工况下的性能研究:[天津大学硕士学位论文].天津:天津大学机械学院,2010,44-45
    [93]王宇.不同溶质类型对热源塔性能的影响研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2011,46-47
    [94]宋应乾,马宏权,龙惟定.能源塔热泵技术在空调工程中的应用与分析.暖通空调,2011,41(4):20-23
    [95] Yongcun L,Guangming C,Liming T,et al.Analysis on performance of a novelfrost-free air-source heat pump system.Building and Environment,2011,46(10):2052-2059
    [96] Norman WS,Algawi MO,Garner FH.The cooling and dehumidifcation of airwith refrigerated brine in a grid-packed tower.Transactions Institute ofChemical Engineers,1954,(32):s14-s17
    [97] Braun JE,Klein SA,Mitchell JW.Effictiveness models for cooling towers andcooling coils.ASHRAE Transactions,1989,95(2):164-174
    [98] McQuiston FC,Parker JD,Spitler JD.Heating,ventilating,and air conditioning:analysis and design.John Wiley&Sons,2000
    [99] Sutherland JW.Analysis of mechanical-draught counterflow air/water coolingtowers.Journal of Heat Transfer,1983,105(3):576-583
    [100] Webb,R. L G. A unified theoretical treatment for thermal analysis of coolingtower,evaporative condensers,and fluid coolers. New York,NY,ETATS-UNIS;American Society of Heating, Refrigerating and Air-conditioningEngineers.1984
    [101] Stabat P, Marchio D. Simplified model for indirect-contact evaporativecooling-tower behaviour.Applied Energy,2004,78(4):433-451
    [102] Wang K,Sun F,Zhao Y,et al.Experimental research of the guiding channelseffect on the thermal performance of wet cooling towers subjected tocrosswinds-air guiding effect on cooling tower. Applied Thermal Engineering,2010,30(5):533-538
    [103] Shi YJ.Operation and experiment of cooling tower.Beijing: Water Consevancyand Electric Power Press,1990
    [104] Hao L,Li H,Sun Z,et al.Numerical simulation of air-cooling tower.Journalof Thermal Science,2003,12(3):264-269
    [105] ASHRAE,ASHRAE Handbook of Fundamentals.Atlanta: American Society ofHeating,Refrigerating and Air-Conditioning Engineers,2009,1.3-1.4
    [106] ASHRAE,ASHRAE Handbook of Fundamentals. Atlanta: American Society ofHeating,Refrigerating and Air-Conditioning Engineers,2009,1.5-1.6
    [107] Gao M,Sun FZ,Wang K,et al.Experimental research of heat transferperformance on natural draft counter flow wet cooling tower under cross-windconditions. International Journal of Thermal Sciences,2008,47(7):935-941
    [108] Hosoz M,Ertunc HM,Bulgurcu H.Performance prediction of a cooling towerusing artificial neural network. Energy Conversion and Management,2007,48(4):1349-1359
    [109] Pan TH,Shieh SS,Jang SS,et al.Statistical multi-model approach forperformance assessment of cooling tower.Energy Conversion and Management,2011,52(2):1377-1385
    [110] Qi X, Liu Z, Li D. Performance characteristics of a shower coolingtower.Energy Conversion and Management,2007,48(1):193-203
    [111] Ismail IM,Mahmoud KG.Comparative study of different air-conditioningsystems incorporating air washers.International Journal of Refrigeration,1994,17(6):364-370
    [112] Tan KX,Deng SM.A numerical analysis of heat and mass transfer inside areversibly used water cooling tower.Building and Environment,2003,38(1):91-97
    [113] Tan KX.A study of a desuperheater heat recovery system complete with areversibly used water cooling tower (RUWCT) for hot water supply:
    [dissertation].Hong Kong: The Hong Kong Polytechnic University,2000,156-157
    [114] Liu XH,Jiang Y,Chang XM,et al.Experimental investigation of the heat andmass transfer between air and liquid desiccant in a cross-flowregenerator.Renewable Energy,2007,32(10):1623-1636
    [115] Marques CAX,Fontes CH,Embiru u M,et al.Efficiency control in acommercial counter flow wet cooling tower. Energy Conversion andManagement,2009,50(11):2843-2855
    [116] Picardo JR,Variyar JE.The Merkel equation revisited: A novel method tocompute the packed height of a cooling tower. Energy Conversion andManagement,2012,57:167-172
    [117] Qi X,Liu Z,Li D.Prediction of the performance of a shower cooling towerbased on projection pursuit regression. Applied Thermal Engineering,2008,28(8):1031-1038
    [118] Asvapoositkul W,Treeutok S.A simplified method on thermal performancecapacity evaluation of counter flow cooling tower. Applied ThermalEngineering,2012,38:160-167
    [119] Al-Waked R,Behnia M.Enhancing performance of wet cooling towers.EnergyConversion and Management,2007,48(10):2638-2648
