水相酶法同步提取冷榨花生饼中蛋白质和花生油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是我国主要的油料作物之一,制油是花生的主要用途,而制油后的花生饼一般都作为饲料,花生蛋白资源没有得到充分利用,通过酶解可以大大提高其营养价值和商业价值。本研究主要探讨水相酶法同步提取冷榨花生饼中蛋白质和花生油的新技术、花生冷榨过程特征、产物的理化品质、花生多肽的制备分离与分析、以及花生超细粉工艺与品质评价的研究等,为开发利用花生、冷榨花生饼提出了新途径。主要研究内容及结果如下:
     1水相酶法同步提取冷榨花生饼中蛋白质和花生油
     1.1花生冷榨过程与基本特性研究
     以花生油料为研究对象,探讨分析了植物油料在冷态压榨过程中的基本特性及变化规律、冷态压榨下整粒花生仁和碎粒花生仁的出油压力与出油应变、出油率、应力-应变关系、实际压缩比等问题。建立了花生油料出油率与压榨压力的经验公式、应力-应变经验公式和实际压缩比理论计算模型。
     1.2水相酶法处理冷榨花生饼
     水相酶法处理冷榨花生饼同步提取花生蛋白和花生油,即在水介质中碾磨花生冷榨饼,调整分散体系的pH值,用中性蛋白酶酶解,经离心分离后得到乳油和蛋白质水解产物,乳油经过破乳得到花生油。以pH、酶解温度、酶解时间、加酶量为单因素进行了单因素酶解研究,再以水解度为响应值对酶解条件进行响应面分析,得到最佳工艺条件为:pH6.7、反应温度50℃、酶解时间2.5 h、加酶量为6500u/g底物。冷榨花生饼出饼温度≤60℃,残油6.83%,冷榨花生饼中蛋白质含量≥55%,通过水相酶法最终产品花生蛋白质水解物纯度为89.94%,花生蛋白质得率为48.85%。
     1.3水相酶法提取的蛋白质产物的理化特性
     相同条件下,花生水解蛋白的乳化性、乳化稳定性、起泡性、吸油性和持水性和花生碱提蛋白相比都有所改善。提升幅度乳化性高达11.1%、乳化稳定性37.3%、起泡性34.0%、吸油性0.039(g/g)及持水性1.324(g/g),更适合于肉制品和乳制品等食品加工中。
     花生水解蛋白比花生碱提蛋白泡沫的稳定性稍差些,下降了4.6%。这可能是因为酶解作用,使水解蛋白的粘度较低,液膜强度小,从而使泡沫稳定性下降。
     1.4水酶法提取的花生油品质分析
     通过比较分析水酶法提取的花生油和水代法提取的花生油的理化性质和脂肪酸组成,水相酶法提取的花生油与现代的水代法和机榨法生产的花生油相比,它们之间没有多大区别,均符合国家花生油标准GB 1534-2003;其中按水相酶法提取的花生油,产品质量好,出油率高,按其加工工艺和方法生产的花生油避免了与有机溶剂的接触,不存在花生油中残留溶剂的问题,确保花生油的食用安全性。
     2花生多肽的制备及纯化
     用AS1.398中性蛋白酶酶法水解花生蛋白制备营养性花生多肽。本研究对影响花生蛋白水解得花生多肽的各种影响因素,如酶制剂的筛选,酶解工艺参数等进行了系统研究。通过正交实验,得到最佳工艺参数是pH值7.0、温度42℃、加酶量6500U/g原料、酶水解时间8h、料液比1:8(w/v)。用AS1.398蛋白酶水解得到花生肽粗品,运用超滤装置中5KD中空纤维膜组件截取分子量范围5KD以下的组分、用葡聚糖凝胶层析分离得到2个活性峰,经含尿素的SDS-PAGE凝胶电泳显示为单一的谱带,分子量范围在6.5KD和2KD左右。再通过3KD中空纤维膜组件截取样品分子量范围3KD以下的组分,经过用葡聚糖凝胶层析和SDS-PAGE凝胶电泳分析得到1个活性峰,分子量在2KD左右。运用柱前衍生技术对多肽进行了氨基酸组成分析,借以了解多肽的一级结构,为深入结构分析和功能研究奠定基础。
     3花生超细粉生产工艺及其性质的研究
     食用冷榨花生饼经超细粉碎加工生产的花生超细粉由于粒度小、白度白、糊化性能良好,其食品加工性质发生了很大的变化。
     花生粗粉主要以大于100目的颗粒存在,颗粒粗于标准面粉(120目),花生超细粉则比标准面粉细(小于140目)。花生超细粉由于粒度细,摩擦角大(56.7°),流动性变差。花生超细粉糊化温度降低,糊化完全,回生慢,因此,花生超细粉能替代面粉制作各种食品。
Peanut is one of the main oilseed-crops in China. For by-product after extract peanutoil, peanut cake was used as feeds, but its value for resources hasn't been fully utilized inthe past. The protein and oil in cold press peanut cake is main components. A treatingtechnique, enzymatic hydrolysis method, is developed and used to isolate peanut proteinand oil from cold press peanut cake at the same time. All the basic characteristics in thecourse of peanut cold-pressing, physical and chemical properties of product, preparationand purification of polypeptides, the processing technology and properties of peanutsuperfine powder were studied, results are as follows:
     1. Study on synchronous extracting peanut protein and peanut oilfrom cold pressed peanut cake by aqueous enzymatic hydrolysis
     1.1 Study on the basic characteristics of cold-pressing process of peanut
