冷成型薄壁C型钢压弯构件滞回性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷成型薄壁钢构件可以加工成多种经济截面形式,受力性能较好,承载力较高,整体刚度较大,而且加工、制作简单,运输、安装方便,易于工业化,在轻钢龙骨体系住宅等结构中已被广泛采用。而目前冷成型钢构件的研究仅集中在弹性、静力荷载作用的范围内,对这类构件的滞回性能和抗震性能尚未深入研究。为了探索在抗震设防地区采用轻钢龙骨体系建造单层和多层住宅的适用性,对冷成型薄壁钢构件抗震性能进行研究具有重要的技术和经济意义。
     本文在国内外已有的研究成果基础上,采用有限元模型对冷成型薄壁钢构件在常轴力和循环弯矩共同作用下的滞回性能进行数值模拟。运用通用非线性有限元计算分析软件ABAQUS中考虑几何和材料非线性的九结点减缩积分薄壳单元S9R5,同时采用线性随动强化的材料本构关系考虑钢材包辛格效应以及冷加工效应等因素的影响建立有限元模型,并通过与已有理论和试验结果对比,验证了有限元模型的正确性。
     为研究普通C型钢在压弯循环荷载作用下的滞回性能,本文建立了常轴力、循环弯矩荷载下的C型钢构件有限元模型,分析了构件宽厚比和轴压比对冷成型薄壁C型钢构件滞回性能的影响规律,分析结果表明:宽厚比和轴压比对构件滞回性能影响显著,随着宽厚比的增加,构件承载、转动以及塑性变形能力降低;随着轴压比增加,构件的最大承载力降低,承载力退化;研究了此类构件在压弯循环荷载下的最终破坏形式;通过引入延性系数这一衡量标准对冷成型C型钢的抗震性能作出评价,并初步给出合理的设计建议。
     为解决普通C型钢宽厚比较大、滞回性能较差的缺点,本文首先对具有相同宽厚比的C型钢和加劲C型钢的滞回性能进行了比较,结果表明加劲可有效提高此类构件滞回性能;然后对具有中间加劲的C型钢在压弯循环荷载下的滞回性能、变形情况以及最终的破坏模式进行了深入分析;研究了加劲设置对构件性能的影响,得出了合理的加劲布置方式;利用延性系数对本文所计算的构件的抗震性能进行了评价,结果表明:通过加劲,绝大部分的C型钢都满足了延性要求;根据以上的分析结果,本文初步提出了具有中间加劲C型钢的宽厚比及轴压比限值,进而对冷成型薄壁钢构件的抗震设计提出了合理建议。
     本文研究表明:只要采取合理的措施,如限制构件宽厚比或设置中间加劲,就可以保证冷弯薄壁钢构件具有较好的抗震性能。这为以后进一步开展深入的理论和试验研究以及促进冷成型薄壁钢构件在抗震设防地区轻钢龙骨体系中的应用奠定了基础。
All kinds of economical cross-section configurations of the cold-formed thin-wall steel (CFS) members can be produced by cold-forming operations, and consequently favorable section shape can be obtained. Besides, CFS members can be prone to process, transport, install and industrialize. At present, CFS members have been widely utilized as principle structural members in low-rise light-gauge steel framed residences. However, research on CFS members is mainly focused on the range of elastic and static performance, and the hysteretic behavior of CFS members has not been researched deep. To explore the feasibility of light-gauge steel framed residences in seismic fortified areas, the researches for the hysteretic behavior of CFS members has great technical and economic significance.
     Based on the research results of domestic and overseas, the hysteretic behavior of CFS members under constant compression and cyclic bending is numerically simulated by finite element method. Through the finite element nonlinear analysis program ABAQUS, this paper uses S9R5 thin shell element and the linear kinematic hardening model for simulating geometric and material nonlinearities and Bauschinger effect, strain hardening and intensity increase at corner zone to establish the finite element models of CFS members under constant compression and cyclic bending, and utilizes existing theory and experiment results to verify the validity of the finite element models.
