加速器驱动次临界系统(ADS)堆芯冷却系统换热优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核能是解决当前能源问题的主要途径之一,具有技术成熟与燃料储量丰富两大优势,但同时也面临核废料处理难题。目前普遍采用的“一次通过”处理方法虽然简单,但却存在巨大的能源浪费,更为严重的是未经处理的核素将长期对人类社会和自然环境构成潜在威胁,而采用分离嬗变技术的加速器驱动次临界系统(ADS)可有效解决这一问题。堆芯冷却系统是ADS的重要组成部分,其冷却性能直接关系到ADS的安全性和经济性。该系统包括三个回路:铅铋合金回路(一回路)、氦气回路(二回路)以及冷却水回路(三回路)。其中铅铋合金为堆芯冷却剂,氦气回路实现热功转换,而冷却水主要是将余热带走,一、二回路之间通过主换热器换热,二、三回路之间通过冷却器换热。本文希望通过对该系统的换热过程进行优化研究,以获得提高冷却系统性能的方法。
     传统热力学分析将热源视为恒温(热容无穷大),没有考虑工质有限热容流率对系统性能的影响,使得优化结果存在一定局限性。为了考察工质有限热容流率对系统性能的影响,论文首先以传热系数和换热面积为无穷大的理想换热器(换热能力无穷大)为对象进行了研究,以排除换热器的换热能力对系统性能的影响。研究过程中将三个回路在温熵图上综合考虑,根据三者状态参数之间的关系,得到了理想换热器情况下系统性能参数的表达式,结果表明:三个回路的有限热容流率对系统性能有重要影响,并且当三个回路热容流率相等时系统性能最优。基于理想换热器研究结果,论文进一步对实际换热器(有限换热能力)进行了研究。实际换热器出口冷热流体存在有限温差,堆芯铅铋合金温度高于理想换热器的情况,此时三个回路在温熵图上的温度差别比理想换热器时大,通过求解该温差,获得了不同工况下工质有限热容流率、换热器有限传热系数以及有限换热面积对系统性能影响程度的统一表达式。
     由于换热器冷热流体之间的相互作用,恒壁温与恒热流边界条件下单流道对流换热的Nu数无量纲关联式不能完全适用于换热器,本文对此提出了一种求解Nu数的新方法,即温度场匹配法,提出依据如下:接触面上,冷热流体的温度场必然连续且热流相等,因此冷热流体的温度场存在内在的对应关系。为了确定温度场的具体形式及相应的Nu数,论文对指数型边界条件(考虑到换热器冷热流体温差沿流动方向呈指数规律变化)下单流道内的对流换热问题进行了研究,获得了不同指数项系数下的温度场及Nu数,根据温度场匹配思想进一步获得了冷热流体匹配参数(表示为热容流率与指数项系数的函数)的对应关系,从而确定了冷热流体的Nu数以及换热器的总Nu数(表示为冷热流体热容流率比与固有热阻比的函数)。为了证明温度场匹配法的可靠性,论文将采用温度场匹配法得到的恒壁温与恒热流边界条件下的Nu数分别与文献中的Nu数结果进行了对比,结果表明:采用温度场匹配法求解换热器的Nu是可行的,所得结果是可靠的。
     ADS冷却系统通过二回路实现热功转换,为了从做功角度对系统进行优化,论文对系统的不可逆性进行了研究。通过求解理想换热器顺、逆流时的熵增后发现:随着三个回路热容流率的变化,总传热不可逆熵增与系统循环效率均呈现出单调变化趋势且存在极限,表明以功量作为优化目标是可行的。优化过程中,选取换热器为板式结构且冷热流体为逆流换热,将循环总输出功与泵功的差值(即净输出功)作为优化目标,为了简化净输出功表达式,认为三个回路的热容流率相等。结果表明:不同约束条件下,存在最佳的回路热容流率和换热器流道尺寸,使得净输出功达到最大。在此基础上,进一步获得了回路热容流率和换热器流道尺寸两个参数给定其一情况下另外一个参数最优值的近似解析解,以及两个参数均为变量情况下最优参数的数值解。
     为了在反应堆总功率不变情况下进一步提升ADS系统的经济性,论文研究了热载荷对系统净效率(净输出功与热载荷的比值)的影响,为了使结论更具可比性,将约束条件限定为几何相似(换热器长宽比、宽高比及比表面积不变)与载荷相似(单位换热面积承担的热载荷不变)。研究结果显示:系统净效率随热载荷的增大单调下降,表明在单位换热面积承担热载荷不变的条件下,采用多套子系统并联的冷却方式比单套冷却系统更具经济性。在上述相似假设前提下,三个回路的最优热容流率与热载荷近似为幂函数关系,而换热器流道尺寸的最优值受热载荷影响较小,近似为常数。
     常规换热器优化过程中存在热阻与功耗“不同优”的问题,而基于系统的优化可以最大限度缓解这一矛盾。为了进一步提升系统性能,论文从部件层面对换热器结构进行了改进与优化,提出了一种热管型换热器的解决方案,并采用创新性提出的“热短路”分析模型对热管型换热器进行了研究,结果表明:热管型换热器可以显著降低热阻与功耗的“不同优”性,从而扩大系统整体性能的提升空间。
Owing to two advantages, i.e., mature technique and rich reserves of nuclear fuel, nuclear energy is one of the main ways to solve the present energy problem. However, it also faces the problem of nuclear waste disposal. The "once through" approach which is widely used currently is simple for operation, but causes huge waste of energy. The more serious consequence is that the untreated nuclides will pose a long-term potential threat to human society and natural environment. The Accelerator Driven Subcritical System (ADS) adopting the partition and transmutation techniques can solve this problem effectively. The core cooling system is part of ADS and plays a key role in ADS. Its cooling ability is directly related to the safety and economy of ADS. The core cooling system consists of three loops, i.e., the LBE loop (the first loop) with LBE as core coolant, the helium gas loop (the second loop) which turns thermal energy to power, and the cooling water loop (the third loop) which carries the waste heat out. The first loop exchanges heat with the second loops by the Main Heat Exchanger, and the Cooler is used for the heat exchange between the second and the third loops. In this thesis, the optimization of heat transfer in the core cooling system is conducted to improve the performance of the cooling system.