     During the processes of cold pressing on the whole peanut kernels and the brokenones, many relative factors, such as oil yielding pressure, oil yielding strain, and oilyielding efficiency, stress-strain relations and actual compress ratio, etc., were studied.Two empirical formulas were set up to express the relations between oil yieldingefficiency and pressure, stress and strain etc. And the theoretical model for calculatingactual compress ratio has also been brought forward.
     1.2 Synchronous extraction of protein and peanut oil from cold-pressedpeanut cakes by aqueous enzymatic hydrolysis
     In this study, the aqueous enzymatic technique was applied to obtain both the peanut protein and the peanut oil from cold pressed cake at the same time. The cold-pressedpeanut cake was ground with water to get a peanut mash. Adjusted the pH value of thedispersed phase, it was hydrolyzed enzymatically by neutral protease and isolated bycentrifugation, emulsified oil and protein were obtained. Then emulsified oil was furtherseparated through demulsification and got peanut oil. The enzymatic hydrolysis test assingle factor, i.e, pH, temperature, duration time and applied amount of protease, wasconducted. To obtain the optimum conditions of the hydrolysis with neutral protease, amethod as response value by hydrolysis degree was adopted to conduct response surfaceanalysis. The results showed that optimum conditions were as follows: applied weight ofenzyme, 6500u/g, hydrolysis time,2.5 h, temperature, 50℃and pH, 6.7. Theproduction temperature of cold-pressed peanut cake is≤60℃, with the product of≥55% protein content and 0.27% residual oil content.And the purityof protein hydrolysateis 89.94%, and the result rate of protein, 48.85%.
     1.3 Study on the physical and chemical properties of peanut proteinhydrolysates
     Functional properties of peanut protein hydrolysates and alkaline extracted proteinhave been studied in this paper. The functional properties of peanut protein hydrolysatehas improved dramatically compare with the alkaline extracted protein, its emulsifyingability increased by 11.1%; emulsive stability,by 37.3 %; water-holding capacity, by34.0%; oil sorption , by 0.039(g/g) and foaming ability , by1.324(g/g), therefore, peanutprotein hydrolysate is very suited to the needs of meat products and dairy processing.
     But foaming stability of peanut protein hydrolysates is slightly weaker than one ofalkaline extracted protein and dropped by 4.6%. This is probably that the low viscosity ofpeanut protein hydrolysates reduced the intensity of liquid membrane, so that the foamingstability of peanut protein hydrolysate was down.
     1.4 Analysis of properties of peanut oil extracted by aqueous enzymaticmethod
     By comparing and the components of fatty acid and it's the physical and chemicalproperties, it is found that the peanut oil made by aqueous enzymatic is almost the samewith ones by aqueous extraction peanut oil and/or cold-pressed peanut oil. The qualitiesof these products measure up to the national standards GB 1534-2003. The quality ofpeanut oil is better, and the oil yielding efficiency. This method could avoid theassociation with other organic solvents, to guarantee the edible security of peanut oil.
