Ti-3Al-2V表面激光熔覆Ti-BN涂层的微观组织及反应行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金较差的耐磨性能一直限制钛合金在苛刻摩擦领域的应用。采用激光熔覆的方法在钛合金的表面涂覆耐磨涂层,以其经济、高效、快捷而成为钛合金表面强化技术的重要手段之一。采用原位合成的陶瓷-金属基复合涂层以其优异的抗磨损性能而得到广发的开发和应用。目前,对激光熔覆原位合成陶瓷-金属基复合涂层的组织-工艺-性能之间关系的研究不系统,对原位合成的机理研究相对匮乏。因此采用激光熔覆Ti-BN体系,研究熔覆工艺-组织-性能之间相互作用关系,并探讨原位合成的原位反应机理,对采用激光熔覆方法原位合成陶瓷-金属基复合强化涂层有重要的理论意义和实际应用价值。
     研究了激光功率、激光扫描速度、送粉速度、Ti与BN粉末的摩尔比例和BN的粒度分布对组织相分布及形貌的影响。结果表明:在适宜的工艺参数条件下,获得了原位生长的TiB-TiN复合强化钛基涂层。获得的涂层与基体结合良好,无明显的气孔和裂纹。TiN呈等轴晶形貌;TiB呈针棒状组织形貌。当激光扫描速度为6mm/s情况下,随着激光功率的提高,熔覆层厚度、熔覆层的渗透深度、热影响区深度和熔覆宽度升高,而稀释率(γ)降低;熔覆层组织中TiN和TiB晶粒逐渐粗大,激光功率从600W→1000W→1400W→1800W功率变化时,TiB强化相变化呈现出未观测到明显相→细小絮状组织(尺寸大小约为15μm100nm)→尺寸不均匀针棒状组织(尺寸范围为15μm100nm∽20μm1μm)→尺寸均匀针棒状组织(尺寸大小约为20μm1μm)的变化规律。当激光功率为1400W,激光扫描速度从3mm/s增加至12mm/s过程中,随着激光扫描速度的增加,强化相尺寸减小。熔覆层顶部的TiB由均匀的针棒状组织(平均尺寸大小约为15μm2μm)→团聚的须状组织(尺寸范围10μm1μm~10μm500nm)+针棒状组织→须状组织(尺寸大小为10μm200nm)转变。由于获得的熔覆层组织存在较大的冷却速度差别,组织分布不均匀。送粉量对熔覆组织宏观形貌及显微组织影响不大。发现BN:Ti的比例对形成TiN和TiB的形貌及分布状态具有很大的影响。在BN含量较低的情况下(BN:Ti=1:16), TiN优先在晶内形核长大,TiB在晶界形核长大;随着BN含量的增多,TiB形核质点增多,当BN:Ti的摩尔计量比为1:4的情况下,TiB与TiN在熔覆层中均匀分布。B元素的含量对TiB的形核与长大起了重要的作用,当Ti与B满足TiB的化学计量比的情况下,发生了TiB的形核与长大。此外,细小粒度的BN作为原材料有利于获得均匀的熔覆组织;
     发现Ti-BN体系在BN摩尔含量含量低于20%条件下,激光熔覆Ti-BN体系的凝固过程与平衡凝固过程完全不同,原位合成形成的硼化物强化相为TiB,未发现TiB2相。提出Ti-BN体系激光熔覆快速凝固过程中的凝固过程:(Ⅰ)粗大的初生TiN形核长大;(Ⅱ)液相与初生的TiN发生包晶反应,形成α-Ti;(Ⅲ)初生的TiB形核长大;(Ⅳ)最后液相发生共晶反应形成TiB+β-Ti;(Ⅴ)β-Ti向α-Ti转变;
     分析了原位合成强化相TiN和TiB的组织特点及形成机理:原位合成的TiN为面心立方结构,点阵常数为a=0.4245nm,由于其界面能和原子结合能具有高度的各向同性的特点以及激光熔覆快速冷却的共同作用,导致形成的TiN为等轴晶形貌。在激光功率为1400W,扫描速度为6mm/s,BN:Ti=1:8条件下,针棒状TiB结构具有多样性,发现少量粗大的具有空心结构针棒状TiB,空心结构内部孔洞不规则,各处壁厚不均匀,为初生TiB;共晶的TiB呈现细小,实心的针棒状组织形貌。TiB为B27结构,点阵常数为α=0.628nm, b=0.312nm和c=0.461nm。TiB沿[010]方向生长速度最快,TiB的的堆垛层错面平行于(100)面。TiB可以以孪晶的方式形核和长大,原位合成TiB强化相与Ti之间为半共格关系。
     系统研究了工艺参数对原位反应机理类型选择的影响。在激光功率越高、激光扫描速度越慢、BN含量越少以及BN粒度越小的情况下,原位合成形成陶瓷强化相颗粒均匀、弥散,反应机制主要由溶解-析出机制控制;激光功率越低、激光扫描速度越快、BN含量越大以及BN粒度越大的情况下,原位合成形成陶瓷强化相分布不均匀,并且在熔覆层顶部易出现“花朵状”组织,反应机制主要由溶解-析出机制和扩散机制共同控制;当BN:Ti=1:4,BN粒度10μm~30μm的条件下,激光热输入大于64.8W h/m时,激光熔覆过程的反应机制为溶解-析出机制控制;激光热输入小于64.8W h/m时,反应机制为溶解-析出机制和扩散机制共同控制;
     研究激光熔覆条件下特征”花朵”形貌的形成机理。发现在Ti-3Al-2V基体上激光熔覆Ti-BN粉末沿激光入射方向存在明显组织差异。当激光功率较低、激光扫描速度快、BN含量高和BN粒度粗大的情况下,熔覆层中表层容易形成”花朵”状熔覆层组织,探索其形成机理如下:(1)Ti与BN发生液固-固反应,形成亚计量比的TiNx和TiBx,(2)Ti-BN反应过程中反应热量与输入的激光辐射能量共同作用促进了液相L的形成。(3)从BN上扩散出来的N和B原子进入到Ti的熔体中,在固相TiNx和TiBx表面异质形核形成TiN,TiN包围在TiNx和TiBx表面,并向熔体中排出B原子;(4)当Ti,B原子比例满足TiB的计量比的时候,形成了TiB或者是TiB和Ti的共晶体;
     采用激光熔覆Ti-BN体系获得原位合成的TiB和TiN复合强化的涂层具有良好的硬度和抗磨损性能。随着激光功率的提高、激光扫描速度的降低、BN含量的增加,熔覆层中强化相分布均匀化程度升高,强化相体积含量增高,熔覆层的硬度呈上升趋势,熔覆层的最高硬度可达到1250HV0.5,是母材的5倍;耐磨性能呈上升的趋势。在相同的时间内,熔覆层的磨损高度损失量不到母材的1/2。母材的磨损机制主要为疲劳磨损,而熔覆层金属的磨损主要由疲劳磨损和磨粒磨损共同作用,磨粒磨损占主体作用。
Poor wear performance of titanium and titanium alloy is the one of the main factorswhich restrict its widely used in some special field. Lase cladding on titanium alloybecome one of the important surface strenthening methods due to its economy, efficientand speedy. In situ synthesized ceramic particle reforced metal matrix composites iswidely used as the claddding layer because of its outstanding wear performance. However,researches on the relationship among microstructure-processing–properties are notsystematic, especially on the in-situ synethesized mechanism. Besides, rare repotres havebeen published on the Ti-BN system by laser cladding. Therefore, there is meaningful tohave a research on the relationship among microstructure-processing–properties, it canbe used to control microstures and properties and have further study on in-situ synthesizedmechanism.
