机械合金化-粉末冶金SiCp/6061Al复合材料的制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用机械合金化-粉末冶金法制备了体积分数为 10%和 20%的 SiC 颗粒
    增强 6061 铝基复合材料。研究了机械合金化过程中粉末的形貌微观结构和性能
    的变化。考察了机械合金化-粉末冶金制备的 SiCp/6061Al 复合材料经烧结、固
    溶处理后,时效温度和时效时间对材料性能的影响,并探讨了其时效强化机理;
    研究了 SiCp/6061Al 复合材料在不同温度下的摩擦磨损特性,并对其磨损机理进
    行了初步探讨。
     研究结果表明,机械合金化工艺可以改善 SiC 颗粒在基体中分布的情况。SiC
    颗粒和 6061Al 粉在机械合金化过程中发生增强体的破裂-基体的塑性变形、加工
    硬化、冷焊合-增强体颗粒嵌入合金基体-SiC 颗粒的均匀分布几个过程。
     SiC 颗粒的加入不会改变基体合金的时效沉淀顺序,但复合材料中大量存在
    的位错及界面为β′形核提供机会,使得人工时效时达到峰时效所对应的时间提
    前。自然时效达到峰时效的时间比人工时效的长,而且所达到峰时效的硬度值较
    人工时效的硬度值的低。复合材料界面的透射电镜照片表明,采用机械合金化-
    粉末冶金法制备的复合材料的界面平直、干净,没有界面化学反应物产生。
     SiCp/6061Al 复合材料的耐磨性能优于基体 6061Al 合金,并且随着 SiC 颗
    粒含量增加,发生严重磨损所需载荷明显增大。室温摩擦时,SiCp/6061Al 复合
    材料表面会形成由铁元素、基体合金和破碎了的 SiC 颗粒组成的机械混合层。复
    合材料的磨损机制与机械混合层的形成有很大关系。在高温摩擦时,低于 150℃
    时,6061Al 合金的磨损量小于 SiCp/6061Al 复合材料的磨损量,但在 200℃时,
    6061Al 磨损量急剧增大,大于 SiCp/6061Al 复合材料的磨损量。
SiC particle reinforced 6061 aluminum matrix composites were fabricated by the
    mechanical alloying (MA) and the powder metallurgy (P/M) technique with 10vol%
    and 20vol% SiC particles. The microstructure and property of the powders were
    investigated at different period of MA processing. The effect of the aging temperature
    and aging time on the property of the composites, which were prepared by MA ,
    sintering and solid-solution treatment, were investigated. The aging-hardening
    mechanism of the SiCp/6061Al composites was also discussed. The tribological and
    wear property of the SiCp/6061Al composites were investigated at different
    temperature, and the wear mechanism of the SiCp/6061Al composites was
    preliminarily analysised.
    The result showed that several steps happened during MA’s processing: plastic
    transformation of matrix alloy, fracture of reinforcement, work-hardening of matrix
    alloy, cold-welding, formation of lamination structure and uniform distribution of SiC
    particles in matrix. A homogeneous distribution of SiC particles achieved by MA
    techniques.
    There was no change of the sequence of precipitation of composites by addition of
    SiC particle compared with that of unreinfored alloys during aging. But, an obvious
    hardening effect can be observed in the SiCp/6061Al composites resulting from the
    introduction of numerous dislocation. Duration of peak-aging of the sample aged at
    room temperature (Natural Aging, NA) was 48h, longer than that of the sample of
    aged at a higher temperature (Artificial Aging, AA). The peak-microhardness of NA
    sample was lower than that of AA sample’s. The TEM morphology of 10MMC
    exhibited that interface of Al-SiC had a “cleaned” bonding and had no evidence of
    chemical reaction product at the interface.
    The SiCp/6061Al composites have better wear resistance compared with that of 6061
    alloy. The wear resistance improved with increasing of the volume fraction of SiC
    particles. At room temperature, good wear resistance of SiCp/6061Al composites
    samples achieved by the addition of SiC particles was induced by the formation of the
    mechanically mixed layer (MML). It was showed that the wear mechanism of
    SiCp/6061Al matrix composites was related to the formation of MML rubbed against
    the iron , 6061Al exhibited a slighter wear mass loss than that of SiCp/6061Al
    
    
    composites below 150℃. At 200℃, the wear mass loss of Al increased dramatically
    than that of the SiCp/6061Al composites.