    [120] Lemouari M,Boumaza M,Kaabi A.Experimental analysis of heat and masstransfer phenomena in a direct contact evaporative cooling tower.EnergyConversion and Management,2009,50(6):1610-1617
    [121] Wang K,Sun FZ,Zhao YB,et al.Experimental research of the guiding channelseffect on the thermal performance of wet cooling towers subjected tocrosswinds–Air guiding effect on cooling tower.Applied Thermal Engineering,2010,30(5):533-538
    [122] Esam E.Experimental study and predictions of an induced draft ceramic tilepacking cooling tower.Energy Conversion and Management,2006,47(15-16):2034-2043
    [123] Lucas M, Martínez PJ, Viedma A. Experimental study on the thermalperformance of a mechanical cooling tower with different drifteliminators.Energy Conversion and Management,2009,50(3):490-497
    [124] Lucas M,Martínez PJ,Ruiz J,et al.On the influence of psychrometric ambientconditions on cooling tower drift deposition.International Journal of Heat andMass Transfer,2010,53(4):594-604
    [125] Lemouari M,Boumaza M,Mujtaba IM.Thermal performances investigation ofa wet cooling tower.Applied Thermal Engineering,2007,27(5-6):902-909
    [126] Werbos PJ.Backpropagation through time: what it does and how to doit.Proceedings of the IEEE,1990,78(10):1550-1560
    [127] Werbos PJ.Beyond Regression: New Tools for Prediction and Analysis in theBehavioral Sciences:[dissertation].United States:Harvard University,1974,32-46
    [128] Rumelhart DE,McClelland JL.Parallel distributed processing: Psychologicaland biological models.Cambridge:MIT Press,1986.320-350
    [129] Mohanraj M,Jayaraj S,Muraleedharan C.Applications of artificial neuralnetworks for refrigeration,air-conditioning and heat pump systems—A review.Renewable and Sustainable Energy Reviews,2012,16(2):1340-1358
    [130] Haykin SS.Neural networks: a comprehensive foundation.Michigan: PrenticeHall,1999,276-298
    [131] Abbassi A,Bahar L.Application of neural network for the modeling and controlof evaporative condenser cooling load. Applied Thermal Engineering,2005,25(17-18):3176-3186
    [132] Gandhidasan P,Mohandes MA.Artificial neural network analysis of liquiddesiccant dehumidification system.Energy,2011,36(2):1180-1186
    [133] Li N,Xia L,Shiming D,et al.Dynamic modeling and control of a directexpansion air conditioning system using artificial neural network.AppliedEnergy,2012,91(1):290-300
    [134] Xin F.Basic Theory and Method of Neural Net Intelligence.Chengdu:Southwest Jiaotong University Press,2000,56-76
    [135] Yao YB, Wang JL. Research on Raising "BP" Network TrainingSpeed.Hei-longjiang: Hei-longjiang Electronic Technology Press,2002,1,4-6
    [136] Xie QS. Neural Net Method in Mechanical Engineering. Beijing: ChinaMachine Press,2003,78-97
    [137] Pu J,Liu G,Feng X.Application of the cumulative exergy approach to differentair conditioning systems. Energy and Buildings,2010,42(11);1999-2004
    [138] Xiong ZQ,Dai YJ,Wang RZ.Development of a novel two-stage liquiddesiccant dehumidification system assisted by CaCl2solution using exergyanalysis method.Applied Energy,2010,87(5):1495-1504
    [139] Wang S, Morimoto M,Soeda H,et al.Evaluating the low exergy of chilledwater in a radiant cooling system.Energy and Buildings,2008,40(10):1856-1865
    [140] Khalid Ahmed CS,Gandhidasan P,Zubair SM,et al.Exergy analysis of aliquid-desiccant-based,hybrid air-conditioning system.Energy,1998,23(1):51-59
    [141] Alpuche MG,Heard C,Best R,et al.Exergy analysis of air cooling systemsin buildings in hot humid climates.Applied Thermal Engineering,2005,25(4):507-517
    [142] Taufiq BN,Masjuki HH,Mahlia TMI,et al.Exergy analysis of evaporativecooling for reducing energy use in a Malaysian building. Desalination,2007,209(1-3):238-243
    [143] Saidur R,BoroumandJazi G,Mekhlif S,et al.Exergy analysis of solar energyapplications. Renewable and Sustainable Energy Reviews,2012,16(1):350-356
    [144] Ahamed JU,Saidur R,Masjuki HH.A review on exergy analysis of vaporcompression refrigeration system. Renewable and Sustainable Energy Reviews,2011,15(3):1593-1600
    [145] Koroneos C,Nanaki E,Xydis G.Solar air conditioning systems and theirapplicability—An exergy approach.Resources, Conservation and Recycling,2010,55(1):74-82
