三维模型检索的特征描述和相关性反馈算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在基于内容的三维模型检索领域,特征描述算法和相关性反馈算法是其关键技术。虽然特征描述算法能够提取不同的底层特征信息,但是在模型特征提取过程中存在不少亟待解决的问题。三维模型相关性反馈算法虽然能获取用户的语义知识,提高检索效果,但普遍存在样本筛选等问题。针对上述问题,本文进行了深入的研究。
     论文工作包括:
     1.提出了一种基于形状视觉的三维模型特征描述算法MATE。首先给出了一种改进的PCA方法;然后提出了一种等角距的傅立叶描述算子;接着介绍了一种改进的深度缓存算子;最后合成三种不同的算子形成MATE算法。与现有六种特征描述算法相比,MATE算法不仅在多种标准评价方式下获得很好的检索效果,而且还较好地处理了检索性能与特征维度之间的权衡问题。
     2.给出了一种基于先验知识的特征向量合成算法。利用查询模型计算各种特征向量的先验知识,然后动态地分配不同特征向量的权重合成一种特征向量。实验结果表明该算法能较好地利用各种特征向量的不同优势,其检索性能明显优于现有的两种三维模型特征向量选择算法和特征向量合成算法。
     3.提出了一种基于多层次的三维模型相关性反馈算法。采用多种特征向量描述模型不同底层特征信息的特点,并准确获取用户的检索需求。实验结果表明该算法能较快缩小用户高层语义知识与模型底层特征信息之间的差距,显著提高了三维模型的检索效果。与现有算法相比,该算法在多种标准评价方式下都具有明显的优势,仅用两轮相关性反馈就能获得较好的检索效果。
     4.建立了一种基于长期学习机制的SVM active learning相关性反馈算法。采用主动学习机制返回最具信息量模型,保存用户对所有模型的检索记录和标注信息,并利用拉普拉斯特征映射法挖掘历史检索过程中隐藏在模型之间的语义知识,最终实现模型在语义空间进行相似度匹配检索。与现有几种三维模型相关性反馈算法相比,该算法不仅能准确获取用户的语义知识,而且还能显著提高检索效果,仅通过一至两轮相关性反馈就能获得非常理想的检索结果。
In the field of content-based 3D model retrieval, feature descriptors and relevance feedback algorithms are significant technologies. Although feature descriptors are able to extract various low-level characteristics, a few problems in the procedure of feature extraction need to be improved. 3D model relevance feedback methods can acquire users’semantic knowledge and improve retrieval effectiveness, but the troubles of sample filtering and others universally exist in such approaches. In order to deal with the difficulties discussed above, this dissertation systematically investigates on the area and proposes a series of algorithms to solve the problems.
     The main work in this dissertation includes:
     1. A visual based 3D model feature descriptor MATE is presented. This algorithm firstly proposes a modified PCA method, and then introduces an adjacent anlge distance Fourier descriptor, presents an improved depth buffer descriptor in succession, and finally combines three different kinds of descriptors. Compared with several 3D model descriptors, MATE not only acquires better retrieval effectiveness with a few standard evaluation methods, but also solves the tradeoff trouble between retrieval effectiveness and feature dimension.
     2. A prior knowledge based feature vectors combination method for 3D model retrieval is proposed. It calculates prior konwlege of different feature vectors using query model, and then dynamically allocates weight for feature vectors to combine a feature vector. Experimental results show that this method is able to make use of various advantages of feature vectors, and its retrieval effectiveness is obviously better than two state-of-the-art algorithms.
     3. A powerful relevance feedback mechanism for content-based 3D model retrieval is introduced. This approach utilizes several feature vectors to describe different low-level feature information, and acquires users’retrieval requirement accurately. Experimental results illustrates that this method quickly narrows the gap between low-level feature information and high-level semantic knowledge, and significantly imporves 3D model retrieval effectiveness. Compared with several algorithms, this method obtains evident superiority with several standard evaluation approaches, and achieves preferable retrieval effectiveness with two rounds of relevance feedback.
     4. A long-term learning mechanism based SVM active learning relevance feedback algorithm is presented. This method returns the most informative models with active learning mechanism, preserves retrieval record and marking information of users, mines semantic konwlege hidden among different models by Laplacian Eigenmaps, and finally retrieves models with similarity measuring in semantic space. Compared with relevance feedback algorithms in 3D model area, this method not only accurately acquires users’semantic konwlege, but also significantly improves 3D model retrieval effectiveness. It achieves perfect retrieval result only with one or two rounds of relevance feedback.