     For the traditional thermodynamic analysis, temperature of heat resource is regarded as constant (which means an infinite heat capacity), and the influence of finite heat capacity flow rates (HCFRs) of working fluids on system performance is neglected, which brings the limitations for the application of optimization results. In order to examine the effect of finite HCFRs on system performance, the ideal heat exchanger with infinite heat transfer coefficient and the heat transfer area (which means the infinite heat transfer ability) was explored so as to eliminate the influence of heat transfer ability of heat exchangers on system performance. The three loops were examined on the temperature-entropy diagram as a whole, and the expression for the system performance was obtained by analyzing the relationship among the status parameters of the three loops. The results show that the limited HCFRs of the three loops play important roles on the system performance, and the system achieves its best performance when the HCFRs of the three loops are equal. On this base, the real heat exchanger with the limited heat transfer ability was further explored. For real heat exchangers, there exists a finite temperature difference between cold and hot fluids at the outlet, so the temperature of LBE in the core is higher than that for ideal heat exchanger. The resultant temperature differences among the three loops are larger than that for ideal heat exchangers. Through calculating these temperature differences, the universal expression which describes the influence of such factors as finite HCFRs of the working fluids, finite heat transfer coefficient and finite heat transfer area on the system performance, was obtained for all working conditions.
     Because of the interaction between hot and cold fluids in heat exchanger, the correlations of Nu for convective heat transfer in single duct under such boundary conditions as constant wall temperature and heat flux are not fully applicable for heat exchangers, and a new method calculating Nu of heat exchanger, i.e., temperature-matching method, was proposed in this thesis. The basis of this method is that the temperature fields of hot and cold fluids have intrinsic relationship because they are continuous and the heat flux is equal on the contacting wall. In order to determine the forms of temperature fields and the corresponding Nu, the convective heat transfer problem in single duct with exponentially-varying boundary condition along the flow direction was explored by considering the fact that the temperature difference of hot and cold fluids varies exponentially along the flow direction, and the temperature fields and Nu for different exponential coefficients were obtained. According to the temperature-matching principle, the matching parameters of hot and cold fluids were obtained, which are the function of HCFR and the exponential coefficient. Thereby, the Nu of hot and cold fluids and the total Nu (the function of the ratio of HCFRs of hot and cold fluids and the ratio of the inherent thermal resistances) of heat exchanger were determined. In order to check the reliability of the temperature-matching method, the Nu calculated by the temperature-matching method under constant wall temperature and constant heat flux was compared with the data from the literature. The result shows that the temperature-matching method is feasible for calculating the Nu of heat exchangers.