引文
[1]张国定,赵昌正,金属基复合材料,上海:上海交通大学出版社,1996.1
    [2]陈华辉等,现代复合材料,北京:中国物资出版社,1998.94~95
    [3]D.J. Lloyd,Particle reinforced aluminum and magnesium matrix composites,Inter.Mater.Rev.,
    39(1):1~23
    [4]I.A. Ibrahim,F.A. Mohamed,E.J. Lavernia,Particulate reinforced metal matrix composites-a
    review,J.Mater.Sci.,1991,26:1137—1156
    [5]乐永康,张迎元,颗粒增强铝基复合材料的研究现状,材料开发与应用,1997,12(5):
    33~39
    [6]T.W. Clyne,P.J. Withers,An introduction to metal matrix composites,Cambridge,Cambridge
    University Press,1993:301
    [7]朱和祥,黎祚坚,陈国平,碳化硅颗粒增强铝基复合材料的发展概况,材料导报,1995,
    3:73~76
    [8]Mortensen A.,Gunger M.N.,Cornie J.A.,et al.,J.Metals,1986,38:30
    [9]Christophe G.E.Mangin,Jacqueline A.Isaacs,Joel P.Clark,JOM,1996,48(2):49~51
    [10]John E.Allison,Gerald S.Cole,Metal-Matrix Composites in the Automotive Industry:
    Opportunities and Challenges,JOM,1993,45(1):19~24
    [11]贾德昌,周玉,雷廷权,机械合金化及其在 Al 合金和 Al 基复合材料中的应用进展,宇
    航材料工艺,1996,1:1~9
    [12]M. Sherif EI-Eskandarany,Mechanical alloying for fabracation of advanced engineering
    materials,Norwich,Newyork,U.S.A.,2001:58
    [13]J.S. Benjamin,Metall.Trans,1970,1:2943~2951
    [14]A.Bhaduri,V.Gopinathan,P.Ramakrishnan,A.P. Miodownik,Processing and properties of
    SiC particulate reinforced Al-6.2Zn-2.5Mg-1.7Cu alloy (7010) matrix composites prepared by
    mechanical alloying,Mater.Sci.Eng.,1996,A(221):94~101
    [15]R.Sankar,Paramanand Sigh,Synthesis of 7075 Al/SiC particulate composite powders by
    mechanical alloying,Mater.Lett.,1998,36:201~205
    [16]樊建中等,颗粒增强铝基复合材料的研究进展,材料导报,1997,11(3):48~51
    [17]吴人洁,金属基复合材料的现状与展望,金属学报,33(1):78~84
    [18]T.S. Srivatsan,E.J. Lavernia,Use of spray techniques to synthesize particularte-reinforced
    meta-matrix composites,1992,27:5965~5981
    [19]张淑英等,颗粒增强铝基复合材料的研究进展,材料导报,1996,2:66~71
    [20]彭晓东,钱翰城,金属基复合材料喷射沉积技术,材料导报,1993,2:72~75
    [21] 马宗义,申红伟,毕敬,吕毓雄,高荫轩,碳化硅颗粒增强 2124Al 复合材料特性研究,
    复合材料学报,1992,9(2):37~42
     61
    
    
    参考文献
    [22]董晟全,李建平,铸造 SiCp/Al 复合材料耐磨性能研究,铸造技术,1993,(6):40~42
    [23]谭明照,宗亚平,李正华等,SiC 颗粒增强铝基复合材料在应变过程中显微组织的损伤,
    金属学报,1999,35(11):1219~1223
    [24]于维成,袁金才,王中光等,SiC(W)增强 Al 合金疲劳失效的特征,材料科学进展,1989,
    3(2):128~132
    [25]袁文广等,SiC 颗粒增强铝基复合材料制备及机加工性能,复合材料学报,2000,17(2):
    38~41
    [26] 马宗义,毕敬,吕毓雄,不连续碳化硅增强铝基复合材料,材料科学与工程,1991,
    9(2):24~32
    [27]王磊,颗粒增强铝基复合材料研究进展,材料导报,1997,3:48
    [28]丁占来,齐海波,樊云昌,金属基复合材料的研究及在汽车上的应用,汽车工艺与材料,
    1998,(3):19~21
    [29]张学习,王德尊,姚忠凯等,非连续增强金属基复合材料的应用,航空制造技术,2002,
    (5):35~38
    [30]赖华清,范宏训,徐祥等,金属基复合材料及其在汽车上的应用,汽车研究与开发,2001,
    (4),42~44,48
    [31]Varuzan M.Kevorkijan,Aluminum Composites for Automotive Applications:A Globao
    Perspective,JOM,9:54~58
    [32]聂存珠,赵乃勤,金属基电子封装复合材料的研究进展,金属热处理,2003,28(6):
    1~5
    [33]黄 强,顾明远. 电子封装材料的研究现状[J].材料导报,2000,(9):28-32.