引文
[1] Paquet E, Rioux M. A content-based search engine for VRML databases. In: Proceedings of the 1998 Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Santa Barbara, CA, 1998, 541-546
    [2] Regli W, Cicirello V. Managing digital libraries for computer-aided design. Computer-Aided Design, 2000, 32(2):119-132
    [3] Yeh J, Chen D, Chen B, et al. A web-based three-dimensional protein retrieval system by matching visual similarity. Bioinformatics, 2005, 21(13):3056-3057
    [4] Guetat G, Maitre M, Joly L, et al. Automatic 3-d grayscale volume matching and shape analysis. IEEE Transactions on information technology in biomedicine, 2006, 10(2):362-376
    [5] Wong H, Ma B, Yu Z, et al. 3-d head model retrieval using a single face view query. IEEE Transactions on Multimedia, 2007, 9(5):1026-1036
    [6] Wang S, Wang Y, Jin M, et al. Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Transactions on pattern analysis and machine intelligence, 2007, 29(7):1209-1220
    [7] Ankerst M, Kastenmuller G, Kriegel H P, et al. Nearest neighbor classification in 3D protein databases. In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, Heidelberg, Germany, 1999, 34-43
    [8] Iyer N, Jayanti S, Lou K, et al. Three-dimensional shape searching: state-of-the-art review and future trends. Computer-Aided Design, 2005, 37(5):509-530
    [9] Funkhouser T, Kazhdan M, Min P, et al. Shape-based retrieval and analysis of 3d models. Communications of the ACM, 2005, 48(6):58-64
    [10] Bustos B, Keim D, Saupe D, Schreck T, et al. Feature-based similarity search in 3d object databases. ACM Computing Surveys, 2005, 37(4):345-387
    [11] Vranic D. 3d model retrieval. Ph.D. thesis, University of Leipzig, Leipzig, Germany (2004)
    [12] Kazhdan M. Shape representations and algorithms for 3d model retrieval. Ph.D. thesis, Princeton University, Princeton, New Jersey, the United States (2004)
    [13] Tangelder J, Veltkamp R. A survey of content based 3D shape retrieval methods. In Proceedings of Shape Modeling and Applications, Palazzo Ducale, Genova, Italy, 2004:145-156
    [14] Elad M, Tal A, Ar S. Content based retrieval of VRML objects - an iterative andinteractive approach. In Proceedings of Eurographics Workshop on Multimedia, Manchester, UK, 2001: 97-108
    [15] Bang H Y, Chen T. Feature space warping: an approach to relevance feedback. In Proceedings of IEEE International Conference on Image Processing, Rochester, New York, USA, 2002:22-25
    [16] Leifman G, Meir R, Tal A. Semantic-oriented 3D shape retrieval using relevance feedback. The Visual Computer, 2005, 21(8): 865-875
    [17] Novotni M, Park G J, Wessel R, et al. Evaluation of kernel based methods for relevance feedback in 3d shape retrieval. In Proceedings of the Fourth International Workshop on Content-Based Multimedia Indexing, Riga, Latvia, 2005.
    [18]吕天阳.三维模型检索中基于聚类与基于语义方法的研究[博士学位论文].长春:吉林大学计算机科学与技术学院, 2007.
    [19]崔晨旸.三维模型检索中关键技术的研究[博士学位论文].杭州:浙江大学计算机科学与技术学院, 2005.
    [20]刘玉杰.基于形状的三维模型检索若干关键技术研究[博士学位论文].北京:中国科学院研究生院计算技术研究所, 2006.
    [21] Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic representation of 3D shape descriptors. ACM SIGGRAPH symposium on Geometry, 2003, Session 6, 156-164
    [22] Vranic D V, Saupe D, Richter J, Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In Processing of Multimedia Signal, 2001:293-298
    [23] Paquet E, Murching A, Naveen T, et al. Description of shape information for 2d and 3d objects. Signal Processing: Image Communication, 2000, 16(1): 103-122.