     To study the hysteretic behavior of CFS members under constant compression and cyclic bending, this paper establish the finite element models of cold-formed thin-wall C-section steel members under constant compression and cyclic bending, analyses the effect of the width-to-thickness ratio and the axial compressive ratio on the hysteretic behavior of the cold-formed steel members. Analytic results indicated that the width-thickness ratio and the axial compressive ratio affect the hysteretic behavior of the member evidently, as the increase of the width-thickness ratio, the resistance, rotation capacity and plastic deformation capacity decreases; then this paper research the final failure modes of this kind of member under the cyclic loading; by introduce the ductility coefficient to assess the aseismatic behavior of Cold-Formed C steel members, and some rational design suggestion are drawn initially.
     Since the width-to-thickness ratio of common C-section CFS members is large, so the hysteretic behavior of this member is bad. To solve the weakness of this member, this paper compare the hysteretic behavior between the C-section and intermediate stiffeners C-section member which has the same width-to-thickness ratio. The compare result show that setting intermediate stiffeners is a effective method to improve the hysteretic behavior of CFS member. Then the hysteretic behavior, deformed shape and the final failure modes of this
引文
[1-1] Yu Wei-Wen.[美].冷成型钢结构设计(第三版)[M].董军,夏冰青.北京:中国水利水电出版社,知识产权出版社,2002.12.
    [1-2] GB50018-2002.冷弯薄壁型钢结构技术规范[S].
    [1-3] 舒赣平,孟宪德,王培. 轻钢住宅结构体系及其应用[J]. 工业建筑,2001,Vol .31(8):1~4
    [1-4] Australian/New Zealand Standard, Cold-Formed Steel Structures, AS/NZS 4600:1996, Standards Australia, Sydney, Australia, 1996
    [1-5] Davies J M. Recent Research Advances in Cold-Formed Steel[J]. Journal of Constructional Steel structures Research. 2000, Vol.55 (2):267~288.
    [1-6] Yu W W. Structural Behavior of Thick Cold-Formed Steel Members[J]. Journal of the Structural Division.1974, Vol. 100 (11):2191~2204
    [1-7] Abdel-Rahman N, Sivakumaran K S. Material Properties Models for Analysis of Cold-Formed Steel Members[J]. Journal of Structural Engineering, 1997, Vol.123 (9):1135-1143.
    [1-8] 何保康,周天华.美国冷弯型钢结构的应用与研究情况[J]. 建筑结构, 2001,Vol.31 (8):58~60.
    [1-9] Weng G G. Effect of Residual Stress on Cold-Formed Steel Column Strength[J]. Journal of Structural Engineering.1991, Vol.117 (6):1622~1640.
    [1-10] Weng G G, Peokoz T B. Residual Stresses in Cold-Formed Steel Members[J].Journal of Structural Engineering. 1990, Vol.116 (6):1611~1625.
    [1-11] Weng G G, White R N. Residual Stresses in Cold-Bent Thick Steel Plates[J]. Journal of Structural Engineering. 1990, Vol. 116 (1):24~39.
    [1-12] 金昌成. 冷弯型钢的冷作强化及其利用.[J]. 建筑结构学报,1994,Vol.15 (2):43~51.
    [1-13] 郭彦林. 冷弯薄壁槽钢截面柱局部与整体相关屈曲.[J]. 建筑结构学报,1992, Vol.13 (1):53~59.
    [1-14] 郭彦林. 冷弯薄壁型钢柱局部与整体稳定相关作用的理论和试验研究.[J]. 土木工程学报,1991, Vol.24(1):23~31.
    [1-15] 郭彦林, 陈绍蕃. 冷弯薄壁槽钢短柱局部屈曲后相关作用的弹塑性分析. [J]. 土木工程学报,1990, Vol.23 (3):36~46.
    [1-16] 郭彦林. 冷弯薄壁槽钢柱相关屈曲的试验研究.[J]. 西北工业大学学报,1990, Vol.8 (2):159~165.
    [1-17] 郭彦林. 冷弯薄壁型钢柱局部与整体屈曲.[J]. 西安冶金建筑学院学报,1989,Vol.21 (2):75~81.
    [1-18] 周绪红等. 边缘加劲板件有效宽厚比设计方法中的板组效应研究.[J]. 建筑结构学报, 2002, Vol.23 (3):37~43.