     The effect of laser power, scanning speed, powder feeding rate, the ratio of BN to Tiand the grain size of BN on phases’ morphology and distribution have studied systemly.The results show below: at the proper cladding paramters, the cladding layers of TiN-TiBcomposite have been in-situ synthesized, the cladding layers have good metallurgicalconnection with substrate without obvious pores and cracks. In situ synthesized TiN wascompared with dendrite/equiaxed grains while and TiB exhibit needle platelet type. Withthe laser power increased, the cladding width, the thickness of clad layer, the penetrationdepth and the depth of HAZ increased, but the dilution rate decreased; the grain of TiNand TiB grew coarse. with the laser power changed as600W→1000W→1400W→1800W,the size of TiB phase alter as follow: undetected TiB→small whisker microstucture withsize of15μm100nm→unever needle microstructure with grain size range from15μm100nm to20μm1μm→uniform needle microstruct with size of20μm1μm. The grain size of synthesized become small with the scanning speed increased. With thescanning speed increased from smm/s to12mm/s, the microstrue of TiB at the top fieldvaried much: uniform needle microstructure with mean grain size of15μm2μm→agglomerated whisker with grain size range from10μm1μm to10μm
     500nm→mixed neele and whisker micrsture. The high scanning speed leads to unevermicrostructure becasued of high cooling speed. Powder feeding rate plays little role on themacrostructure and microstructure of phases. However, the ration of BN to Ti has greateffect on the microstructure and distrubituion of phases. The results shows that TiNnucleat and grow in the grain but TiB at the grain boundary at low BN content,; with BNcontent add the nucleated amount of TiB increased, TiB and TiN distribut uniformly in theclad layer with the ratio of BN to Ti being1:4. The content of B play an important role onthe crystal of TiB. Nucleation and growth of TiB depend on solubility of B satisfy to formTiB. Besides, BN with small size used as rwa material is benfit to synthesize uniformmicrostructure.
     The solidification of Ti-BN system is different with the equilibrium solidifactionprocess at the BN content of20%by laser cladding. TiB formed in the clad layer withoutTiB2. The solidifation process should be the follow:(Ⅰ)Precipitation of primary phaseTiN will nucleate from the liquid phase by the reaction of L→TiN and grow into thecoarse cellular or dendritic shape due to the high cooling rate and space to grow in theliquid alloy;(Ⅱ)Formation of the α-Ti by the peritectic reaction L+TiN→α-Ti at thesurface of TiN. Because of the limited react time and the difficulty of solid diffusion,core-shell structure of TiN-β-Ti formed;(Ⅲ)Primary phase TiB (phase (c) in Fig.3(b))will nucleate on the surface of TiN and grain boundary.(Ⅳ)Formation of the binaryeutectic of β-Ti and TiB(phase (d) in Fig.3(b)) as the temperature gradually reduces by thereaction of L→TiB+β-Ti.(Ⅴ)Formation of α-Ti. β-Ti will be transformed into α-Ti bythe allotropic transformation reaction β-Ti→α-Ti.
     The character and forming mechanism of in-situ synthesized TiB and TiN have beenanalysed systemly. In situ synthesized TiN is fcc structure with lattice constant beinga=0.4245nm. The high isotropic structure and high cooling speed of laser cladding lead to TiN with dendrite/equiaxed grains. Little coarse TiB shows needle platelet with hollowshape, and the hollow is not regular with different wall thickness. TiB is B27structurewith lattice constants beingα=0.628nm, b=0.312nm and c=0.461nm。TiB grow fast in thedirection of [010]and its stacking faults being (100). The eutectic TiB exhibit needleplatelet with small size. TiB can nucleated and grow with the twin csystal. In-situsynthesized TiB have semi-coherent relationship with Ti.
     Effect of the cladding parameters on the in-situ synthesized mechanism have beeninvestigated systemly.the higher laser power, lower scanning speed, fewer BN content andsmaller BN grain size, the acquired reforced ceramic partiles more uniform and dispersive,the main mechanism control by Dissolving-precipitation mechanism. In contrast, thelower laser power, higher scanning speed, more BN content and coarser BN grain size, theacquired reforced ceramic partiles distribute more unever and “flower” structure observedat the top area of cladding layers. The main mechanism is diffusion mechanism. When usesmall BN as the raw material, Dissolving-precipitation mechanism become the mainreaction mechanism at the laser power density bigger than64.8W·h/m. Otherwise, thediffusion mechanism become the main reaction mechanism at the laser poer densitysmaller than64.8W·h/m.