     2. Preparation and purification of peanut polypeptides
     In this study, neutral protease AS1.398 was used to enzymatically hydrolyze peanutprotein to produce polypeptides. The choice of factors, such as enzyme preparations andthe process parameters were studied as a systimaematic works. The optimum extractingcondition was attained by orthogonal experiments,i.e., pH, 7.0; temperature, 42℃;dosage of enzyme action (enzyme/substrate), 6500u/g;treatment time, 8h and ratio ofraw material to solvent, 1:8 (w/v).
     Polypeptide was extracted from peanut peptides and then isolated by ultrafiltration with5kd of hollow fiber to collect fractions (≤5kd), and then 2 active peaks were obtained byglucan gel chromatographic. The purity of them were identified by urea-containingSDS-PAGE gel electrophoresis, molecular weights were 6.5KD and 2KD respectively.
     Use the ultrafiltration to collect fractions(≤3kd), 1 active peaks were obtained byglucan gel chromatographic, molecular weights was 2KD.
     In order to understand the primary structure of polypeptides, technique of pre-columnderivatization was used for amino acids analysis.
     3. Properties of peanut superfine powder and its processingtechnology
     Peanut superfine powder from cold-pressed peanut cake have more changes inproperties due to their granules were fine, therefore Peanut superfine powders have goodwhiteness and pasting property. The granules of peanut raw powder are mostly existedmore than 100 meshes, at same time, these granules are also greater than the standard flour (120 meshes), while peanut superfine powder (<140 meshes) is smaller than thelatter. Due to friction angle(56.7°) of superfine powder is great therefore peanutsuperfine powder is poor in mobility,. Analysis of the pasting property of peanutsuperfine powder shows that the gelatinizing temperature is lower than common peanutpowder, with complete gelatinization and slow retragradation. So peanut superfinepowder from cold-pressed peanut cake can be used to replace wheat flour to preparevarious foods.
引文
1.柏爱云.油料预处理的现状与发展对策.中国油脂,1999(6):3—5
    2.陈陶声,陈永楠.油脂生产技术.化学工业出版社,1993
    3.陈元发,秦日中,何雪海.花生蛋白质的热变性研究.广西师范大学学报(自然科学版),1984,1:32-38
    4.雕鸿荪.油料预处理及压榨工艺学.江西科学技术出版社,1985
    5.董贝森,朱海涛,于跃琴.花生蛋白粉溶液流变学特性及功能性研究.农业工程学报,1999,15(1):251-252
    6.葛荣德.川北公夫粉末压制方程应用中的几个问题及方程的修正[J].粉末冶金技术,1993,11(2):90~94
    7.郭康权,佐竹隆显,吉崎繁.农林废弃物粉碎后的压缩特性[J].农业工程学报,1994,11(增刊):140~145
    8.郭兴凤,慕运动,赵雷,马宁.响应面方法应用研究.粮油加工与食品机械,2005,11:50-52
    9.郜海燕.白黎芦醇功能和作用机理研究进展.中国食品学报,2006,6(1):411-416
    10.韩雅珊.食品化学实验指导.北京农业大学出版社,1996
    11.黄文,胡慰望,谢笔钧.脱脂花生蛋白酶解产物的焙烤香味研究.食品科学,1996,17(12):18—20
    12.何慧,谢笔钧,杨卓等.大豆蛋白和玉米蛋白酶解肽及其活性研究.粮油食品科技,2002,10(1):14-16