    [1-19] 胡兆同,顾强. 循环荷载作用下偏心受压构件的滞回性能研究.[J]. 建筑结构,2002,Vol.32 (2):10~13.
    [1-20] 胡兆同,顾强. 循环荷载作用下压弯钢构件弹塑性弯扭屈曲的有限单元法.[J]. 西安公路交通大学学报,2002,Vol.21(2):38~40.
    [1-21] 郑宏,俞茂宏. 板件宽厚比对高层钢结构压弯构件滞回性能的影响.[J]. 东南大学学报,2003,Vol.33 (4):517~521.
    [1-22] 郑宏,俞茂宏. 循环荷载下钢压弯构件的长细比限值.[J]. 长安大学学报,2003,Vol.23 (4):28~33
    [1-23] 顾强,苏明周. 局部屈曲对方管截面柱拉压滞回性能的影响.[J]. 苏州城建环保学院院报,2002, Vol.15 (3):1~5.
    [1-24] 陈以一,周锋,陈城. 宽肢薄腹 H 形截面钢柱的滞回性能.[J]. 世界地震工程,2000,Vol.33 (5):13~18.
    [1-25] 唐扬,沈祖炎,陈以一. 冷弯薄壁焊接型钢轴心受压短柱的试验及分析.[J]. 结构工程师,1998,Vol.3:7~15.
    [1-26] 苏明周,顾强,宋振森. 箱形截面钢短柱在拉压循环荷载作用下的滞回性能和翼缘宽厚比限值.[J]. 土木工程学报,2000,Vol.33 (5):13~18.
    [1-27] 苏明周,顾强. 箱形截面钢压弯构件的滞回性能和板件宽厚比限值研究.[J]. 建筑结构学报,2000,Vol.21 (5):41~47.
    [1-28] 苏明周,顾强,郭兵. 箱形截面钢压弯构件受循环弯矩作用的试验研究和理论分析.[J]. 建筑结构学报,2001,Vol.22 (4):9~16.
    [1-29] Fukumoto Y, Kusama H. Local Instability Tests of Plate Elements Under Cyclic Uniaxial Loading.[J] . Journal of Structural Engineering.1985,Vol.111 (5):1051~1066.
    [1-30] Satish Kumar, Tsutomn Usami. An Evolutionary-Degrading Hysteretic Model For Thin-walled Steel Structures.[J]. Journal of Structural Engineering.1996,Vol.18 (7):504~514.
    [1-31] Chi-Ling Pan, Yu W W. The structural behavior of homogeneous and hybrid stub columns under dynamic loading conditions.[J]. Thin-walled structures,1998, Vol.31 (4):289~303.
    [1-32] Shigeru Banno, Iraj H P, Tsutornu Usami et al. Cyclic Elastoplastic Large Deflection Analysis of Thin Steel Plates.[J]. Journal of Engineering Mechanics,1998, Vol. 124 (4):363~370.
    [1-33] Lizhi Jiang, Yoshiaki Goto, Makoto Obata. Hysteretic Modeling of Thin-Walled Circular Steel Columns under Biaxial Bending.[J]. Journal of Structural Engineering. 2002, Vol.128 (3):319~327.
    [1-34] Yoshiaki Goto, Qingyun Wang, Makoto Obata, FEM Analysis for Hysteretic Behavior of Thin-Walled Columns[J], Journal of Structural Engineering. 1998, Vol.124 (11):1290~1301
    [1-35] Toneff J D, Stiemer S F, Osterrieder P. Local and Overall Buckling in Thin-Walled Beams and Columns.[J]. Journal of Structural Engineering. 1987,Vol.113 (4):769~786.
    [1-36] Mulligan G P, Peokoz T B. Local Buckling Interaction in Cold-Formed Columns.[J]. Journal of Structural Engineering. 1987, Vol.113(3):604~620.
    [1-37] Sivakumaran K S, Nabil Abdel-Rahman. A finite element analysis model for the behaviour of cold-formed steel members.[J]. Thin-Walled Structures. 1998,Vol.31 (4):305~324
    [1-38] Weng G G, Peokoz T B. Compression Tests of Cold-Formed Steel Columns.[J]. Journal of Structural Engineering, 1990, Vol.116 (5):1230~1246.