     The forming mechanism of special “flower” structure has been discussed.Microstructures of the cladding layer on the Ti-3Al-2V are vared much at different field.“flower” structure tends to formed at the following situations: low laser power, fastscanning speed, high BN content and coarse BN as raw material. The forming processtends to follow the way (1) forming equilibrium phases TiNx and TiBx betweenliquid/solid Ti and solid BN,(2) the heat relased during the reaction of Ti-BN and laserpower energe input make the solid to melt and form liquid,(3) atom B and N from BNdiffuse into the liquid Ti and form TiN at the surface of TiNx ndTiBx, atom B diffused intothe liquid. TiNx ndTiBx works as the nucleation of TiN,(4) TiB from as sigle phase oreutectic phase with Ti when the solubility of B satisfy to form TiB.
     In-situ synthesized TiB-TiN reinforced Ti based coating exhibited excellect hardnessand wear performance. With the laser power increase, scanning speed desease, BN content add, the distribution of reinforced particles in the cladding layer more uniform, the amoutincrease and the micohardness increased with the highest of1250HV0.5,which is fivetimes more than the substrate; at the same rotating wear time, the wear depth is less halfthan the substrate. The mian mechanism of the sbustrate is severe adhesive wearmechanism. However, the wear mechanism of cladding layer is a combination of adhesiveand abrasive wear characteristics, and the abrasive wear characteristic is the main wearmechanism.
引文
1. Zhao Y.Q., Research and development of some typical Ti-alloys in China inrencent5years. Materials China,2011.30: p.1-5.
    2. Deng C., Wang Y., Mang Y.P., et al., In situ laser coating of calcium phosphate onTC4surface for enhancing bioactivity. Journal of Iron and Steel Research International,2007.14(3): p.73-78.
    3. Lee C.S., Kim J.S., Choi C., et al., Research Progress of Advanced TitaniumAlloys in Korea. Advanced Performance Materials,1998.5(4): p.331-339.
    4. Gorsse S., Chaminade J.P. and Le Petitcorps Y., In situ preparation of titaniumbase composites reinforced by TiB single crystals using a powder metallurgy technique.Composites Part A: Applied Science and Manufacturing,1998.29(9-10): p.1229-1234.
    5. Kobayashi M., Funami K. and Ouchi C., Manufacturing process and mechanicalproperties of fine TiB dispersed Ti-6Al-4V alloy composites obtained by reactionsintering. Materials Science and Engineering A,1998. A243: p.279-284.
    6. Ni D.R., Geng L., Zhang J., et al., Effect of B4C particle size on microstructure ofin situ titanium matrix composites prepared by reactive processing of Ti-B4C system.Scripta Materialia,2006.55(5): p.429-432.
    7. Duby S., Soboyejo W.O. and Srivatsan T.S., Deformation and fracture propertiesof damage tolerant in-situ titanium matrix composites. Applied Composite Materials,1997.4(6): p.361-374.
    8. Soboyejo W.O., Lederich R.J. and Sastry S.M.L., Mechanical behavior of damagetolerant TiB whisker-reinforced in situ titanium matrix composites. Acta Metallurgica etMaterialia,1994.42(8): p.2579-2591.
    9. Rangarajan S., Aswath P.B. and Soboyejo W.O., Microsructure development andfracture of in-situ reinforced Ti-8.5Al-1B-1Si. Scripta Materialia,1996.35(2): p.239-245.
    10. Wen C. E., Kobayashi K., Sugiyama A., et al., Synthesis of nanocrystallite bymechanical alloying and in situ observation of their combustion phase transformation inAl3Ti. Jouranl of Materials Science,2000.35(8): p.2099-2105.
    11. Kim H. G., Formation and thermal properties of nanoscale Ti50Ni40Fe10produced by mechanical alloying. Journal of the Korean Physical Society,2012.60(3): p.472-476.
    12. Gu Y. W., Goi L. S., Jarfors A. E. W., et al., Structural evolution in Ti-Si alloysynthesized by mechanical alloying. Physica B: Condensed Matter,2004.352(1-4): p.299-304.
    13. Lu W., Zhang D., Zhang X., et al., Microstructural characterization of TiB in insitu synthesized titanium matrix composites prepared by common casting technique.Journal of Alloys and Compounds,2001.327(1-2): p.240-247.
    14. Yang Z., Lu W., Qin J., et al., Microstructure and tensile properties of in situsynthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature. MaterialsScience and Engineering: A,2006.425(1-2): p.185-191.
    15. Steen W. M. and Mazumder J., Laser Surface Treatment, Laser MaterialProcessing.2010, Springer London. p.295-347.
    16.Gnanamuthu D. S., Laser Surface Treatment American Society for Metals,1979p.177-211.
    17. Tian Y. S., Chen C. Z., Wang D.Y., et al., Laser surface modification of titaniumalloys-A review. Surface Review and Letters,2005.12(1): p.123-130.
    18. Tian Y. S. Chen C. Z., Li S. T. et al., Research progress on laser surfacemodification of titanium alloys. Applied Surface Science,2005.242(1-2): p.177-184.
    19. Chen Z., Zhou G. and Chen Z., Microstructure and hardness investigation of17-4PH stainless steel by laser quenching. Materials Science and Engineering: A.534(0):p.536-541.
    20. Pantelis D. I., Bouyiouri E., Kouloumbi N., et al., Wear and corrosion resistanceof laser surface hardened structural steel. Surface and Coatings Technology,2002.161(2-3): p.125-134.
    21. Wang H. G., Guan Y. H., Chen T. L., et al., A study of thermal stresses duringlaser quenching. Journal of Materials Processing Technology,1997.63(1-2): p.550-553.
    22. Dai Z. D., Pan S. C., Wang M., et al., Improving the fretting wear resistance oftitanium alloy by laser beam quenching. Wear,1997.213(1-2): p.135-139.
    23. Preece C. M. and Draper C. W., The effect of laser quenching the surfaces ofsteels on their cavitation erosion resistance. Wear,1981.67(3): p.321-328.
    24. Guan Y. H., Chen T. L., Wang H. G., et al., The prediction of the mechanicalproperties of metal during laser quenching. Journal of Materials Processing Technology,1997.63(1-3): p.614-617.
    25.戴振东,摩擦磨损过程的非平衡态热力学理论及其在表面改性设计中的应用.南京航空航天大学[博士论文],1999.
    26. Dai Z. D., Pan S. C., Wang M., et al., Improving fretting wear resistance oftitanium alloy th rough laser beam quenching. Wear,1997.213: p.135-139.