    [24] Heczko M, Keim D, Saupe D, et al. A method for similarity search of 3d objects. In Proceedings of German Database Conference. Olgenburg, Germany, 2001: 384-401
    [25] Pu J T, Ramani K. On visual similarity based 2D drawing retrieval. Computer Aided Design, 2006, 38(3): 249-259
    [26] Ankerst M, Kastenmuller G, Kriegel H, et al. 3D shape histograms for similarity search and classification in spatial database. In Proceedings of Symposium on Large Spatial Databases, Hong Kong, China, 1999:207-226
    [27] Osada R, Funkhouser T, Bernard C, et al. Shape Distributions. ACM Transactions on Graphics, 2002, 21(4):807-832
    [28] Hilaga M, Shinagawa Y, Kohmura T, et al. Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of ACM SIGGRAPH, Los Angeles, USA, 2001:203-212
    [29] Ohbuchi R, Nakazawa M, Takei T. Retrieving 3D shapes based on their appearance. InProcedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval, 2003:39-45
    [30] Chen D Y, Tian X P, Shen Y T, et al. On visual similarity based 3D model retrieval. Computer Graphics Forum, 2003, 22(3): 223-232
    [31] Shih J, Lee C, Wang J. 3d object retrieval system based on grid d2. ELECTRONICS LETTERS, 2005, 41(4):179-181
    [32] Kolonias I, Tzovaras D, Malassiotis S, et al. Fast content-based search of vrml models based on shape descriptors. IEEE Transactions on Multimedia, 2005, 7(1):114-126
    [33] Assfalg J, Bertini M, Bimbo A, et al. Content-based retrieval of 3-d objects using spin image signatures. IEEE Transactions on Multimedia, 2007, 9(3):589-599
    [34] Shih J, Lee C, Wang J. A new 3d model retrieval approach based on the elevation descriptor. Pattern Recognition, 2007, 40(1):283-295
    [35] Min M, Chen J, Funkhouser T. A 2D sketch interface for a 3D model search engine. ACM SIGGRAPH 2002 Conference Abstracts and Applications, New York, USA, 2002:138
    [36] Pu J T, Luo K Y, Karthik R. A 3D model retrieval method using 2D freehand sketches. Lecture Notes in Computer Science, Vol. 3515, 2005:343-347
    [37] Zhang D S, Lu G. An integrated approach to shape based image retrieval. In Proceedings of Fifth Asian Conference on Computer Vision, Melbourne, Australia, Jan. 2002:652-657
    [38] Vranic D, Saupe D, 3D model retrieval. In Proceedings of Spring Conference on Computer Graphics. Budmerice, Slovakin, 2000:89-93
    [39] Suzuki M, Kato T, Otsu N. A similarity retrieval of 3d polygonal models using rotation invariant shape description. In: Proceedings of IEEE International Conference on Systems,Man and Cybernetics. Nashhville, Tennessee USA, 2000:2946-2952
    [40] Johan W, Remco C. Polyhedral model retrieval using weighted point sets. International Journal of Image and Graphics, 2003, 3(1):209-229
    [41] Kazhdan M, Chazelle B, Dobkin D, et al. A reflective symmetry descriptor for 3d models. Algorithmica, 2003, 38(1):201–225
    [42] Funkhouser T Min P, Kazhdan M. A search engine for 3D models. ACM Transactions on Graphics. 2003, 22(1), 83-105
    [43] Vranic D. An improvement of rotation invariant 3d shape descriptor based on functions on concentric spheres. In: IEEE International Conference on Image Processing, Barcelona, Spain, 2003:757-760
    [44] Laga H, Takahashi H, Nakajima M. Spherical parameterization and geometry image-based 3D shape similarity estimation. The Visual Computer, 2006, 22(5):324-331
    [45] Papadakis P, Pratikakis I, Perantonis S, et al. Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Cognition, 2007, 40(9):2437-2452
    [46] Vranic D V, Saupe D. Description of 3D-shape using a complex function on the sphere. In proceedings of IEEE conference on multimedia and expo. Lausanne, Switzerland, 2002:177-180
    [47] Daras P, Zarpalas D, Tzovaras D, et al. Efficient 3d model search and retrieval using generalized 3d radon transforms. IEEE Transactions on Multimedia, 2006, 8(1):101-114
    [48] Wang S, Wang Y, Jin M, et al. Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Transactions on pattern analysis and machine intelligence. 2007, 29(7):1209-1220
    [49] Kazhdan M, Funkhouser T, Rusinkiewicz S. Shape matching and anisotropy. ACM Transactions on Graphics, 2004, 23(3):623-629
    [50] Ricard J, Coeurjolly D, Baskurt A. Generalizations of angular radial transform for 2D and 3D shape retrieval. PATTERN RECOGNITION LETTERS. 2005, 26(14):2174-2186
    [51] Podolak J, Shilane P, Golovinskiy A, et al. A planar reflective symmetry transform for 3D shapes. ACM Transactions on Graphics. 2006, 25(3):549-559