    [1-39] Fulop L A , Dubina D. Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading. Part I: Experimental research. [J]. Thin-Walled Structures, 2004, Vol.42 (2):321~338.
    [1-40] Fulop L A, Dubina D. Performance of wall-stud cold-formed shear panels under monotonic and cyclic loading Part II: Numerical modelling and performance analysis.[J]. Thin-Walled Structures, 2004, Vol.42 (2):339~349
    [1-41] Rasmussen K J R, Hancock G J. Buckling Analysis of Thin-Walled Structures: Numerical Developments and Applications.[J]. Progress in Structural Engineering and Materials, 2002,Vol.3 (2):359~368
    [1-42] Young B, Rasmussen K J R. Tests of fixed-ended plain channel columns.[J]. Journal of Structural Engineering, 1998,Vol.124 (2):131~139
    [1-43] Young B., Rasmussen, J.R.,Behaviour of cold-formed singly symmetric columns[J]. Thin-Walled Structures, 1999, Vol.33(2):83~102.
    [1-44] Shengbin Gao, Tsutomu Usami, Hanbin Ge. Eccentrically Loaded Steel Columns Under Cyclic In-plane Loading.[J]. Journal of Structural Engineering, 2000,Vol.126 (8):964~973
    [1-45] Yong B , Yan J T. Channel Columns Undergoing Local, Distortional and Overall Buckling.[J]. Journal of Structural Engineering, 2002, Vol.128(6):728~736.
    [1-46] Tsutomu Usami, Shengbin Gao, Hanbin Ge. Elastoplastic analysis of steel members and frames subjected to cyclic loading.[J]. Engineering Structures, 2000, Vol.22 (2):135~145.
    [1-47] Chou S M , Chai G B , Ling L. Finite element technique for design of stub columns.[J]. Thin-Walled Structures 2000, Vol.37 (2):97~112.
    [1-48] Yong B, Yan J T. Finite Element Analysis and Design of Fixed-Ended Plain Channel Columns.[J]. Finite Element Analysis and Design, 2002, Vol.38:549~566
    [1-49] Young B, Rasmussen K J R. Design of lipped channel columns.[J]. Journal of Structural Engineering, 1998, Vol.124 (2):131~139
    [1-50] Cheung Y K, Tham LG.. A review of the finite strip method.[J]. Progress in Structural Engineering and Materials, 2000,Vol.2 (3):369~375.
    [1-51] Goto Yoshiaki, ZhangChonghou. Localization of Buckling Patterns in Cylinders Under Cyclic Loading.[J]. Journal of Engineering Mechanics, 1998, Vol. 124(11):1249~1258
    [1-52] Bacmo S. Cyclic elastoplastic large deflection analysis of thin steel plates.[J]. Journal of Engineering Mechanics, 1998,Vol.124(4):363~370
    [1-53] 董永涛.单向荷载和循环荷载作用下钢板件及板组的屈曲后性能研究[D]. 哈尔滨:哈尔滨建筑科技大学,博士学位论文,1995
    [1-54] Hill K. Mathematical Theory of Plasticity[M]. Oxford: Oxford University,1950
    [1-55] Ishlinsky I. General Theory of Plasticity With Linear Strain Hardening.[J]. Ukrainian mathematical zhurnal, 1956, Vol.6:314~324.
    [1-56] Prager W. The Theory of Plasticity: A Survey of Recent Achievement.[J]. Proc. of Mechanical Engineering, 1955, Vol.169: 41~57.
    [1-57] Ziegler H. A Modification of Prager's Hardening Rulep.[J]. Quarterly of Applied Mathematics, 1959, Vol.17:55~65.
    [1-58] Hodge P G. A New Method of Analyzing Stresses and Strain in Work-Hardening Plastic Solids[J]. Journal of Applied Mechanics, 1956.
    [1-59] Kaxelsson, Samuelsson A. Finite Element Analysis of Elasto-Plastic Materials Displaying Mixed Hardening.[J]. J.num. Meth.Eng., 1979, Vol.14:211~225.
    
    
    [2-1] ABAQUS Analysis User's Manual, V6.4 [M], ABAQUS Inc. 2003.
