上海某能源中心三联供方案及运行方式的系统优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着采暖和空调设备的普及率不断攀升以及世界能源危机的加剧,建筑节能愈加受到人们的重视。而随着天然气的大量开采、能源结构的调整以及环境保护要求的不断提高,具有节能环保、资源利用合理、综合效率高、经济性较好、冷热电负荷分配灵活等优势的冷热电三联产系统将成为中国城市最有发展潜力的能源供应模式之一。
     冷热电联产(Combined Cooling Heat and Power—CCHP)又称为分布式能源系统,是一种建立在能量梯级利用概念基础上,将制冷、供热(采暖和供热水)及发电过程一体化的多联产总能系统,目的在于提高系统能源利用效率和能源系统的安全性,减少CO_2,SO_2,NO_x等有害气体的排放。
     本课题首先采用清华大学开发的DeST软件对上海市新江湾城F3地块(规划中)进行能耗模拟,得到了较准确的基于实际运行时间的冷热负荷以及全年能耗。再根据负荷的模拟计算结果对不同冷热电三联供系统的配置方式和运行策略进行优化分析。
     本课题以“初投资、(火用)经济系数较小、单位成本的年运行收益和净现值较大、投资回收期较短为目标函数建立了三联供的优化模型,并提出一种新的三联供配置方式,即“以应急电量大小确定三联供的容量,并用此三联供系统替代应急电源”,运用Matlab及VB对模型进行模拟计算后,结果表明:“用三联供系统替代应急电源”方案的单位成本的年运行收益和净现值比不替代应急电源的三联供方案更高,(火用)经济系数更小,投资回收期更短。最后再与常规冷热源方案进行比较分析,最终得出“用三联供系统替代应急电源”的热电冷三联供方案的经济效益最好。
With the increasing of heating and air-conditioning, consumption of energy increase, so the energy-saving has been emphasis. For the requirements of environment and the adjustment of energy structure, the CCHP will become one of the most development potential energy supply modes in China which is energy-saving、environmental protection、rational of resources、high efficiency、better economy and flecible in load distribution.
     As is also called distributed energy system, CCHP is a kind of multi-generation system that is base on the concept of energy cascade utilization. This system can improve the efficiency and security of energy utilization and reduce the harmful gases such as CO_2, SO_2 and NOX by Combined Cooling Heat and Power.
     Firstly, this paper simulated the energy comsumption of an energy center in Shanghai (planning) with the DeST developed by Tsinghua University. Then got an accurate load based on the actual running time. According the load, this paper has optimized the configuration and operation strategies of CCHP.
     This topic designed a CCHP simulation model in order to get the best CCHP program with low initial investment、less economic factor、more annual operating income and NPV of unit cost and short payback period by using Matlab and VB. Then compared the best CCHP program with the program that used CCHP to replace the emergency power, the result showed the economy of the CCHP program was less than the CCHP program can replace the emergency. Last compared the CCHP with the conventional cooling and heating source program, showed the economic and environmental benefits of the CCHP used to replace the emergency power were the most in alll the energy supply programs.
引文
[1]王舸、章海生,浅谈天然气冷热电三联供[A],深圳燃气论坛论文集[C],深圳:2006,88-92.
    [2]徐建中、江丽霞、金红光,分布式供电和冷热电联产的前景,中国能源网,2003.
    [3]Eriksen,Economic and environmental dispatch ofpower/CHP production systems,Electric power systems Research 57(2001):33-39.
    [4]张洪伟、黄素逸、龙研,分布式能量系统与可持续发展战略,节能,2004,4:41-44.
    [5]H.Lund,E.Munster,Modelling of energy systems with a high percentage of CHP and wind power,Renewable Energy 28(2003):2179-2193.
    [6]P.A.Pilavachi,Power generation with gas turbine systems and combined heat and power,Applied Thermal Engineering 20(2000):1421-1429.
    [7]强国芳,国外冷热电三联产的现状和前景热电联产工程系列报告之四,热能动力工程[D],1999NO.5.P259-267.
    [8]刘凤强,张时飞,潘卫国等.楼宇热电联供系统的变工况及热力学分析.动力工程[J],2002.22(5):2005-2010.