    27. Chikarakara E., Naher S. and Brabazon D., High speed laser surface modificationof Ti-6A-4V. Surface and Coatings Technology.206(14): p.3223-3229.
    28. Pan Q. Y., Huang W. D., Song R. G., et al., The improvement of localizedcorrosion resistance in sensitized stainless steel by laser surface remelting. Surface andCoatings Technology,1998.102(3): p.245-255.
    29. Sun Z., Annergren I., Pan D., et al., Effect of laser surface remelting on thecorrosion behavior of commercially pure titanium sheet. Materials Science andEngineering: A,2003.345(1-2): p.293-300.
    30. Grum J. and Slabe J. M., Effect of laser-remelting of surface cracks onmicrostructure and residual stresses in12Ni maraging steel. Applied Surface Science,2006.252(13): p.4486-4492.
    31. Song R. G., He W. Z. and Huang W. D., Effects of laser surface remelting onhydrogen permeation resistance of thermally-sprayed pure aluminum coatings. Surfaceand Coatings Technology,2000.130(1): p.20-23.
    32. Yue T. M., Yu J. K., Mei Z., et al., Excimer laser surface treatment of Ti-6Al-4Valloy for corrosion resistance enhancement. Materials Letters,2002.50: p.206-212.
    33. Folkes J. A., Laser surface melting and alloying of titanium alloys. PhD thesis,University of London,1985.
    34. Robinson J. M., Van Brussel B.A., De Hosson J.T.M., et al., X-ray measurementof residual stresses in laser surface melted Ti-6Al-4V alloy. Materials Science andEngineering: A,1996.208(1): p.143-147.
    35. Eiholzer E C. C., Mazumder J, Wear properties of laser alloyed Fe-Cr-Mn-Calloys. In: ICALEO'85proceedings,1985: p.8.
    36. Blake A M. J., Control of composition during laser welding of Al-Mg alloy usingplasma suppression technique In: ICALEO'82proceedings,1982: p.33-50.
    37. Gerdes C., Karimi A. and Bieler H.W., Water droplet erosion and microstructureof laser-nitrided Ti-6Al-4V. Wear,1995.186-187, Part2(0): p.368-374.
    38. Gy rgy E., Pérez del Pino A., Serra P., et al., Depth profiling characterisation ofthe surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen.Surface and Coatings Technology,2003.173(2-3): p.265-270.
    39. Shigematsu I., Nakamura M., Saitou N., et al., Surface hardening treatments ofpure titanium by carbon dioxide laser. Journal of Materials Science Letters,2000.19(11):p.967-970.
    40. Cui Z. D., Man H. C. and Yang X.J., Characterization of the laser gas nitridedsurface of NiTi shape memory alloy. Applied Surface Science,2003.208-209(0): p.388-393.
    41. Wu J. D., Wu C. Z., Zhong X. X., et al., Surface nitridation of transition metals bypulsed laser irradiation in gaseous nitrogen. Surface and Coatings Technology,1997.96(2-3): p.330-336.
    42. Zhecheva A., Microstrucutre and microhardness of gas nitrided surface layer inTi-8Al-1Mo-1V and Ti-10V-2Fe-3Al alloys. Surface Engineering,2005.21(4): p.269-278.
    43. Dutta Majumdar J., Weisheit A., Mordike B.L., et al., Laser surface alloying of Tiwith Si, Al and Si+Al for an improved oxidation resistance. Materials Science andEngineering: A,1999.266(1-2): p.123-134.
    44. Wang H. M. and Liu Y. F., Microstructure and wear resistance of laser cladTi5Si3/NiTi2intermetallic composite coating on titanium alloy. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2002.338(1-2): p.126-132.
    45. Chandrasekar P., Balusamy V., Chandran K.S.R., et al., Laser surface hardeningof titanium–titanium boride (Ti–TiB) metal matrix composite. Scripta Materialia,2007.56(7): p.641-644.
    46. Yang S., Zhong M. L., Zhang Q.M., et al., In situ formation of TiC particulatecomposite coating with a gradient distribution by laser cladding.20th Icaleo2001, Vols92&93, Congress Proceedings,2001: p.641-649.
    47. Molian P.A. and Hualun L., Laser cladding of Ti-6Al-4V with BN for improvedwear performance. Wear,1989.130: p.337-352.
    48. Senthil Selvan J., Harish Kumar K., A.K. Nath,, Ramachandra C., et al., Laserboronising of Ti–6Al–4V as a result of laser alloying with pre-placed BN. MaterialsScience and Engineering1999. A260: p.178-187.
    49. Pu Y.P.G., B. G.Zhou, J. S.Zhang, S. T.Zhou, H. D.Chen, J. M., Microstructureand tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti3Alintermetallic matrix composite coatings on pure Ti by laser cladding. Applied SurfaceScience,2008.255(5): p.2697-2703.
    50. Zhang S., Zhang C. H., Wu W. T., et al., Impact abrasive behavior of TiC/Ticomposite layer by laser cladding. Acta Metallurgica Sinica,2002.38(10): p.1100-1104.
    51. Langelier B.C. and Esmaeili S., In-situ laser-fabrication and characterization ofTiC-containing Ti-Co composite on pure Ti substrate. Journal of Alloys and Compounds,2009.482(1-2): p.246-252.
    52. Wang Y. F., Li G., Wang C. S., et al., Microstructure and properties of laser cladZr-based alloy coatings on Ti substrates. Surface&Coatings Technology,2004.176(3): p.284-289.
    53. Warren A. W., Guo Y. B. and Chen S. C., Massive parallel laser shock peening:Simulation, analysis, and validation. International Journal of Fatigue,2008.30(1): p.188-197.
    54. Peyre P., Fabbro R., Merrien P., et al., Laser shock processing of aluminiumalloys. Application to high cycle fatigue behaviour. Materials Science and Engineering: A,1996.210(7): p.102-113.
    55. Zhang X. C., Zhang Y. K., Lu J. Z., et al., Improvement of fatigue life ofTi-6Al-4V alloy by laser shock peening. Materials Science and Engineering: A.527(15): p.3411-3415.