    [2-2] 庄茁.ABAQUS 非线性有限元分析与实例[M].北京:清华大学出版社.2005
    [2-3] 王勖成.有限单元法[M]. 北京:清华大学出版社,2003
    
    [3-1] Yu Wei-Wen.[美].冷成型钢结构设计(第三版)[M].董军,夏冰青.北京:中国水利水电出版社,知识产权出版社,2002.12.
    [3-2] 周绪红,莫涛,周期石 等.边缘加劲板件有效宽厚比设计方法中的板组效应研究[J].建 筑结构学报,2002,23(3):37~43.
    [3-3] GB50018-2002.冷弯薄壁型钢结构技术规范[S].
    [3-4] BS5950.Structural Use of Steelwork in Building,Part 5 Code of Practice for Design of Cold-formed Sections[S].
    [3-5] 陈绍蕃.卷边槽钢的局部相关屈曲和畸变屈曲[J].建筑结构学报,2002,Vol 23(1):27~31
    [3-6] 陈绍蕃.冷弯型钢板件相关屈曲和极限承载力[J].建筑钢结构进展,2002,Vol 4(1):3~6
    [3-7] Von Karman T, Sechler E E, Donnell L H. The Strength of Thin Plates in Compression[J]. Transactions ASME, 1932, Vol 54.
    [3-8] AISI. North American Specification for the Design of Cold-Formed Steel Structural Members[S]. [3-9] AS/NZS 4600. Cold-Formed Steel Structures[S]. 1996.
    [3-10] ABAQUS Analysis User's Manual, V6.4 [M], ABAQUS Inc. 2003.
    [3-11] 苏明周,顾强. 箱形截面钢压弯构件的滞回性能和板件宽厚比限值研究[J]. 建筑结构学报,2000,Vol.21 (5):41~47.
    [3-12] 王勖成.有限单元法[M]. 北京:清华大学出版社,2003
    [3-13] 申林.高层结构钢支撑滞回性能分析及抗震设计对策[D].西安:西安建筑科技大学,2000.11.
    [3-14] 胡兆同.压弯钢构件在循环荷载作用下的非线性弯扭相关屈曲[D].西安:西安建筑科技大学,2001.
    [3-15] Shigeru Banno, Iraj H P, Mamaghani. Cyclic Elastoplastic Large Deflection Analysis of Thin Steel Plates[J]. Journal of Engineering Mechanics, 1998, Vol 124(4):363~370.
    [3-16] Yoshiaki Goto, Qingyun Wang, Makoto Obata. FEM Analysis for Hysteretic Behavior of Thin-Walled Columns[J]. Journal of Structural Engineering , 1998, Vol 124(11): 1290~1301.
    [3-17] Alper Ucak, Panos Tsopelas. A New Innovative Design Concept:Thin-Walled Corrugated Steel Columns[A]. Weiqing liu Fuh-Gwo Yuan and Peter C.Chang. Proceedings of the 3rd International Conference on Earthquake Engineering[C]. Nanjing P.R.China: Intellectual Property Publishing House and China Water Power Press: 2004.566~571.
    [3-18] Dong Jun, Wang Shiqi, Zhang Xuejiao. Finite Element Analysis for the Hysteretic Behavior of Cold-Formed Thin-Wall Steel Members Under Cyclic Uniaxial Loading[A]. Weiqing liu Fuh-Gwo Yuan and Peter C.Chang. Proceedings of the 3rd International Conference on Earthquake Engineering[C]. Nanjing P.R.China: Intellectual Property Publishing House and China Water Power Press: 2004.397~405.
    [3-19] 杨娜.变截面门式刚架结构的整体稳定性及其构件相关屈曲性能的研究[D].哈尔:哈尔滨工业大学,2001.
    [3-20] 金昌成.冷弯型钢的冷作强化及其利用[J].建筑结构学报,1994,Vol 15(2):43~51.
    [3-21] Canadian Standards Association S136 - Specification for Cold Formed Steel Structural Members[S], 1994.
    [3-22] EC3, ENV 1993-1-3, Design of Steel Structures, Part 1.3: Supplementary Rules for old-Formed Thin Gauge Members and Sheeting [S], 1996.
