某款整车项目发动机舱热管理仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车发动机舱是个半封闭的空间,对温度场的要求特别高。一方面舱内各种材料的零件如橡胶件、线束对温度有一定的要求;另一方面发动机本身需要适当的散热,以保证在各种工况下都具有最佳的动力性和经济性。如何设计好汽车冷却系统是一项非常重要的工作。发动机舱内部零件众多,而且形状各异,很难用简单的公式进行处理。工程开发第一线的工程师,结合CFD仿真技术能够较真实地反映了发动机舱的真实情况,为项目的开发节省了大量开发成本、缩短了时间周期。
     本文是基于江铃汽车股份有限公司新款卡车的开发为背景,根据整车正向开发设计为要求,在分析标杆车型的基础上,运用商用软件POWERFLOW对发动机舱的散热特性和流程进行了仿真分析,并应用于实际工程开发。试验结果显示,仿真结果与实际数值非常接近,具有很高的参考价值。主要的研究内容如下:
     1)标杆车型冷却模块结构参数及性能分析,进行属性目标确定、标杆车型分析、零部件台架试验以及属性目标的分解;
     2)冷却模块匹配分析计算:结合传统理论计算、标杆对比以及布置分析,确定冷却模块零件系统开发尺寸及性能;
     3)POWERFLOW软件的参数设定和工程应用:结合工程和属性开发目标的要求,将相关工况及约束条件转化成边界条件进行输入分析,并对输出结果做分析和判断;
     4)发动机舱流场(速度场、压力场、温度场)分析:评估目标车型在基准工况下(环境温度45℃、2档、29kph时、发动机最大功率点)下,发动机舱流场特性和温度场性能,提出设计优化方案以满足工程目标;
     5)仿真结果与试验结果对比:依据CFD仿真完成的零部件系统的工程开发,通过大量的台架试验和整车环境模拟,试验证明仿真结果与试验结果的符合性。
Under-hood is a semi-enclosed space, high requirements on the temperature. one hand the cabin of various materials such as rubber parts, wiring harness on temperature has certain requirements; On the other hand the engine itself requires proper heat dissipation, to ensure that it has the optimal power and economy under the various conditions. The number of components in under-hood is large , and various shapes, it is difficult to use the simple formula for processing. Application of CFD software can save a lot of development cost, and shorten cycle time.
     This paper is based on the new trucks for the development of Jiangling Motors Corporation. By means of POWERFLOW software for engine cooling characteristics and flow simulation and analysis are carried out, and applied to the actual project development. Main content:
     1) a benchmark cooling module structure parameters and performance analysis, attribute the target, a benchmark model analysis, parts of benchmark test and properties of the target decomposition;
     2) cooling module matching analysis: a combination of traditional theoretical calculation, benchmarking and layout analysis, determine the cooling module parts dimensions and performance;
     3) POWERFLOW parameter setting and application in Engineering : Engineering development objectives, related conditions and constraints into boundary conditions for input and output analysis, making the analysis and judgments;
     4) velocity field, pressure field, temperature field analysis of evaluation models in the baseline conditions ( ambient temperature of 45 degrees, 2 gear, 29kph, power point ), the Under-hood temperature field flow field characteristics and performance, the optimized solutions to meet the project objectives;
     5) the simulation results compared with experiment results : Based on the CFD simulation ,finished parts development, through a large number of bench and vehicle environmental experiments, experiments prove that the simulation results and the experimental results of conformity
引文
[1]齐斌,倪计民,等.发动机热管理系统试验和仿真研究.车用发动机,2008,177(4):40~43.
    [2] Allen DA, LaseckiMP. Thermal management evolution and controlled coolant flow. SAE Paper 2001 - 01 - 1732
    [3] HnatczukW,LaseckiM P,Bishop J, et al. Parasitic loss reduction for 21 st century trucks. SAE Paper 2000 - 01 - 3423
    [4]杨世铭,陶文铨.传热学.北京:高等教育出版社, 1998
    [5] Martin W,Wambsganss. Thermal management concepts for higher -efficiency heavy vehicles. SAE Paper 1999 - 01 - 2240
    [6]李群科.发动机散热器的设计研究[J].发动机工程, 2001, 4: 66-69.
    [7] Stephane Avequin. A compact cooling system ( CCSTM ) : The key to meet future demands in heavy truck cooling. SAE Paper 2001 - 01 -1709
    [8] Mahmoud K G,Loibner E,et al. Simulation-Based Vehicle Thermal Management System Concept and Methodology.SAE Paper 2003-01-0276.
    [9] Allen D J,LaseckiMP. Thermal Management Evolution and Controlled Coolant Flow.SAE Paper 2001-01-1732.