     The core cooling system realizes the conversion of heat to work by means of its second loop, therefore the investigation on the irreversibility of the system was conducted to lay a foundation for the system optimization from the perspective of work production. By studying the entropy generation of the cases with ideal heat exchangers under parallel and counter flows, it is found that both the entropy generation caused by heat transfer irreversibility and the cycle efficiency monotonically varies with the HCFR of each loop and have limit value. This indicates that it is feasible to use work as the objective parameter of the system optimization. During the optimization process, the plate-type heat exchanger was chosen, and the relative flow pattern of hot and cold fluids is counter flow. In addition, the difference between the total work output and the bump work consumption, i.e., Net Work Output (NWO), was defined as the target parameter for the optimization. In order to simplify the expression of the Net Work Output, the HCFRs of the three loops are supposed to be equal. The result shows that, under different constraints, there are the optimal HCFRs for the loops and channel dimensions for heat exchanger, which brings the maximum Net Work Output. On this basis, the approximate analytical solution of the optimum value of the other parameter was obtained when one of such parameters as HCFR and channel thickness is given, as well as the numerical solutions of the optimal parameters when both HCFR and channel thickness are variable.
     In order to improve the economy of ADS with the constant reactor core heat power, the influence of heat load on the Net Efficiency (the ratio of NWO to heat load) of the system was explored. In order to make the results more comparable, geometric similarity (the ratios of length to width, the ratio of width to height, and the specific area for heat exchanger are constant) and load similarity (the heat load per unit area is constant) are regarded as the constraints. The result shows that the Net Efficiency monotonically decreases with the increasing heat load. This indicates that the cooling scheme with multiple parallel subsystems has better economy than that with only single cooling system under the constant heat load per unit area. Under the above constraints, the optimal HCFR of each loop approximately changes with power function of the heat load, and the optimal thickness of each channel is less affected by the heat load and keeps constant.
     The optimization of ordinary heat exchanger will be subjected to the problem of "non-synchronous behavior" between minimum heat resistance and minimum pump power consumption, and the optimization from the system level can release such contradiction. In order to further improve the system performance, the improvement and optimization was made for the structure of heat exchanger from the component level, and a scheme of heat-pipe-type heat exchanger was proposed. By adopting the innovatively proposed "thermally short-cut" model, the heat-pipe-type heat exchanger was analyzed. The results show that heat-pipe-type heat exchanger can significantly reduce the "non-synchronous behavior" between heat resistance and pump power consumption, and make the improvement space of the system performance be expanded.
引文
[1]夏海鸿,罗璋琳,赵志祥.加强ADS技术研究促进核能大规模可持续发展[J].现代物理知识,2011,23(4):44-51.
    [2]NEA. Uranium 2009:Resources, Production and Demand[M]. OECD,2010.
    [3]NEA. Uranium 2007:Resources, Production and Demand[M]. Paris:OECD/NEA,2008.
    [4]Bowman C, Arthur E, Lisowski P, et al. Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1992,320(1):336-367.
    [5]Abderrahim H A, Baeten P, De Bruyn D, et al. MYRRHA, a multipurpose hybrid research reactor for high-end applications [J]. Nuclear Physics News,2010,20(1):24-28.
    [6]叶奇蓁.后福岛时期我国核电的发展[J].中国电机工程学报,2012,23(11):1-8.
    [7]国家发展和改革委员会,核电中长期发展规划(2005~2020年)[R].北京,2007.
    [8]詹文龙,徐瑚珊.未来先进核裂变能——ADS嬗变系统[J].中国科学院院刊,2012,27(3):375-381.
    [9]赵志祥,夏海鸿.加速器驱动次临界系统(ADS)与核能可持续发展[J].中国核电,2009,2(03):202-211.
    [10]张生栋.长寿命裂变产物核素核数据测量进展[J].原子能科学技术,2006,40(2):1 99-205.
    [11]邱小平,谭健.我国核电站长寿命裂变产物及超铀核素累积量预测[J].核电子学与探测技术,2005,25(1):84-87.
    [12]徐晓勤.加速器驱动次临界系统嬗变少锕系核素[J].核动力工程,1998,19(2):188-192.
    [13]Medsker L. Nuclear data sheets for A= 99[J]. Nuclear Data Sheets,1974,12(4):431-475.
    [14]Katakura J, Kitao K. Nuclear data sheets for A= 126[J]. Nuclear Data Sheets,2002,97(3): 765-926.
    [15]Singh B. Nuclear Data Sheets for A= 79[J]. Nuclear Data Sheets,2002,96(1):1-176.
    [16]Baglin C M. Nuclear Data Sheets for A= 93[J]. Nuclear Data Sheets,1997,80(1):1-156.
    [17]Sergeenkov Y V, Singh B. Nuclear Data Sheets for A= 135 [J]. Nuclear Data Sheets,1998, 84(1):115-276.
    [18]Blachot J. Nuclear data sheets for A= 107[J]. Nuclear Data Sheets,1991,62(0):709-802.