    56. Hu Y. and Grandhi R. V., Efficient numerical prediction of residual stress anddeformation for large-scale laser shock processing using the eigenstrain methodology.Surface and Coatings Technology.206(15): p.3374-3385.
    57. Hu Y., Gong C., Yao Z., et al., Investigation on the non-homogeneity of residualstress field induced by laser shock peening. Surface and Coatings Technology,2009.203(23): p.3503-3508.
    58. Montross C. S., Wei T., Ye L., et al., Laser shock processing and its effects onmicrostructure and properties of metal alloys: A review. International Journal of Fatigue,2002.24(10): p.1021-1036.
    59. Hammersley G., Hackel L.A. and Harris F., Surface prestressing to improvefatigue strength of components by laser shot peening. Optics and Lasers in Engineering,2000.34(4-5): p.327-337.
    60. Cai L.F. Z., Y. Z. Shi, L. K., Microstructure and formation mechanism of titaniummatrix composites coating on Ti-6Al-4V by laser cladding. Rare Metals,2007.26(4): p.342-346.
    61. Cheng F.T., Lo K.H. and Man H.C., A preliminary study of laser cladding of AISI316stainless steel using preplaced NiTi wire. Materials Science and Engineering: A,2004.380(1-2): p.20-29.
    62. Savalani M. M., Ng C. C., Li Q. H., et al., In situ formation of titanium carbideusing titanium and carbon-nanotube powders by laser cladding. Applied Surface Science,2012.258(7): p.3173-3177.
    63. Iravani M., Khajepour A., Corbin S., et al., Pre-placed laser cladding of metalmatrix diamond composite on mild steel. Surface and Coatings Technology,2012.206(8-9): p.2089-2097.
    64. Zhang Q., He J., Liu W., et al., Microstructure characteristics of ZrC-reinforcedcomposite coating produced by laser cladding. Surface and Coatings Technology,2003.162(2-3): p.140-146.
    65. Dawei Z., Li T. and Lei T.C., Laser cladding of Ni–Cr3C2/(Ni+Cr) compositecoating. Surface and Coatings Technology,1998.110(1-2): p.81-85.
    66. Wu P., Du H. M. and Chen X. L., Influence of WC particle behavior on the wearresisitance properties of Ni-WC composite coatings. Wear,2004.257: p.142-147.
    67. Singh A. and Dahorte N. B., Laser in-situ synthesisi of mixed carbide coating onsteel. Journal of Materials Science,2004.39: p.4553-4560.
    68. Liu J. and Li L., Study on cross-section clad profile in coaxial single-passcladding with a low-power laser. Optics& Laser Technology,2005.37(6): p.478-482.
    69. Xu G., Kutsuna M., Liu Z., et al., Characteristic behaviours of clad layer by amulti-layer laser cladding with powder mixture of Stellite-6and tungsten carbide. Surfaceand Coatings Technology,2006.201(6): p.3385-3392.
    70. Wang W. F., Wang M. C., Jie Z., et al., Research on the microstructure and wearresistance of titanium alloy structural members repaired by laser cladding. Optics andLasers in Engineering,2008.46(11): p.810-816.
    71. Leunda J., Soriano C., Sanz C., et al., Laser Cladding of Vanadium-Carbide ToolSteels for Die Repair. Physics Procedia.12, Part A(0): p.345-352.
    72. Capello E., Colombo D. and Previtali B., Repairing of sintered tools using lasercladding by wire. Journal of Materials Processing Technology,2005.164-165(0): p.990-1000.
    73. Grum J. and Slabe J.M., A comparison of tool-repair methods using CO2lasersurfacing and arc surfacing. Applied Surface Science,2003.208-209(0): p.424-431.
    74. Sexton L., Lavin S., Byrne G., et al., Laser cladding of aerospace materials.Journal of Materials Processing Technology,2002.122(1): p.63-68.
    75. Leunda J., Soriano C., Sanz C., et al., Laser Cladding of Vanadium-Carbide ToolSteels for Die Repair. Physics Procedia,2011.12, Part A(0): p.345-352.
    76. Nowotny S., Scharek S., Beyer E., et al., Laser beam build-up welding: Precisionin repair, surface cladding, and direct3D metal deposition. Journal of Thermal SprayTechnology,2007.16(3): p.344-348.
    77. Lu Z. L., Li D. C., Lu B. H., et al., The prediction of the building precision in theLaser Engineered Net Shaping process using advanced networks. Optics and Lasers inEngineering.48(5): p.519-525.
    78. Santos E. C., Shiomi M., Osakada K., et al., Rapid manufacturing of metalcomponents by laser forming. International Journal of Machine Tools and Manufacture,2006.46(12-13): p.1459-1468.
    79. Dubourgl A. J., Technological and scientific landscape of laser cladding processin2007. Surface&Coatings Technology,2008.202(24): p.5863-5869.
    80. Li M. X., He Y. Z. and Sun G. X., Laser cladding Co-based alloy/SiCp compositecoatings on IF steel. Materials& Design,2004.25(4): p.355-358.
    81. Wong T. T., Liang G. Y., He B. L., et al., Wear resistance of laser-cladNi–Cr–B–Si alloy on aluminium alloy. Journal of Materials Processing Technology,2000.100(1-3): p.142-146.
    82. Huang S. W., Samandi M. and Brandt M., Abrasive wear performance andmicrostructure of laser clad WC/Ni layers. Wear,2004.256(11-12): p.1095-1105.
    83. Li Y., Bai P., Wang Y., et al., Effect of TiC content on Ni/TiC composites by directlaser fabrication. Materials& Design,2009.30(4): p.1409-1412.
    84. Przybylowicz J. and Kusinski J., Laser cladding and erosive wear ofCo–Mo–Cr–Si coatings. Surface and Coatings Technology,2000.125(1-3): p.13-18.
    85. Paul C.P., Alemohammad H., Toyserkani E., et al., Cladding of WC-12Co on lowcarbon steel using a pulsed Nd:YAG laser. Materials Science and Engineering: A,2007.464(1-2): p.170-176.
    86. Yan H., Wang A., Xu K., et al., Microstructure and interfacial evaluation ofCo-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding. Journal ofAlloys and Compounds.505(2): p.645-653.
    87. Zhang W., Research on Microstructure and Property of TiC-Co CompositeMaterial Made by Laser Cladding. Physics Procedia.25(0): p.205-208.