    [10] Wambsganss M W. Thermal Management Concepts for Higher-Efficiency Heavy Vehicles.SAE Paper 1999-01-2240.
    [11] Ap N S,Tarquis M. Innovative Engine Cooling Systems Comparison.SAE Paper 2005-01-1378.
    [12] Page R W,Hnatczuk W,et al. Thermal Management for the 21st Century-Improved Thermal Control & Fuel Economy in an Army Medium Tactical Vehicle.SAE Paper 2005-01-2068.
    [13] Cortona E,Onder C H. Engine Thermal Management with Electric Cooling Pump.SAE Paper 2000-01-0965.
    [14] Valve in a Thermal Management Intelligent System(THEMISTM).SAE Paper 2003-01-0274.
    [15]孙新年,郭新民,等.装载机冷却系统控制装置设计与试验研究.内燃机学报,2008,26(2):188~191.
    [16]张钊,张扬军,诸葛伟林.发动机电控冷却系统性能仿真研究.汽车工程,2005,27(3):791~794.
    [17] Kobayashi H,Yoshimura K,et al. A Study on Dual Circuit Cooling for Higher Compression Ratio.SAE Paper 841294.
    [18] Finlay I C,Gallacher G R,et al. The Application of Precision Cooling to The Cylinder Head of A Small Automotive Petrol Engine.SAE Paper 880263.
    [19] Yang Z G,Bozeman J, et al. CFRM Concept for Vehicle Thermal System.SAE Paper 2002-01-1207.
    [20] Soldner J, ZobelW,et al.A Compact Cooling System(CCSTM):The Key to Meet Future Demands in Heavy Truck Cooling.SAE Paper 2001-01-1709.
    [21] Avequin S,Potier M,et al. Engine Cooling Multi-Exchanger.SAE Paper 2001-01-1749.
    [22] Choi U S,Yu W,et al. Nanofluids for Vehicle Thermal Management.SAE Paper 2001-01-1706.
    [23] Saripella S K,YuW,et al. Effects of Nanofluid Coolant in a Class Truck Engine.SAE Paper 2007-01-2141.
    [24] Nidia C, Gallego,Klett J. Carbon Foams for Thermal Management.Carbon,2003.Klett J,Ott R,et al.Heat Exchangers for Heavy Vehicles UtilizingHigh Thermal Conductivity Graphite Foams.SAE Paper 2000-01-2207.
    [25]杨胜.汽车热管理系统半物理仿真试验平台研究:[学位论文].北京:清华大学,2004.
    [26]谭建勋,沈瑜铭,等.工程机械热管理系统试验平台的开发.工程机械,2005(1):41~44.
    [27]梁乐华,高懿,等.应用热管理平台分析汽车冷却系统的参数和灵敏度.汽车科技,2008(2):45~48.
    [28]于秀敏,陈海波,等.发动机冷却系统中流动与传热问题数值模拟进展.机械工程学报,2008,44(10):162~167.
    [29] M aratosE J, A llan K, Rugg M D. Recognition Memory for Emotionally Negative and N eutralWords: an ERP Study[ J ]. Neuropsychology, 2000, 38: 1452 - 1465.
    [30] Olofsson JK, Nord in S, Sequ eiraH, et a.l Affective Picture Processing: an Integrative Review of ERP Findings [ J] . BiolPsychol, 2008, 77: 247- 265.
    [31] Kemeny A, Panerail F. Evaluating Percept ion in Driving Simulation Experiments[ J]. T rends Cogn. S c.i , 2003, 7 ( 1) : 31- 37.
    [32] Jan JL, AlbertusAW, Lam bertusJM, eta.l Color Selection and Location Selection in ERPs: Differences, Similarities and Neural Specificity [ J] . Biological Psychology,1998, 48: 153- 182.
    [33] [ J] . C lin. Neurophysiol 2007, 118: 2128- 2148.
    [34]陈群.车用柴油机冷却水套的计算流体力学的分析[D].长春:吉林大学,2003.
    [35] ETENMAD S., WALLESTEN J., STEIN C.F.,et al. CFD-Analysis of cycle averaged heat flux and engine cooling in an IC-engine[C]. SAE Paper 2005-01-0200.
    [36]夏兴兰,王胜利,陈大陆.计算流体力学在发动机冷却水套设计中的应用[J].现代车用动力,2006,4:7-12.
    [37]林宗虎,王树众,王栋.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2003,第一版:1-5.
    [38] TELLES A S , DUKLER A E. Industrial and engineering chemistry fundamentals. 1970, 9 :412-421.
    [39] LEVY S. International journal of heat and mass transfer, 1966 , 9 : 171-188.
    [40] ROBINSON K., CAMPBELL N.A.F., HAWLEY J.G., et al. A review of precision engine cooling[C]. SAE Paper 1999-01-0578.