    [19]Tendow Y. Nuclear Data Sheets for A= 129[J]. Nuclear Data Sheets,1996,77(4): 631-770.
    [20]胡平,赵福宇,严舟,等.快堆核燃料循环模式的经济性评价[J].核动力工程,2012,33(1):134-137.
    [21]Abderrahim H A, Galambos J, Gohar Y, et al. Accelerator and target technology for accelerator driven transmutation and energy production[Z]. DOE white paper on ADS, 2010.
    [22]Rubbia C, Rubio J, Buono S, et al., Conceptual design of a fast neutron operated high power energy amplifier [M]. European Organization for Nuclear Research,1995.
    [23]Takahashi H, Rief H. Concepts of accelerator based transmutation systems[C]// Proceedings of the Specialists'Meeting On Accelerator-Based Transmutation. Villingen, 1992:24-26.
    [24]Nakamura S, Ohta M, Harada H, et al. Thermal-neutron capture cross section and resonance integral of americium-241[J]. Journal of Nuclear Science and Technology, 2007,44(12):1500-1508.
    [25]胡赟.钠冷快堆嬗变研究[D].北京:清华大学,2009.
    [26]Sailor W C, Beard C A, Venneri F, et al. Comparison of accelerator-based with reactor-based nuclear waste transmutation schemes[J]. Progress in Nuclear Energy,1994, 28(4):359-390.
    [27]刘展.加速驱动次临界系统(ADS)原理验证装置的热工水力分析[D].上海:上海交通大学,2010.
    [28]周培德.MOX燃料模块快堆嬗变研究[D].北京:中国原子能科学研究院,2001.
    [29]Suzuki T, Chen X-N, Rineiski A, et al. Transient analyses for accelerator driven system PDS-XADS using the extended SIMMER-Ⅲ code[J]. Nucl Eng Des,2005,235(24): 2594-2611.
    [30]黄锦华,阳彦鑫.工业用铅冷加速器驱动次临界系统(ADS)初步概念设计[J].核科学与工程,2006,26(4):343-352.
    [31]万俊生,张颖,张利兴,等.ADS中子源散裂靶物理研究[J].计算物理,2003,20(5):408-412.
    [32]De Bruyn D, Larmignat S, Hune A W, et al. Accelerator Driven Systems for Transmutation:Main Design Achievements of the XT-ADS and EFIT Systems within the FP6 IP-EUROTRANS Integrated Project[C]//Proceedings of the ICAPP'10. San Diego, 2010:1808-1816.
    [33]Cinotti L, Gherardi G. The Pb-Bi cooled XADS status of development[J]. J Nucl Mater, 2002,301(1):8-14.
    [34]Cinotti L, Giraud B, Abderrahim H A. THE XADS DESIGNS IN THE 5TH FP[Z].2003.
    [35]Rubbia C. The energy amplifier[C]//Proceedings of the 8 th Journees Saturne. Saclay, 1994:115-123.
    [36]Rubbia C, Aleixandre J, Andriamonje S. A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration[M].2001.
    [37]Annex I. EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System, Project acronym:EUROTRANS[Z]. Contract no:FI6W-CT-2004-516520,2005.
    [38]Bianchi F, Artioli C, Burn K W, et al. Status and trend of core design activities for heavy metal cooled accelerator driven system[J]. Energ Convers Manage,2006,47(17): 2698-2709.
    [39]Zhang C, Klein H, Mader D, et al. From EUROTRANS to MAX:New Strategies and Approaches for the Injector Development[C]//Proceedings of the IPAC2011. San Sebastian,2011.
    [40]Abderrahim H A, D'hondt P. MYRRHA:A European Experimental ADS for R&D Applications Status at Mid-2005 and Prospective towards Implementation[J]. Journal of Nuclear Science and Technology,2007,44(3):491-498.
    [41]De Bruyn D, Maes D, Mansani L, et al. From MYRRHA to XT-ADS:the design evolution of an experimental ADS system[C]//Proceedings of the AccApp'07.2007: 848-854.
    [42]Biarrotte J, Mueller A, Klein H, et al. Accelerator reference design for the MYRRHA European ADS demonstrator[C]//Proceedings of the LINAC10.2010.
    [43]高宣.世界上第一座加速器驱动的核反应堆投入运行[J].现代物理知识,2012,24(3):63.
    [44]Soule R, Assal W, Chaussonnet P, et al. Neutronic studies in support of accelerator-driven systems:The MUSE experiments in the MASURCA facility[J]. Nuclear Science and Engineering,2004,148:124-152.
    [45]Bauer G S, Salvatores M, Heusener G. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target[J]. J Nucl Mater,2001,296(1-3):17-33.