    88. Wulin S., Peidi Z. and Kun C., Effect of Ni content on cracking susceptibility andmicrostructure of laser-clad Fe-Cr-Ni-B-Si alloy. Surface and Coatings Technology,
    1996.80(3): p.279-282.
    89. Choi J. and Mazumder J., Non-equilibrium synthesis of Fe-Cr-C-W alloy by lasercladding. Journal of Materials Science,1994.29(17): p.4460-4476.
    90. Emamian A., Corbin S.F. and Khajepour A., Tribology characteristics of in-situlaser deposition of Fe-TiC. Surface and Coatings Technology.206(22): p.4495-4501.
    91. Emamian A., Alimardani M. and Khajepour A., Correlation between temperaturedistribution and in situ formed microstructure of Fe-SiC deposited on carbon steel usinglaser cladding. Applied Surface Science,2012.258(22): p.9025-9031.
    92. Emamian A., Corbin S.F. and Khajepour A., The influence of combined laserparameters on in-situ formed TiC morphology during laser cladding. Surface and CoatingsTechnology,2011.206(1): p.124-131.
    93. Meng Q., Geng L. and Ni D., Laser cladding NiCoCrAlY coating on Ti-6Al-4V.Materials Letters,2005.59(22): p.2774-2777.
    94. WangY., Li G., Wang C. et al., Microstructure and properties of laser cladZr-based alloy coatings on Ti substrates. Surface and Coatings Technology,2004.176: p.284-289.
    95. Kokini K., DeJonge J., Rangaraj S., et al., Thermal shock of functionally gradedthermal barrier coatings with similar thermal resistance. Surface and Coatings Technology,2002.154(2-3): p.223-231.
    96. Tian Y. S. Chen C. Z., Wang D. Y. et al, Microstructure and wear properties ofcomposite coatings produced by laser cladding of Ti-6Al-4V with graphite and siliconmixed powders. Surface Review and Letters,2005.12(2): p.161-165.
    97. Badini C., Bianco M. and Talentino S., Laser boronizing of some titanium alloys.Applied Surface Science1992.54: p.374-380.
    98. Zhang K. M., Zou J. X., Li J., et al., Surface modification of TC4Ti alloy by lasercladding with TiC+Ti powders. Transactions of Nonferrous Metals Society of China,2010.20(11): p.2192-2197.
    99. Man H. C., Zhang S., Cheng F. T., et al., Microstructure and formationmechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding.Scripta Materialia,2001.44(12): p.2801-2807.
    100. Hivart P. and Crampon J., Interfacial indentation test and adhesive fracturecharacteristics of plasma sprayed cermet Cr3C2/Ni-Cr coatings. Mechanics of Materials,2007.39(11): p.998-1005.
    101. Zhang J. B., Fang D., Zheng M., et al., Characterization of laser claddingWC-Ti composite coatings. Key Engineering Materials,2008.368-372: p.1316-1318.
    102. Zhou S., Dai X. and Zheng H., Analytical modeling and experimentalinvestigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings.Optics& Laser Technology,2011.43(3): p.613-621.
    103. Lou B.Y., Chen Z., Bai W. J., et al., Structure and erosion resistance ofNi60A/SiC coatting by laser cladding. Transactions of Nonferrous Metals Society ofChina,2006.16(3): p.643-646.
    104. Mei Z., Guo L.F. and Yue T.M., The effect of laser cladding on the corrosionresistance of magnesium ZK60/SiC composite. Journal of Materials ProcessingTechnology,2005.161(3): p.462-466.
    105. Man H. C., Zhang S., Cheng F. T. etal Microstructure and formationmechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding.Scripta mater,200144: p.2801-2807.
    106. Sun R. L., Lei Y. W. and Niu W., Laser clad TiC reinforced NiCrBSicomposite coatings on Ti-6Al-4V alloy using a CW CO2laser. Surface&CoatingsTechnology,2009.203(10-11): p.1395-1399.
    107. Sampedro J., Pérez I., Carcel B., et al., Laser Cladding of TiC for BetterTitanium Components. Physics Procedia,2011.12, Part A: p.313-322.
    108. Fan X. H., Geng L., Xu B., et al., Laser Cladding NiCrBSi+2%B(4)C Coatingon Ti-6Al-4V. Multi-Functional Materials and Structures Ii, Pts1and2,2009.79-82: p.473-476.
    109. Wang H.Y., Zuo D. W., Sun Y. L., et al., Microstructure of nanometer Al2O3dispersion strengthened Ni-based high-temperature protective coatings by laser cladding.Transactions of Nonferrous Metals Society of China,2009.19(3): p.586-591.
    110. Chen Y., Wu D., Ma G., et al., Coaxial laser cladding of Al2O3-13%TiO2powders on Ti-6Al-4V alloy. Surface and Coatings Technology,2012(0).
    111. Chien C. S., Chiao C. L., Hong T. F., et al., Synthesis and Characterization ofTiO2+HA Coatings on Ti-6Al-4V Substrates by Nd-YAG Laser Cladding13th International Conference on Biomedical Engineering, Magjarevic R, Editor.2009, Springer Berlin Heidelberg. p.1401-1404.
    112. Sun R. L., Niu W. and Wang C.Y., Microstructure and wear resistance ofTiN-NiCrBSi laser clad layer on titanium alloy surface. Rare Metal Materials andEngineering,2007.36(1): p.7-10.
    113. Man H. C., Zhang S., Cheng F. T., et al., In situ formation of a TiN/Ti metalmatrix composite gradient coating on NiTi by laser cladding and nitriding. Surface&Coatings Technology,2006.200(16-17): p.4961-4966.
    114. Sun R. L., Tang Y. and Yang X.J., Microstructure and tribological propertiesof in-situ synthesized TiB2-TiC/Ni based composite coating by laser cladding.14thCongress of International Federation for Heat Treatment and Surface Engineering, Vols1and2, Proceedings,2004: p.1000-1003.
    115. Kool B. J., Pei Y. T. and De Hosson J. T. M., The evolution of microstructurein a laser clad TiB-Ti composite coating. Acta materialia.,2003.51: p.831-845.