    [146] Muangnoi T,Asvapoositkul W,Wongwises S.Effects of inlet relative humidityand inlet temperature on the performance of counterflow wet cooling towerbased on exergy analysis.Energy Conversion and Management,2008,49(10):2795-2800
    [147] Niksiar A,Rahimi A.Energy and exergy analysis for cocurrent gas spraycooling systems based on the results of mathematical modeling and simulation.Energy,2009,34(1):14-21
    [148] Muangnoi T,Asvapoositkul W,Wongwises S.An exergy analysis on theperformance of a counterflow wet cooling tower.Applied Thermal Engineering,2007,27(5-6):910-917
    [149] Wang L,Li N. Exergy transfer and parametric study of counter flow wetcooling towers.Applied Thermal Engineering,2011,31(5):954-960
    [150] Smrekar J,Oman J, irok B.Improving the efficiency of natural draft coolingtowers.Energy Conversion and Management,2006,47(9-10):1086-1100
    [151] Sayyaadi H,Nejatolahi M.Multi-objective optimization of a cooling towerassisted vapor compression refrigeration system. International Journal ofRefrigeration,2011,34(1):243-256
    [152] Qureshi BA,Zubair SM.Second-law-based performance evaluation of coolingtowers and evaporative heat exchangers.International Journal of ThermalSciences,2007,46(2):188-198
    [153] Wepfer WJ,Gaggioli RA,Obert EF.Proper evaluation of available energy forHVAC.ASHRAE Transactions,1979,85(1):214-230
    [154] Jan S. International progress in second law analysis.Energy,1980,5(8-9):709-718
    [155] Kameyama H,Yoshida K,Yamauchi S,et al.Evaluation of reference exergiesfor the elements.Applied Energy,1982,11(1):69-83
    [156] Morris DR,Szargut J.Standard chemical exergy of some elements andcompounds on the planet earth. Energy,1986,11(8):733-755
    [157] Gallo WLR, Milanez LF. Choice of a reference state for exergeticanalysis.Energy,1990,15(2):113-121
    [158] Willem vG. Thermodynamics of chemical references for exergyanalysis.Energy Conversion and Management,1998,39(16-18):1719-1728
    [159]郑丹星,武向红,郑大山.函数热力学一致性基础.化工学报,2002,53(7):673-679
    [160] Bejan A. Advanced engineering thermodynamics. Manhattan: John Wiley&Sons Press,2006,543-580
    [161] M.A A-N.Dynamic thermal behaviour of cooling towers.Energy Conversionand Management,1998,39(7):631-636
    [162] Li Y,You X,Qiu Q,et al.The study on the evaporation cooling efficiency andeffectiveness of cooling tower of film type. Energy Conversion andManagement,2011,52(1):53-59
    [163] Norman W.S,Algawi M.O,F.H G.The cooling and dehumidification of air withrefrigerated brine in a grid-packed tower.Transactions Institute of ChemicalEngineers,1954,32:s14-s17
    [164] Lu L,Cai W,Soh YC,et al.HVAC system optimization—condenser waterloop.Energy Conversion and Management,2004,45(4):613-630
    [165] Cho CH,Norden N.Computer optimization of refrigeration systems in a textileplant: A case history.Automatica,1982,18(6):675-683
    [166] Thielman DE. Chiller optimization by energy management controlsystems.ASHRAE J,1983,25(11):60
    [167] Lau AS,Beckman WA,Mitchell JW.Development of computerized controlstrategies for a large chilled water plant.ASHRAE Transactions,1985,91(1):766-780
    [168] Olson RT,Liebman JS.Optimization of a chilled water plant using sequentialquadratic programming.Engineering Optimization,1990,15(3):171-191
    [169] Chow TT,Zhang GQ,Lin Z,et al.Global optimization of absorption chillersystem by genetic algorithm and neural network. Energy and Buildings,2002,34(1):103-109
    [170] Han KH, Kim JH. Genetic quantum algorithm and its application tocombinatorial optimization problem.In: Proc of Int Conf on EvolutionaryComputation. La Jolla,2000,2,1354-1360
    [171] Han KH,Kim JH.Quantum-inspired evolutionary algorithm for a class ofcombinatorial optimization.IEEE Transactions on Evolutionary Computation,2002,6(6):580-593
    [172] Talbi H,Draa A,Batouche M.A new quantum-inspired genetic algorithm forsolving the travelling salesman problem.In:Proc of Int Conf on IndustrialTechnology.Algeria,2004,3,1192-1197
    [173] Khorsand AR,Akbarzadeh-T MR.Quantum gate optimization in a meta-levelgenetic quantum algorithm.In:Proc of Int Conf on Systems, Man andCybernetics.Iran,2005,4,3055-3062
    [174]邢焕来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法.电子学报,2007,35(10):1999-2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700