    [9]江丽霞,金红光,蔡睿贤。冷热电三联供系统特性分析与设计优化研究。工程热物理学报[J],北京:2002(23):1-2.
    [10]张洪伟.分布式能源冷热电联产系统的热经济性研究[D],武汉:华中科技大学,2005.
    [11]孙志高,热电冷三联供综合经济分析,建筑热能通风空调[J],2000(3):1-2.
    [12]张蓓红,龙惟定.热电(冷)联产系统优化配置及运行策略研究[D],上海,同济大学,2005.
    [13]秦志红,刘凤强,曹家枞.楼宇冷热电联供系统的热经济性分析,能源研究与信息[J],2003,19(2):1-3.
    [14]刘凤强,曹家枞,曹双华.楼宇冷热电联供系统成本分摊方法研究,东华大学学报(自然科学版)[J],2005,31(3):1-5.
    [15]Clarke JA,McLean D.ESP-A building and plant energy simulation system.Strathclyde:Energy Simulation Research Unit,University of Strathclyede,1988.
    [16]ASHRAE Standard Project Committee 140,ANSI/ASHRAE Standard 140-2001,Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.(2001)
    [17]Y.Jiang.Statespace method for analysis of the thermal behavior of room and calculation of an air conditioning load.ASHRAE Trans,1981,88:122-132.
    [18]燕达,谢晓娜,宋芳婷,江亿.建筑模拟技术与DeST发展简介.暖通空调[J],2004,07.
    [19]周书东.北京某小区多层建筑物热环境模拟分析应用.工业建筑[J],2008,38.
    [20]董智慧,刘凡,庞俊香.建筑窗墙比对办公建筑冷(热)负荷的影响分析.建筑节能[J],2008,03.
    [21]彭关中,缪小平,胡啸,李文远,王佳渊.利用DeST模拟窗户对空调系统能耗的影响.洁净与空调技术[J],2006,03.
    [22]范珑,诸群飞,李辉.五棵松文化体育中心冷热源方案比较.暖通空调[J],2008,09.
    [23]叶青,李振海.DeST能耗模拟软件在某建筑冷热源方案中的应用.能源技术[J],2008,02.
    [24]刘泽华,彭梦珑,周湘江.空调冷热源工程.机械工业出版社,2005,09.
    [25]Risto Lahdelma、Henri Hakonen,An efficient linear programming algorithm for combined heat and power production,European Journal of Operational Research 148(2003):141-151.
    [26]C.D.Mone,D.S.Chau、P.E.Phelan,Economic feasibility of combined heat and power and absorption regrigeration with commercially available gas turbines,Energy Conversion and Management 42(2001):1559-1573.
    [27]Ching-Tzong Su、Chao-Lung Chiang,An incorporated algorithm for combined heat and power economic dispatch,Electric Power Systems Research 69(2004):187-195.
    [28]安青松,李汛,基于燃气轮机的冷热电三联供系统优化模拟[D],天津:天津大学,2004.
    [29]周宗发,张圣亮,用户自备应急电源应对电力突发事件,电力需求侧管理[J],2006,8(1):1-2.
    [30]陈晨,潘毅群,黄治钟,吴刚.上海市某商用建筑能耗分析与节能评估.暖通空调[J],2006,04.
    [31]李先瑞.住宅区三联供系统的研究.区域供暖[J],2000,02.
    [32]柏木孝夫.日本的吸收式制冷和空调循环.Proceeds of the International Sorption Heat Pump Conference.p 72-75.
    [33]Gjerkes,Henrik.Operation of an adaptively controlled absorption heat pump under variable and disturbed conditions.Instrumentation Science and Technology,v 3 0,n 2,M ay,20 02,p 123-138.
    [34]Ghosh,Kaushik;Zhou,Xinhui;Herold,Keith E.Circulation of 2-ethyl-hexanol an absorption chiller.ASHRAE Transactions,v 108P ART 1,2002,p 861-866.
    [35]李兆坚,江亿.暖通空调方案设计现状分析.暖通空调[J],2005,09.
    [36]傅宏涛.西安大型办公建筑冷热源方案的综合能耗研究.中国优秀硕士学位论文全文数据库,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700