    [46]Groeschel F, Fazio C, Knebel J, et al. The MEGAPIE 1 MW target in support to ADS development:status of R&D and design[J]. J Nucl Mater,2004,335(2):156-162.
    [47]Wagner W, Groschel F, Thomsen K, et al. MEGAPIE at SINQ-The first liquid metal target driven by a megawatt class proton beam[J]. J Nucl Mater,2008,377(1):12-16.
    [48]Mukaiyama T. OMEGA program in Japan and ADS development in JAERI[C]// Proceedings of the Third International Conference on Accelerator-DrivenTransmutation Technologies and Applications, ADTTA'99. Praha:1999.
    [49]Sasa T. Research activities for accelerator-driven transmutation system at JAERI[J]. Progress in Nuclear Energy,2005,47(1-4):314-326.
    [50]Mukaiyama T, Takizuka T, Mizumoto M, et al. Review of research and development of accelerator-driven system in Japan for transmutation of long-lived nuclides[J]. Progress in Nuclear Energy,2001,38(1-2):107-134.
    [51]Takano H, Nishihara K, Tsujimoto K, et al. Transmutation of long-lived radioactive waste based on double-strata concept[J]. Progress in Nuclear Energy,2000,37(1-4):371-376.
    [52]Murata H, Kuroi H. A proposed concept for actinide-waste transmutation[J]. Nuclear Technologies in Sustainable Energy System,1983,45.
    [53]Yamazaki Y. The JAERI-KEK Joint Project for the High-Intensity Proton Accelerator, J-PARC[C]//Proceedings of the Particle Accelerator Conference[C]. IEEE,2003: 576-580.
    [54]Kato Y, Katsuta H, Takizuka T, et al. Accelerator molten salt target system for transmutation of long lived nuclides[C]//Proceedings of the the OECD-NEA Specialists' Meeting on Accelerator-Based Transmutation. Wiirenlingen/Villigen,1992:24-26.
    [55]Sasa T, Takizuka T, Nishida T, et al. Conceptual design study of accelerator-based transmutation system with liquid tru-alloy target and molten-salt blanket[J]. Progress in Nuclear Energy,1995,29:319-325.
    [56]Tsujimoto K, Sasa T, Nishihara K, et al. Accelerator-driven system for transmutation of high-level waste[J]. Progress in Nuclear Energy,2000,37(1-4):339-344.
    [57]Takizuka T, Tsujimoto K, Sasa T, et al. Design study of lead-bismuth cooled ADS dedicated to nuclear waste transmutation [J]. Progress in Nuclear Energy,2002,40(3-4): 505-512.
    [58]Sasa T, Oigawa H, Tsujimoto K, et al. Research and development on accelerator-driven transmutation system at JAERI[J]. Nucl Eng Des,2004,230(1-3):209-222.
    [59]Venneri F, Williamson M, Li N, et al. Disposition of nuclear waste using sub-critical accelerator driven systems[C]//Proceedings of the Uranium Institute 25th Annual International Symposium.1998.
    [60]Venneri F. Accelerator-Driven Transmutation of Waste (ATW) Technical Review at MIT[R]. LANL Report, LA-UR-98-608,1998.
    [61]Bowman C D. Accelerator-driven systems for nuclear waste transmutation[J]. Annual Review of Nuclear and Particle Science,1998,48(1):505-556.
    [62]Technology N R C C O S, Systems T. Nuclear wastes:technologies for separations and transmutation[M]. National Academies Press,1996.
    [63]DOE, A Roadmap for Developing Accelerator Transmutation of Waste (ATW) Technology [R].1999.
    [64]Sheffield R L, Pitcher E J. ADS History in the USA[C]//Proceedings of the Applications of High Intensity Proton Accelerators-Proceedings of the Workshop. World Scientific Publishing Company,2010:60.
    [65]Cheng X, Cahalan J E, Finck P J. Safety analysis of an accelerator-driven test facility[J]. Nucl Eng Des,2004,29(2-3).
    [66]Naberezhnev D G, Gohar Y, Bailey J, et al. Physics analyses of an accelerator-driven sub-critical assembly [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2006,562(2): 841-844.
    [67]Park C, Ahn H, Choi B, et al. The KOMAC Project:Accelerator and Transmutation Project in Korea[C]//the KEK PROCEEDINGS. NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS,1998:319-322.
    [68]Park W S, Shin U, Han S-J, et al. HYPER (Hybrid Power Extraction Reactor):A system for clean nuclear energy [J]. Nucl Eng Des,2000,199(1-2):155-165.