    [3-23] 王士奇,孙彤.冷成型钢冷作强化计算方法探讨[J].钢结构,2005,Vol 20(1):71~74.
    [3-24] Yong Ben, Yan Jintang. Finite Element Analysis and Design of Fixed-Ended Plain Channel Columns[J]. Finite Element Analysis and Design, 2002, Vol 38:549~566.
    [3-25] Abdel-Rahman N, Sivakumaran K S. A Finite Element Analysis Model for the Behavior of Cold-Formed Steel Members[J]. Thin-walled Structures, 1998, Vol 31:305~324.
    [3-26] 唐扬,沈祖炎,陈以一.冷弯薄壁焊接型钢轴心受压短柱的试验和分析[J].结构工程师,1998.3,Vol .3:7~14.
    [3-27] 陈以一,周锋,陈城. 宽肢薄腹 H 形截面钢柱的滞回性能[J]. 世界地震工程,2000,Vol.33 (5):13~18.
    [3-28] Tsutomu Usami, Shengbin Gao, Hanbin Ge. Elastoplastic analysis of steel members and frames subjected to cyclic loading[J]. Engineering Structures, 2000, Vol.22 (2):135~145.
    [4-1] AISI. North American Specification for the Design of Cold-Formed Steel Structural Members [S].2001.
    [4-2] BS5950.Structural Use o f Steelwork in Building,Part 5 Code of Practice for Design of Cold-formed Sections[S], 1998.
    [4-3] GB50018-2002.冷弯薄壁型钢结构技术规范[S].
    [4-4] Abdel-Rahman N, Sivakumaran KS. A Finite Element Analysis Model for the Behavior of Cold-Formed Steel Members[J]. Thin-walled Structures, 1998, Vol31:305~324.
    [4-5] 唐扬,沈祖炎,陈以一. 冷弯薄壁焊接型钢轴心受压短柱的试验及分析.[J]. 结构工程师,1998,Vol.3:7~15.
    [4-6] 陆曦,王士奇. 冷成型钢压弯构件滞回性能的有限元分析[A]. 第三届全国土木工程研究生学术论坛论文集[C],哈尔滨:哈尔滨工业大学,2005.8.269~274
    [4-7] 申林.高层结构钢支撑滞回性能分析及抗震设计对策[D].西安:西安建筑科技大学,2000.11.
    [4-8] 苏明周,顾强. 箱形截面钢压弯构件的滞回性能和板件宽厚比限值研究[J]. 建筑结构学报,2000,Vol.21 (5):41~47.
    [4-9] Yong Ben, Yan Jintang. Finite Element Analysis and Design of Fixed-Ended Plain Channel Columns[J]. Finite Element Analysis and Design, 2002, Vol.38:549~566.
    [4-10] Shigeru Banno, Iraj H P, Mamaghani. et al, Cyclic Elastoplastic Large Deflection Analysis of Thin Steel Plates[J]. Journal of Engineering Mechanics, 1998, Vol.124(4):363~370.
    [4-11] Iraj N P, Mamaghani, Usami T. et al, Ineastic Large Deflection Analysis of Structural Steel Members under Cyclic Loading[J]. Engineering Structures, 1996, Vol.18(9):659~668.
    [4-12] 周锋.宽肢薄腹钢柱滞回性能的试验研究与数值分析[D].上海:同济大学,2002
    [4-13] 韩林海,陶忠.方钢管混凝土柱的延性系数[J].地震工程与工程震动,2000,Vol.20 (4):56~65
    [5-1] 申林.高层结构钢支撑滞回性能分析及抗震设计对策[D].西安:西安建筑科技大学,2000.11.
    [5-2] 苏明周,顾强. 箱形截面钢压弯构件的滞回性能和板件宽厚比限值研究[J]. 建筑结构学报,2000,Vol.21 (5):41~47.
    [5-3] Yu Wei-Wen.[美].冷成型钢结构设计(第三版),董军,夏冰青.北京:中国水利水电出版社,知识产权出版社,2002.12.
    [5-4] Jun Dong,Shiqi Wang, Lu Xi. Analysis of Hysteretic Behavior of Cold-Formed Thin-Wall C Steel Members[J],International Journal of Advanced Steel Construction.(已录用)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700