    116. Alhammad M. E., S. Toyserkani, E., Surface modification of Ti-6Al-4V alloyusing laser-assisted deposition of a Ti-Si compound. Surface&Coatings Technology,2008.203(1-2): p.1-8.
    117. Anandkumar R., Almeida A. and Vilar R., Wear behavior of Al-12Si/TiB2coatings produced by laser cladding. Surface and Coatings Technology.205(13-14): p.3824-3832.
    118. Zheng B. J., Chen X. M. and Lian J. S., Microstructure and wear property oflaser cladding Al+SiC powders on AZ91D magnesium alloy. Optics and Lasers inEngineering.48(5): p.526-532.
    119. Wang H. M. and Liu Y. F., Microstructure and wear resistance of laser cladTi5Si3/NiTi2intermetallic composite coating on titanium alloy. Mater. Sci. Eng. A,2002.338: p.126-132.
    120.李昂,王华明.,激光熔敷NiTi/Ni3Ti金属间化合物复合材料涂层组织及耐磨性.材料热处理学报,2006.27(5).
    121. Dong Y. J. and Wang H. M., Microstructure and dry sliding wear resistanceof laser clad TiC reinforced Ti-Ni-Si intermetallic composite coating. Surface&CoatingsTechnology,2009.204(5): p.731-735.
    122. Yang Y. L., Zhang D. and Yan W., Microstructure and wear properties ofTiCN/Ti coatings on titanium alloy by laser cladding Optics and Lasers in Engineering2010.48: p.119-124.
    123. Yang Y. L., Yan W., Zhang D., et al., In situ-fabrication of TiCN CeramicCoating on Titanium Alloy by Laser Cladding Technology. High-Performance CeramicsVi,2010.434-435: p.485-488
    124. Yang Y., Yao W. and Zhang H., Phase constituents and mechanical propertiesof laser in-situ synthesized TiCN/TiN composite coating on Ti-6Al-4V. Surface andCoatings Technology,2010.205(2): p.620-624.
    125. Sun R.L., Lei Y.W. and Niu W., Laser clad Cr3C2-Ni composite coating ontitanium alloys. Surface Engineering,2009.25(3): p.206-210.
    126. Sun R.L., Mao J.F. and Yang D.Z., Microscopic morphology and distributionof TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate. Surface&Coatings Technology,2002.155(2-3): p.203-207.
    127. Sun R.L., Yang D.Z. and Guo L.X., Microstructure and wear resistance ofNiCrBSi laser clad layer on titanium alloy substrate. Surface&Coatings Technology,2000.132(2-3): p.251-255.
    128. Ali Emamian S.F.C., Amir Khajepour, The Influence of combined laserparameters on in-situ formed TiC morphology during laser cladding. Surface&CoatingsTechnology,2011.
    129. Gotman I., Travitzky N.A. and Gutmanas E.Y., Dense in sity TiB2/TiN andTiB2/TiC ceramic matrix composites: reactive synthesis and properties. Mater. Sci. Eng. A,1998. A224: p.127-137.
    130. Udwadia K.K., Puszynski J.A. and Barrera E.V., In situ reactions forsynthesis of Composties, Ceramics and Intermetallics, TMS, Warrendale, PA.1995: p.59.
    131. Ashby M F. Materials Selection and Mechanical Design P., Oxford, MA,1992.
    132. Roj R., Fundamental Research in Structural Ceramics for Service Near2000°C. J. Am. Ceram. Soc,1993.76: p.2147-2174.
    133.肖代红,黄伯云,原位合成钛基复合材料的最新进展.粉末冶金技术,2008.26(3).
    134. Yang Y.L., Zhang D., Yan W., et al., Microstructure and wear properties ofTiCN/Ti coatings on titanium alloy by lasercladding. Optics and Lasers in Engineering,2010.48(1): p.119-124.
    135. Su Y.L., Yao S.H., Leu Z.L., et al., Comparison of tribological behavior ofthree films—TiN, TiCN and CrN—grown by physical vapor deposition. Wear,1997.213(1-2): p.165-174.
    136. Karlsson L., Hultman L., Johansson M.P., et al., Growth, microstructure, andmechanical properties of arc evaporated TiCxN1x (0≤x≤1) films. Surface and CoatingsTechnology,2000.126(1): p.1-14.
    137. Forn A., Picas J.A., Fuentes G.G., et al., Mechanical and tribologicalproperties of TiCxN1-x wear resistant coatings. International Journal of Refractory Metalsand Hard Materials,2001.19(4-6): p.507-513.
    138. Liu H.Z., Yao B., Wang L.H., et al., In situ formation of nanometer size TiCreinforcements in Ti matrix composites. Materials Letters,1996.27(4-5): p.183-186.
    139. Chong P., Man H. and Yue T., Microstructure and wear properties of lasersurface-cladded Mo-WC MMC on AA6061aluminum alloy. Surface and CoatingsTechnology,2001.145(1): p.51-59.
    140. Dubourg L., Ursescu D., Hlawka F., et al., Laser cladding of MMC coatingson aluminium substrate: influence of composition and microstructure on mechanicalproperties. Wear,2005.258(11): p.1745-1754.
    141. Cheng F., Kwok C. and Man H., Cavitation erosion resistance of stainlesssteel laser-clad with WC-reinforced MMC. Materials Letters,2002.57(4): p.969-974.
    142. Man H.C., Zhang S., Cheng F.T., et al., Microstructure and formationmechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser claddingScripta mater.,2001.
    143. Koczak M. and Premkumar M., Emerging technologies for the in-situproduction of MMCs. JOM Journal of the Minerals, Metals and Materials Society,1993.45(1): p.44-48.
    144. Cui C.Y., Guo Z. X., Wang H.Y., et al., In situ TiC particles reinforced greycast iron composite fabricated by laser cladding of Ni-Ti-C system. Journal of MaterialsProcessing Technology,2007.183(2-3): p.380-385.
    145. Wu X., In situ formation by laser cladding of a TiC composite coating with agradient distribution. Surface and Coatings Technology,1999.115(2): p.111-115.
    146. Li M., Huang J., Zhu Y.Y., et al., Effect of heat input on the microstructure ofin-situ synthesized TiN-TiB/Ti based composite coating by laser cladding. Surface andCoatings Technology,2012.206(19-20): p.4021-4026.