    [69]Gokhale P A, Deokattey S, Kumar V. Accelerator driven systems (ADS) for energy production and waste transmutation:International trends in R&D[J]. Progress in Nuclear Energy,2006,48(2):91-102.
    [70]江绵恒,徐洪杰,戴志敏.未来先进核裂变能—-TMSR核能系统[J].中国科学院院刊,2012,27(3):366-374.
    [71]吴晓春,沈峰,刘兴民,等.启明星2#反应堆临界运行方式的堆芯物理方案初步研究[J].原子能科学技术,2011,45(2):186-189.
    [72]史永谦,夏普,罗璋琳,等.ADS次临界实验装置——启明星1#[J].原子能科学技术,2005,39(5):447-450.
    [73]曹健,史永谦,夏普,等.基于启明星1#的ADS嬗变研究[J].原子能科学技术,2012,46(10):1185-1188.
    [74]陈忠,陈艳,柏云清,等.加速器驱动核废料嬗变堆CLEAR中子学设计分析[C]//第五届反应堆物理与核材料学术研讨会、第二届核能软件自主化研讨会.中国重庆,2011:1.
    [75]柏云清,汪卫华,蒋洁琼,等.加速器驱动核废料嬗变堆CLEAR概念设计[C]//第五届反应堆物理与核材料学术研讨会、第二届核能软件自主化研讨会.中国重庆,2011:1.
    [76]朱志强,黄群英,高胜,等.高温液态合金回路研究进展[C]//第五届反应堆物理与核材料学术研讨会、第二届核能软件自主化研讨会.中国重庆,2011:1.
    [77]杨春光,严伟,王威,等.CLAM钢在600℃长期时效过程中的组织与性能变化[J].金属学报,2011,47(07):917-920.
    [78]刘静,黄群英,高胜,等.液态铅合金与先进核能反应堆候选结构材料浸润性实验研究[C]//第五届反应堆物理与核材料学术研讨会、第二届核能软件自主化研讨会.中国重庆,2011:1.
    [79]吴宜灿,黄群英,柏云清,等.液态铅铋回路设计研制与材料腐蚀实验初步研究[J].核科学与工程,2010,30(03):238-243.
    [80]Loewen E P, Tokuhiro A T. Status of research and development of the lead-alloy-cooled fast reactor[J]. Journal of nuclear science and technology,2003,40(8):614-627.
    [81]张尧立,崔鹏飞.加速器驱动的次临界系统散裂靶热工水力研究[J].原子能科学技术,2012,46(5):573-578.
    [82]Mikityuk K, Coddington P, Bubelis E, et al. Comparison of the transient behaviour of LBE-and gas-cooled experimental accelerator-driven systems[J]. Nucl Eng Des,2006, 236(23):2452-2473.
    [83]陈德明,舒杰,李戬洪,等.用于太阳热发电的铅-铋合会传热特性分析[J].动力工程,2008,(05):812-815.
    [84]Gromov B F, Belomitcev Y S, Yefimov E I, et al. Use of lead-bismuth coolant in nuclear reactors and accelerator-driven systems[J]. Nucl Eng Des,1997,173(1-3):207-217.
    [85]Ma W, Bubelis E, Karbojian A, et al. Transient experiments from the thermal-hydraulic ADS lead bismuth loop (TALL) and comparative TRAC/AAA analysis[J]. Nucl Eng Des, 2006,236(13):1422-1444.
    [86]Ma W, Karbojian A, Sehgal B R. Experimental study on natural circulation and its stability in a heavy liquid metal loop[J]. Nucl Eng Des,2007,237(15-17):1838-1847.
    [87]Roelofs F, De Jager B, Class A, et al. European research on HLM thermal-hydraulics for ADS applications[J]. J Nucl Mater,2008,376(3):401-404.
    [88]Ma W, Karbojian A, Sehgal B R, et al. Thermal-hydraulic performance of heavy liquid metal in straight-tube and U-tube heat exchangers [J]. Nucl Eng Des,2009,239(7): 1323-1330.
    [89]Abanades A, Pena A. Steady-state natural circulation analysis with computational fluid dynamic codes of a liquid metal-cooled accelerator driven system[J]. Nucl Eng Des,2009, 239(2):418-424.
    [90]Litfin K, Batta A, Class A G, et al. Investigation on heavy liquid metal cooling of ADS fuel pin assemblies[J]. J Nucl Mater,2011,415(3):425-432.
    [91]Theofanous T. The study of steam explosions in nuclear systems[J]. Nucl Eng Des,1995, 155(1):1-26.
    [92]Ciampichetti A, Agostini P, Benamati G, et al. LBE-water interaction in sub-critical reactors:First experimental and modelling results[J]. J Nucl Mater,2008,376(3): 418-423.