    13.华欲飞,顾玉兴.功能性大豆浓缩蛋白的性能及应用研究.中国油脂,1997,22(1):22—24
    14.李汴生,彭志英,宁志祥.植物油料取油的酶预处理工艺.中国粮油学报,1997,12(6):24—30
    15.林勉,刘通讯.内肽酶与端解酶水解花生粕蛋白的研究.食品科学,2000,21(1):22-25
    16.李晓刚,张永丹.花生粕的酶解新工艺研究.食品工业科技,2004,2:102-103
    17.刘传富,张兆静.花生蛋白及其在食品中的应用.2005,1:24-25
    18.刘大川.植物蛋白工艺学.北京:中国商业出版社,1993
    19.刘大川.对油脂与植物蛋白工业中新技术的评述.中国油脂,1999,24(5):9—14
    20.刘志强,易平贵,吴苏喜.酶法有限水解花生蛋白条件对其含油率影响研究.中国粮油学报,2003,18(3):73-77
    21.刘志强,曾云龙,刘擎.水酶法提油工艺对花生蛋白功能特性的影响.食品工业科技,2004,25(1):63-65
    22.刘志强,刘擎,曾云龙.酶法有限水解对花生蛋白功能特性的影响.食品科学,2004,25(1):69-72
    23.鲁晓翔,陈新华,唐津忠.酶法改性玉米蛋白功能特性的研究.食品科学,2000,21(12):13-15
    24.倪培德.压榨法取油及有关理论问题.油脂科技,1982,5
    25.倪培德等编著.植物油提取与加工工艺学.无锡轻工业学院,1993
    26.宁正祥.食品成分分析手册.北京:中国轻工业出版社,1998
    27.宁正祥.食品成分分析手册.北京:中国轻工业出版社,2001
    28.沈同,王镜岩.生物化学.北京:高等教育出版社,2000
    29.谭斌,曾凡坤,吴永娴.花生肽的酶法生产工艺研究.食品与科技,2000,3:14-17
    30.陶红,梁歧,张鸣镝.热处理对大豆蛋白水解度的影响.中国油脂,2003,28(9):61-63
    31.陶谦.酶水解法提取食用花生蛋白的研究[J].食品与发酵工业,1998,24(6):15-18
    32.万书波.中国花生栽培学.上海科学技术出版社,2003
    33.王芳闽,姚妙爱.西部粮油科技.植物蛋白质及其营养价值,2001,26(4):23-41
    34.王瑛瑶,王璋.水酶法从花生中提取蛋白质与油——碱提工艺研究.食品科技,2002,7:6-8
    35.王瑛瑶,王璋.水酶法从花生中提取蛋白质与油——酶解工艺参数.无锡轻工大学学报,2003,22(4):60-64
    36.王璋.食品酶学.北京:中国轻工业出版社,1997
    37.王璋.食品化学.中国轻工业出版社,1999
    38.谢良,王璋,蔡宝玉等.大豆分离蛋白的组成与功能特性.中国粮油学报, 2000(12):6—10
    39.徐少曼.饱和粘土地基沉降量计算的规一化曲线法[J].岩土工程学报,1987,9(4):70~77
    40.杨天奎.21世纪中国油脂科技的发展趋势.中国油脂,1999,(5):6—7
    41.张维农.花生蛋白产品的制备及功能特性研究。[硕士论文].1996
    42.张宇吴,王强.花生蛋白的开发与利用.花生学报,2005,34(4):12-16
    43.赵新淮,冯志彪.蛋白质水解度的测定.食品科学,1994,(11):65-67
    44.赵志强,万书波,束春德.花生加工.北京:中国轻工业出版社,2001
    45.郑静桂.蛋白质水解与水解液的利用.食品工业(台),1997,29(5):10-17
    46.周瑞宝.花生加工技术.北京:化学工业出版社,2003
    47.朱青,韩苏夏,马瑾璐.白黎芦醇抗肿瘤活性研究进展.现代肿瘤医学,2006,14(5):634-636
    48. Badr. F. H., Optimizing Conditions for Enzymatic Extraction of Sunflower Oil. Grasasy Aceties, 1992(43): 281~283
    49. Bhatnagar S. et al., Microbial enzymes in the processing of oil seeds. Curr. Sci., 1987, 56(15): 775-776
    50. Buenrostro M. et al., Enzymatic Extraction of Avocado Oil. Biotechnol. Lett., 1986(8): 505-506
    51. Cintra McGlone O.ET AL., Coconut Oil Extraction by a New Enzymatic Process. J. Food Sci., 1989, 1(3): 695-697
    52. C.R. Sukumaran, B.P.N.Singh. Compression of bed of rapeseeds: the oil-point. Journal of Agricultural Engineering Research(J), 1989, 42: 77~84
    53. D.D.Smith et al., Enzymatic Hydrolysis Pretreatment for Mechanical Expelling of Soybean. J.A.O.C.S. 1993, 9(70): 885-3890
    54. Dominguez H. et al., Oil extractability from enzymaticlly treated soybean and sunflower range of operational variable. Food Chem., 1993(46): 277-284
    55. Dominguez, H. et al. Food Chem. Soc., 1994, 49: 271~286
    56. Dominguez H. et al., Enzyme-assisted Hexane Extraction of Soyabean Oil. Food Chemistry, 1995(54): 223-231
    57. D.SHANKAR et al., Enzymatic Hydrolysis in Conjunction with Conventional Pretreatments to Soybean for Enhanced Oil Extractability and Recovery.2002, 12(6):24-30
    