    147. Jendrzejewski R., Conde A., de Damborenea J., et al., Characterisation of thelaser-clad stellite layers for protective coatings. Materials& Design,2002.23(1): p.83-88.
    148.刘喜明连建设,张庆茂.,送粉激光熔覆界面特性及熔覆层稀释率.机械工程学报,2001.37(4): p.38-53.
    149. Kim J.D. and Peng Y., Melt pool shape and dilution of laser cladding withwire feeding. Journal of Materials Processing Technology,2000.104(3): p.284-293.
    150. Anthony T. R., Cline H. E., Surface rippling induced by surfacetensiongradients during laser surface melting and alloying. Journal of Applied Physic,1977.48: p.3888-3894.
    151. Chan C., Mazumder.J., Chen M. M.,‘‘Amodel for surface tension and drivenfluid flow in laser surface alloying, A model for surface tension driven fluid flow in lasersurface alloying Presented in the Lasers in Materials Processing,1983, ASM,150-157.
    152. Chande T. and Mazumder J., Composition control in laser surface alloying.Metallurgical and Materials Transactions B,1983.14(2): p.181-190.
    153. Tong X. C. and Fang H. S., Al-TiC composites in situ-processed by ingotmetallurgy and rapid solidification technolgy: Part1. Microstructural evolution.METALLURGICAL AND MATERIALS TRANSACTIONS A,1998.29(A)(3): p.875-891.
    154. Tong X. C. and Fang H. S., Al-TiC composites in situ-processed by ingotmetallurgy and rapid solidification technolpgy:Part2. Mechanical behaviour.METALLURGICAL AND MATERIALS TRANSACTIONS1998.19A(3): p.893-902.
    155. Petrov P. V., Laser surface alloying of aluminum with niobium Presented inthe Surface Modification Technologies VIII, Nice,1994, The Institute of Materials,345–353.
    156. Costa L. and Vilar R., Diffusion-limited layer growth in spherical geomery: Anumerical approach. J. Appl. Phys.,1996.80: p.4350-4353.
    157. Gilgien P. and Kurz W., Microstructure selection in binary and ternary alloys.Mater. Sci. Eng., A,1994.178: p.199-201.
    158. Gilgien P. and Kurz W., Microstructure and Phase Selection in Rapid LaserProcessing, in Laser Processing: Surface Treatment and Film Deposition edited by J.Mazumder et al,Kluwer Academic, Dordrecht.1996: p.77-92.
    159.胡汉起,金属凝固学原理[M].北京:机械工业出版社,2000.
    160. Kurz W. and Trivedi R., Banded solidification microstructures. Metall. Mater.Trans. A1996.27A: p.625-634.
    161. Kurz W. and R. T., Microstructure and phase selection in laser treatment ofmaterials. Trans. ASME, Ser. K,1992.114: p.450-458.
    162. Kurz W. and Trivedi R., Rapid solidification processing and microstructureformation. Mater. Sci. Eng., A1994. A179/180: p.46-51
    163. Zhao H.-y., Zhang H.-t., Xu C.-h., et al., Temperature and stress fields ofmulti-track laser cladding. Transactions of Nonferrous Metals Society of China,2009.19,Supplement2(0): p. s495-s501.
    164. Jendrzejewski R., liwiński. G., Krawczuk M., et al., Temperature and stressduring laser cladding of double-layer coatings. Surface and Coatings Technology,2006.201(6): p.3328-3334.
    165. Jendrzejewski R., liwiński G., Krawczuk M., et al., Temperature and stressfields induced during laser cladding. Computers& Structures,2004.82(7-8): p.653-658.
    166.唐仁正,物理冶金基础[M].冶金出版社,1997.
    167.叶大伦,胡建华,实用无机物热力学数据手册(第二版).冶金工业出版社,2002.
    168. Nowotny H., Benesovsky F., Brukland C., et al., Diedreistoffe:Titan-Bor-Kohlenstoffund Titan-Bor-Stickstoff. Monatshefte für Chemie/Chemical Monthly1961.92: p.403.
    169. Mollart T.P., Haupt J., Gilmore R., et al., Tribological behaviour ofhomogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2multilayer coatings. Surface andCoatings Technology,1996.86-87, Part1(0): p.231-236.
    170. Mollart T.P., Baker M., Haupt J., et al., Nanostructured titanium boron nitridecoatings of very high hardness. Surface and Coatings Technology,1995.74-75, Part1(0):p.491-496.
    171. Gissler W., Structure and properties of Ti-B-N coatings. Surface and CoatingsTechnology,1994.68-69(C): p.556-563.
    172. Mitterer C., Rauter M. and Rodhammer P., Sputter deposition of ultrahardcoatings within the system Ti-B-C-N. Surface and Coatings Technology,1990.41(3): p.351-363.
    173.战磊, Ni-Ti-C/B4C-BN体系燃烧合成反应行为与机制.吉林大学博士学位论文,2010.
    174. Ma X.Y., Li C.R. and Zhang W.J., Study on the phase diagram of the Ti–B–Nsystem and the interfacial reaction of the Ti/BN joints. Materials Science and engineeringA.,2005392: p.394-402.
    175. Brewer L. and Haraldsen H., The thermodynamic stability of refractoryborides. Journal of the Electrochemical Society,1955.102: p.399-406.
    176.吕维杰,原位合成钛基复合材料材料制备、微结构与力学性能.博士学位论文,2005.
    177. Fan Z. and Miodownik A.P., Microstructural evolution in rapidly solidifiedTi-7.5Mn-0.5B alloy. Acta Materialia,1996.44(1): p.93-110.
    178. Feng H., Zhou Y., Jia D., et al., Stacking faults formation mechanism of insitu synthesized TiB whiskers. Scripta Materialia,2006.55(8): p.667-670.
    179. Meng Q., Feng H., Chen G., et al., Defects formation of the in situ reactionsynthesized TiB whiskers. Journal of Crystal Growth,2009.311(6): p.1612-1615.
    180. Feng H., Zhou Y., Jia D., et al., Growth mechanism of in situ TiB whiskers inspark plasma sintered TiB/Ti metal matrix composites. Crystal Growth and Design,2006.6(7): p.1626-1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700