    [93]Ciampichetti A, Pellini D, Agostini P, et al. Experimental and computational investigation of LBE-water interaction in LIFUS 5 facility[J]. Nucl Eng Des,2009,239(11): 2468-2478.
    [94]Wang S, Flad M, Maschek W, et al. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling[J]. Progress in Nuclear Energy,2008, 50(2-6):363-369.
    [95]Bejan A. Entropy generation minimization [M]. Boca Raton:CRC PressI Lic,1996.
    [96]Bejan A. Entropy generation minimization:The new thermodynamics of finite-size devices and finite-time processes[J]. J Appl Phys,1996,79(3):1191-1218.
    [97]Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems[J]. Journal of Non-Equilibrium Thermodynamics,1999, 24(4):327-359.
    [98]Bejan A. Advanced engineering thermodynamics[M]. New York:Wiley,1997.
    [99]Bejan A. The equivalence of maximum power and minimum entropy generation rate in the optimization of power plants [J]. Journal of energy resources technology,1996,118(2): 98-101.
    [100]Bejan A. Models of power plants that generate minimum entropy while operating at maximum power[J]. American Journal of Physics,1996,64:1054-1059.
    [101]hin A Z. Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux[J]. Energy,1996,21(12):1179-1187.
    [102]Sahin A. Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature[J]. J Heat Transf,1998,120(1):76-83.
    [103]hin A. The effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux[J]. Heat Mass Transfer, 1999,35(6):499-506.
    [104]Sahin A Z. Entropy generation in turbulent liquid flow through a smooth duct subjected to constant wall temperature[J]. International Journal of Heat and Mass Transfer,2000, 43(8):1469-1478.
    [105]Mahmud S, Fraser R A. Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates[J]. Exergy, An International Journal,2002,2(3):140-146.
    [106]Mahmud S, Fraser R A. The second law analysis in fundamental convective heat transfer problems[J]. Int J Therm Sci,2003,42(2):177-186.
    [107]Sahin A Z. Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux[J]. Exergy, an International Journal,2002, 2(4):314-321.
    [108]Haddad O, Abuzaid M, Al-Nimr M. Entropy generation due to laminar incompressible forced convection flow through parallel-plates microchannel[J]. Entropy,2004,6(5): 413-426.
    [109]Ko T H, Ting K. Entropy generation and thermodynamic optimization of fully developed laminar convection in a helical coil[J]. International Communications in Heat and Mass Transfer,2005,32(1-2):214-223.
    [110]Ogulata R T, Doba F. Experiments and entropy generation minimization analysis of a cross-flow heat exchanger[J]. International Journal of Heat and Mass Transfer,1998, 41(2):373-381.
    [111]Guo J, Cheng L, Xu M. Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm [J]. Applied Thermal Engineering,2009, 29(14-15):2954-2960.
    [112]Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer,2007,50(13-14):2545-2556.
    [113]过增元,梁新刚,朱宏晔.火积—描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296.
    [114]程新广,李志信,过增元.基于最小热量传递势容耗散原理的导热优化[J].工程热物理学报,2003,24(1):94-96.
    [115]程新广,李志信,过增元.基于仿生优化的高效导热通道的构造[J].中国科学(E辑),2003,33(3):251-256.
    [116]程新广,孟继安,过增元.导热优化中的最小传递势容耗散与最小熵产[J].工程热物理学报,2005,26(6):1034-1036.
    [117]程新广.火积及其在传热优化中的应用[D].北京:清华大学,2004.
    [118]Liu X, Meng J, Guo Z. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization[J]. Chinese Sci Bull,2009,54(6):943-947.
    [119]程雪涛,梁新刚,过增元.孤立系统内传热过程的_火积_减原理[J].科学通报,2011,56(3):222-230.
    [120]程雪涛,梁新刚.微观状态数与可用火积的关系[J].科学通报,2012,57(14):1263-1269.
    [121]郭江峰.换热器的热力学分析与优化设计[D].济南:山东大学,2011.
    [122]郭江峰,程林,许明田.(火积)耗散数及其应用[J].科学通报,2009,54(19):2998-3002.
    [123]许明田,程林,郭江峰.(火积)耗散理论在换热器设计中的应用[J].工程热物理学报,2009,30(12):2090-2092.
    [124]Guo J F, Xu M T, Cheng L. Principle of equipartition of entransy dissipation for heat exchanger design[J]. Sci China Technol Sc,2010,53(5):1309-1314.
    [125]郭江峰,许明田,程林.换热量和换热面积给定时的火积耗散最小原则[J].科学通报,2010,55(32):3141-3146.