    [52] Kazhdan M. An approximate and efficient method for optimal rotation alignment of 3d models. IEEE Transactions on pattern analysis and machine intelligence, 2007, 29(7):1221-1229
    [53] Tanase M, Veltkamp R C. Part-Based Shape Retrieval. In Proceedings of the 13th annual ACM international conference on Multimedia, Hilton, Singapore, 2005:543-546
    [54] Liu Y, Zha H, Qin H. Shape topics - a compact representation and new algorithms for 3D partial shape retrieval. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, New York, USA, 2006:2025-2032
    [55] Gal R, Daniel C O. Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics. 2006, 25(1):130-150
    [56] Shilane P, Funkhouser T. Selecting distinctive 3D shape descriptors for similarity retrieval. In Proceedings of Shape Modeling and Applications, Matsushima, Japan, 2006:108-117
    [57] Suzuki M T, Yaginuma Y, Yamada T, et al. A 3D model retrieval based on combinations of partial shape descriptors, Fuzzy Information Processing Society, Montréal, Canada, 2006:273-278
    [58] Min P, Kazhdan M, Funkhouser T. A comparison of text and shape matching for retrieval of online 3D models. In Proceedings of European Conference on DigitalLibraries, Bath, UK, 2004:209-220
    [59] Shilane P, Min P, Kazhdan M, et al. The Princeton shape benchmark. Proceedings of Shape Modelling International, Genova, Italy, 2004:167-178
    [60] Bustos B, Keim D, Saupe D, et al. An experimental comparison of feature-based 3D retrieval methods. In Proceedings of Second International Symposium on 3D Data Processing, Visualization, and Transmission, Thessaloniki, Greece, 2004:6-9
    [61] Vranic D V. Desire: a composite 3D-shape descriptor. Proceeding of IEEE International Conference on Multimedia and Expo, 2005:962-965
    [62] Paquet E, Rioux M. Nefertiti: a query by content software for three-dimensional models databases management. Image and Vision Computing, 1999, 17(2):157-166
    [63] Ansary T, Daoudi M, Vandeborre J P. A bayesian 3d search engine using adaptive views clustering. IEEE Transaction on Multimedia, 2007, 9(1):78-88
    [64] Tong S, Koller D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research. 2001, 2(1): 45-66
    [65] Zhou X, Huang T. Unifying keywords and visual contents in image retrieval. IEEE Multimedia. 2002, 9(2):23-33
    [66] Sebastiani F. Machine learning in automated text categorization. ACM Computer Surveys. 2002, 34(1):1-47
    [67] Zhou. X S, Huang T S. Relevance feedback in content-based image retrieval: some recent advances. Information Sciences. 2002, 148(1):129-137
    [68] Zhou X, Thomas S. Relevance feedback in image retrieval: A comprehensive review. Multimedia Systems. 2003, 8(6):536-544
    [69]吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾.计算机学报, 2005, 28(12): 1969-1979
    [70] Mandel M I, Poliner G E, Ellis D P W. Support vector machine active learning for music retrieval, Multimedia Systems. 2006, 12(1): 3-13
    [71] Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 644-655
    [72] Zhou X S, Huang T S. Small sample learning during multimedia retrieval using biasMap. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawaii, USA. 2001:11-17
    [73] Cox I J, Miller M, Minka T P, et al. The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Transactions on Image Processing, 2000, 9(1):20-37
    [74] Chen Y, Zhou X S, Huang T S. One-class SVM for learning in image retrieval. IEEEInternational Conference on Image Processing, Thessaloniki, Greece, 2001:34-37
    [75] Zhou X S, Huang T S, Xiang S Z, et al. Comparing discriminating transformations and SVM for learning during multimedia retrieval. In Proceedings of the 9th annual ACM international conference on Multimedia, Ottawa, Ontario, Canada, 2001:137-146
    [76] Tong S, Chang E. Support vector machine active learning for image retrieval. In Proceedings of the 9th annual ACM international conference on Multimedia, Ottawa, Ontario, Canada, 2001:107-118
    [77] Burges C. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 1998, 2(2):1-47
    [78] Zhou Z H, Chen K J, Jiang Y. Exploiting unlabeled data in content-based image retrieval. In Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, 2004:525-536
    [79] Buckley C, Salton G. Optimization of relevance feedback weights. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, Seattle, Washington, USA, 1995:351-357
    [80] Han J W, Ngan K N, Li M J, et al. A memory learning framework for effective image retrieval. IEEE Transactions on Image Processing, 2005, 14(4): 511-524