    [41] ? ?刘运阁.汽车的热管理系统及其模块[J].汽车与技术, 2001, 5: 15-18.
    [42]屈盛官,夏伟,黄荣华,等.发动机气缸盖冷却水流动试验及CFD分析[J].华南理工大学学报(自然科学版),2004:32(8):42-46.
    [43] SHIH Stephen, ITANO Edwin, XIN Jun. Engine knock toughness improvement through water jacket optimization. SAE Paper 2003-01-3259.
    [44] YE Jian, COVEY Jim, AGNEW Daniel D. Coolant flow optimization in a racing cylinder block and head using CFD analysis and testing[C]. SAE Paper 2004-01-3542.
    [45] Martin W. Wambsganss Thermal Management Concepts for Higher-Efficiency Heavy Vehicles SAE:1999-01-2240
    [46] J. K. Wolfahrt Aspects of Cabin Fluid Dynamics, Heat Transfer, and Thermal Comfort in Vehicle Thermal Management Simulations SAE:2005-01-2000
    [47] David L. Hickman Diesel Particulate Filter Regeneration: Thermal Management Through Filter Design SAE:2000-01-2847
    [48] Elena Cortona and Christopher H. Onder Engine Thermal Management with Electric Cooling Pump SAE:2000-01-0965
    [49] Joel Martinez-Frias, Salvador M. Aceves, Daniel Flowers and J. Ray Smith HCCI Engine Control by Thermal Management SAE:2000-01-2869
    [50] Michel Lebrun Polymorphic Modeling Applied to Vehicle Thermal ManagementSAE:2000-01-0293
    [51] Linjie Huang Validation of 3-D Passenger Compartment Hot Soak and Cool-Down Analysis for Virtual Thermal Comfort Engineering SAE: 2002-01-1304
    [52] John R. Wagner, Mrudula C. Ghone and Darren W. Dawson Coolant Flow Control Strategies for Automotive Thermal Management Systems SAE:2002-01-0713
    [53] R. J. Parise Fuel Cell Thermal Management with MicroCoolers SAE:2002-01-1913
    [54] Edinilson Alves Costa CFD Approach on Underhood Thermal Management of Passanger Cars and Trucks SAE:2003-01-3577
    [55] Zhang Yangjun, Ouyang Minggao Mathematical Modeling of Vehicle Fuel Cell Power System Thermal Management SAE:2003-01-1146
    [56] Jeannine E. Elliott, Gokhan O. Alptekin and Robert Copeland Thermal Management Analysis for Sorbent based EVA Emergency System SAE 2003-01-2503
    [57] Daniel L. Vrable High Heat Flux Thermal Management for HPM Sources SAE:2004-01-3203
    [58] K. G. Mahmoud Integrated 1-D Tools for Modeling Vehicle Thermal Management System SAE:2004-01-3406
    [59] John F. Eberth and John R. Wagner Modeling and Validation of Automotive“Smart”Thermal Management System Architectures SAE:2004-01-0048
    [60] Robert D. Chalgren Jr. Thermal Comfort and Engine Warm-Up Optimization of a Low-Flow Advanced Thermal Management System SAE:2004-01-0047
    [61] T. Mahefkey, K. Yerkes and B. DonovanThermal Management Challenges For FutureMilitary Aircraft Power Systems SAE:2004-01-3204
    [62] Jeffry Ramsey Thermal Management Solutions to Advanced Integrated and Discrete Bipolar Junction (BJT) Device Structures SAE: 2004-01-2572
    [63] Roberto Cipollone and Carlo Villante A Fully Transient Model For Advanced Engine Thermal Management SAE: 2005-01-2059
    [64] J. K. Wolfahrt Aspects of Cabin Fluid Dynamics, Heat Transfer, and Thermal Comfort in Vehicle Thermal Management Simulations SAE: 2005-01-2000
    [65] J. Hager Fuel Cell Vehicle Thermal Management System Simulation in Contrast to Conventional Vehicle Concepts SAE: 2005-01-2050
    [66] David Glasscock, Ph.D. High Performance Polyamides in Demanding Automotive Thermal Management Applications SAE: 2005-01-4096
    [67] Robert D. Chalgren Jr. and David J. Allen Light Duty Diesel Advanced Thermal Management SAE: 2005-01-2020
    [68] C. Garnier, J. Bellettre and M. Tazerout Model Reduction for Automotive Engine to Enhance Thermal Management of European Modern Cars SAE: 2005-01-0700
    [69] W. Puntigam and T. H?rmann Thermal Management Simulations by Coupling of Different Software Packages to a Comprehensive System SAE: 2005-01-2061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700