    [126]郭江峰,许明田,程林.基于(火积)耗散数最小的板翅式换热器优化设计[J].工程热物理学报,2011,32(05):827-831.
    [127]李孟寻,郭江峰,许明田,等.(火积)耗散理论在管壳式换热器优化设计中的应用[J].工程热物理学报,2010,31(07):1189-1192.
    [128]郭江峰,许明田,程林.换热器内随温度变化的黏度对两流体(火积)的影响[J].科学通报,2011,56(23):1934-1939.
    [129]Guo J F, Xu M T, Cheng L. The influence of viscous heating on the entransy in two-fluid heat exchangers[J]. Sci China Technol Sc,2011,54(5):1267-1274.
    [130]Guo J F, Xu M T, Cheng L. The entransy dissipation minimization principle under given heat duty and heat transfer area conditions[J]. Chinese Sci Bull,2011,56(19):2071-2076.
    [131]Guo J, Xu M. The application of entransy dissipation theory in optimization design of heat exchanger[J]. Applied Thermal Engineering,2012,36:227-235.
    [132]杨世铭,陶文铨.传热学[M].4版.北京:高等教育出版社,2008.
    [133]桂小红,闫润生,程言君,等.微型燃气轮机CW原表面回热器芯体内传热及阻力特性分析[J].热能动力工程,2011,26(5):518-522,628.
    [134]吴华新.空气-水介质板式换热器流动与传热特性研究[D].哈尔滨:哈尔滨工程大 学动力机械及工程,2009.
    [135]梁红侠,杜林秀,马挺,等.原表面回热器换热阻力实验特性研究[J].工程热物理学报,2009,30(12):2110-2112.
    [136]过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003,39(12):1-9.
    [137]过增元,李志信,周森泉,等.换热器中的温差场均匀性原则[J].中国科学(E),1996,26(1):25-31.
    [138]过增元.对流换热的物理机制及其控制速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [139]Guo J, Xu M, Cheng L. Numerical investigations of curved square channel from the viewpoint of field synergy principle[J]. International Journal of Heat and Mass Transfer, 2011,54(17-18):4148-4151.
    [140]苑中显,张建国,姜明健.变壁温管内对流换热场协同优化分析[J].中国科学(E辑),2004,34(9):1003-1010.
    [141]Wong K W, Hung Y M. Field synergy principle in forced convection of plane Couette-Poiseuille flows with effect of thermal asymmetry [J]. International Communications in Heat and Mass Transfer,2012,39(8):1181-1187.
    [142]Bejan A. Second law analysis in heat transfer[J], Energy,1980,5(8):720-732.
    [143]Xu M T, Guo J F, Cheng L. The application of entransy dissipation theory in heat convection[J]. Frontiers of Energy and Power Engineering in China,2009,3(4):402-405.
    [144]Salamon P, Hoffmann K H, Schubert S, et al. What conditions make minimum entropy production equivalent to maximum power production?[J]. Journal of Non-Equilibrium Thermodynamics,2001,26(1):73-83.
    [145]Kakac S, Shah R K, Aung W. Handbook of single-phase convective heat transfer[M]. New York:Wiley,1987.
    [146]Kays W M, Crawford M E, Weigand B.对流传热与传质:中文版[M].赵镇南,译.4版.北京:高等教育出版社,2007.
    [147]Sellars J R, Tribus M, Klein J S. Heat transfer to laminar flow in round tubes or flat conduit-The Graetz Problem extended[J]. Tran ASME,1956,78:441-448.
    [148]Hsu C J. Heat transfer in a round tube with sinusoidal wall heat flux distribution[J]. AIChE Journal,1965,11(4):690-695.
    [149]曾丹苓,敖越,张新铭,等.工程热力学[M].3版.北京:高等教育出版社,2002.
    [150]Sparrow E, Lin S. Turbulent heat transfer in a parallel-plate channel[J]. Intern J Heat Mass Transfer,1963,6:248-249.
    [151]Beavers G, Sparrow E, Lloyd J. Low Reynolds number turbulent flow in large aspect ratio rectangular ducts[J]. J Basic Eng,1971,93:296-299.
    [152]Dean R B. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow[J].1978,100:215-223.
    [153]Hrycak P, Andruskhiw R. Calculation of Critical Reynolds Number in Round Pipes and Infinite Channels and Heat Transfer in Transition Regions [J]. Heat Transfer,1974,2: 183-187.
    [154]Von Karman T. Turbulence and skin friction[J]. Aiaa J,2003,41(7):47-66.
    [155]Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[J]. Int chem eng,1976,16:359-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700