    [81] Zhang C, Chen T. An active learning framework for content-based information retrieval. IEEE Transactions on Multimedia. 2002, 4(2):260-268
    [82] Lu Y, Hu C H, Zhu X Q, et al. A unified framework for semantics and feature based relevance feedback in image retrieval systems. In Proceedings of the 8th annual ACM international conference on Multimedia, Los Angeles, CA, USA, 2000:31-37
    [83] He X, King O, Ma W. Learning a semantic space from users relevance feedback for image retrieval. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(1):39-48
    [84] He X F, Ma W Y, Zhang H J. Learning an image manifold for retrieval. In Proceedings of the 13th annual ACM international conference on Multimedia, New York City, USA, 2004:17-23
    [85] Yu J, Tian Q. Learning image manifolds by semantic subspace projection. In Proceedings of the 13th annual ACM international conference on Multimedia, Santa Barbara, California, USA, 2006:297-306
    [86] Jiang W, Chan K L, Li M J, et al. Mapping low-level features to high-level semantic concepts in region-based image retrieval. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, California, USA, 2005:244-249
    [87] Lin Y Y, Liu T L, Chen H T. Semantic manifold learning for image retrieval. InProceedings of the 13th annual ACM international conference on Multimedia, Hilton, Singapore, 2005:249-258
    [88] Liu Y, Zhang D S, Lu G J, et al. A survey of content-based image retrieval with high-level semantics. Pattern Recognition. 2007, 40(1): 262-282
    [89] Zhang C, Chen T. Indexing and retrieval of 3d models aided by active learning. In Proceedings of the 9th annual ACM international conference on Multimedia, Ottawa, Ontario, Canada, 2001:615-616
    [90] Atmosukarto I, Leow W K, Huang Z Y. Feature combination and relevance feedback for 3D model retrieval. In Proceedings of the 11th International Multimedia Modelling Conference, 2005:334-339
    [91] Ohbuchi R, Kobayashi J. Unsupervised learning from a corpus for shape-based 3D model retrieval. In Proceedings of the 8th ACM SIGMM international workshop on Multimedia information retrieval, Santa Barbara, Califonia, USA, 2006.
    [92] Ibato M, Otagiri T, Ohbuchi R. Shape-similarity search of three dimensional models based on subjective measures. Joho Shori Gakkai Kenkyu Hokoku, 2002, 2002(16):25-30
    [93] Hou S Y, Lou K Y, Ramani K. SVM-based semantic clustering and retrieval of a 3D model database. Journal of Computer Aided Design and Application, Bangkok, Thailand, Volume 2, 2005:155-164
    [94] Zhang D, Lu G. A comparative study of Fourier descriptors for shape representation and retrieval, In Proceedings of Fifth Asian Conference on Computer Vision, Melbourne, Australia, 2002:646-651
    [95] Zhang D, Lu G. Generic Fourier descriptor for shape-based image retrieval. In Proceedings of IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 2002:425-428
    [96] Zhang D S, Lu G J. Shape retrieval using Fourier descriptors. In Proceedings of International Conference on Multimedia and Distance Education, Fargo ND, USA, 2001:1-9
    [97] Celebi M, Aslandogan Y. A comparative study of three moment-based shape descriptor. Proceedings of IEEE Conference on Information Technology: Coding and Computing, Las Vegas, USA, 2005:788-793
    [98] Marcin N. 3D zernike descriptors for content based shape retrieval. In Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, 2003:216-225
    [99] Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1988, 10(4):496-513
    [100] Mukundan R, Ong S H, Lee P A. Image Analysis by Tchebichef Moments. IEEETransaction on Image Processing, 2001, 10(9):1357-1364
    [101] Bustos B, Keim D A, Saupe D, et al. Automatic Selection and Combination of Descriptors for Effective 3D Similarity Search. IEEE International Workshop on Multimedia Content-based Analysis and Retrieval, 2004:514 -521
    [102] Bustos B, Keim D A, Saupe D, et al. Using entropy impurity for improved 3D object similarity search. Proceeding of IEEE International Conference on Multimedia and Expo, 2004:1303-1306
    [103] Vapnik V N. The nature of statistical learning theory. NewYork, Springer-Verlag, 1995
    [104]张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(1):32-41
    [105] Tenenhaum J, Silva V, Langfor J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319-2323
    [106] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500):2323-2326
    [107] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6):1373-1396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700