    58. Fullbrook,P.D. The Use of Enzymes in the Processing of Oilseeds. Journal of the American Oil Chemists Society. 1983,60:476-478.
    
    59. G. C. Mrema, P. B. Mcnulty. Mathematical model of mechanical oil expression from oilseeds(J). Journal of Agricultural Engineering Research(J),1985,31:361-370
    
    60. Glone,O.C.et al. Coconut Oil Extraction By a New Enzymatic Process. Journal of Food Socience.,1986,51(3):695-697
    
    61. Hamidi M.et al.,Use of Aspergillus niger to improve filtration of olive mill wasters.J.Chem. Techn.Biotechnol.,1992(53):195-200
    
    62. Kodera Tomohiro,Asano Minao,Miwa Tetsuya, etal.Production of low-bitter peptide [P] Patent Abstact of Japan,2000-083695.2000-03-28
    
    63. Gunetileke,K.S. and S. F. Laurentius.J. Food Sci.,1974,39: 230-234
    
    64. Larry R B,John P C,Micael R Q.Physicochemical properties of peanut flour as affected by proteolysis. J Agric Food Chem,1975,23(4):616-620
    
    65. Mcneil Marcel C. Partially hydrolysed protein nutrient supplement [P]. U.S.Patent,2003022274.2003-01-30
    
    66. Monteiro P V, Prakash V.Efect of proteases on arachin,conarachin I ,and conarachin II from peanut[J].J Agric Food Chem,1994,42:268-273
    
    67. Monteiro PV, Prakash V.Alteration of functional properties of peanut protein fractions by chemical and enzymatic modifications. J Food Sci Technol, 1996,33(1):19-26
    
    68. P.C.Bargale,Jaswant.Singh.Oil expression characteristics of rapeseed for a small capacity screw press(J).Journal of food Science Technolage,2000,37(2):130-134
    
    69. Per Munk Nielsend,et al.Method for production of vegetable protein hydrolyzate with proteases [P].United U.S.Patent,US005716801A.1998-2-10
    
    70. Posirske L.H.J.Am.Oil Chen.Soc, 1984,61:1758-1760
    
    71. Robin Y C, L R Beuchat,R D Philips.Functional and physical property characterization of peanut milk proteins partially hydrolyzed by immobilized papain in a continuous reactor. J Agric Food Chem, 1985,33:1109-111
    
    72. Rhee K C. Simultaneous Recovery Of Protein and Oil from Raw Peanuts in Aqueous system. Journal of Food Science.l972,37:90-93.
    
    73. Sekul A A,Ory R L.Rapid enzymatic method for partial hydolysis of oilseed proteins for food uses[J].J Am Oil Chem Soc,1977,54:32-3
    
    74. Sekul A A,Vinnet C H,Ory R L.Some functional properties of peanut proteins partially hydrolyzed with papain.J Agric Food Chem,1978,26(4):855-85
    
    75. Sosulski,k.et al. JAOCS. Processedings of 33rd Ammual Conference of the Canadian Institute of Food Science and Technolgy,1990.Vol.3:656
    
    76. Sugarman N.Process for extraction of oil and protein simultaneously from oil-bearing material.US Patent,2762820,1956
    
    77. Sven Bernesson. Influence of some physical press parameters on capacity and oil extraction efficiency of a small oil expeller(J). Agricultural Research (Swedish),1998,28:147-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700