    [34] Zweben C. Metal-Matrix Composites for Electronic Packaging[J]. JOM ,1992,(7):15-23.
    [35] Prasad V V Bhanu,et al.P/M Processing of Al-SiCcompsites, Int J Powder Metall ,1991 ,
    27( 3) : 227~235
    [36] Fogagnolo J B ,Velasco F , Robert M H ,Torralba J M,Effect of mechanical alloying on
    morphology , microstructure and properties of aluminium matrix composites powders, Mater Sci
    Eng, 2003 , A(342) : 131~143.
    [37] Lu L , Lai M O , Ng C W, et al.,Enhanced mechanical properties of an Al based metal matrix
    composite prepared using mechanical alloying, Mater Sci Eng , 1998 , A(252) : 203~211.
    [38] Prasad V V Bhanu , et al.,Structure-property correlation in discontinuously reinforced
    aluminium matrix composites as a function of relative particle size ratio,Mater Sci Eng ,2002,
    337(1-2) : 179~186.
    [39]樊建中等,高性能铝基复合材料的颗粒分布及界面结合,宇航材料工艺 2002,1:30~34
    [40]机械工程手册编委会(郭景坤,潘振生,谭浩然等),机械工程手册(第二版),工程材
    料卷,北京:机械工业出版社,1996:9-73
    [41]王祝堂等译,铝合金的组织与性能,北京:冶金工业出版社,1988:514
    [42]张宝昌,王世洪,孟亮等,有色金属及其热处理,西安,西北工业大学出版社,1993:
    23
    [43] Prasad V V Bhanu,et al.P/M Processing of Al-SiCcompsites, Int J Powder Metall ,1991 ,
    27( 3) : 227~235
    [44] Fogagnolo J B ,Velasco F , Robert M H ,Torralba J M,Effect of mechanical alloying on
     62
    
    
    参考文献
    morphology , microstructure and properties of aluminium matrix composites powders, Mater Sci
    Eng, 2003 , A(342) : 131~143.
    [45]李长海,余永宁译,金属和合金中的相变,北京:冶金工业出版社,1988:295
    [46]M. Gupta,M.K. Surappa,Effect of increase in heterogeneous nucleation on the aging
    behavior of 6061/SiC Metal Matrix Composites,Mater.Res.Bull.,1995,30(8):1023~1030
    [47]李义春,邵文柱,安希墉,颗粒增强铝基复合材料的时效行为,中国有色金属学报,1993,
    3(3):83~86
    [48]胡赓祥,蔡珣,材料科学基础,上海:上海交通大学出版社,2000:139
    [49]Y. Song,T.N. Baker,Accelerated aging processes in ceramic reinforced AA 6061 composites,
    Mat.Sci.Tech.,1994,10:406~413
    [50]T.G. Nieh,R.F. Karlak,Aging characteristics of B4C/6061 Al,Scripta Metall.,1984,18
    (3):25~28
    [51]S. Suresh,T. Christman,Y. Sugimure,Accelerated Aging in a Cast Alloy-SiC Particulate
    composites,Scripta Mettall.,1989,23:1599~1602
    [52]I. Dutta,D.L. Bourell,A Theoretical Investigation of Accelerated Aging in Metal-Matrix
    Composites,J.Comp.Mater.,1988,22:829~849
    [53]李义春,邵文柱,安希墉,Al2O3颗粒对Al2O3/Al复合材料时效析出的影响,复合材料学
    报,1993,10(1):48~50
    [54]胡明等,SiC 晶须增强铝基复合材料热膨胀行为与内应力关系的研究,复合材料学报,
    2002,19(3):57~61
    [55]Arsenault R.J.,Pande C S,Interface in metal matrix composites,1984,18(10):1131
    [56]樊建中,粉末冶金 SiCp/Al 复合材料的界面状况与变形行为:[博士论文],哈尔滨:哈
    尔滨工业大学,1997
    [57]S.R. NUTT , R.W. CARPENTER , Non-equilibrium Phase Distribution in an Al-SiC
    Composites,Mater.Sci.Eng,75:169~177
    [58]孙家枢,金属的磨损,北京:冶金出版社,1992.153~155
    [59]戴雄杰主编,摩擦学基础,上海:上海科学技术出版社,1984.9
    [60]李建明,磨损金属学,北京:冶金出版社,1990.47
    [61]N.P. Suh,an overview of the delamination theory of wear,Wear ,1977,44:1~16
    [62]S. Jahanmir and N.P. Suh,mechanics of subsurface void nucleation in delamination wear,
    Wear ,1977,44:17~38
    [63J.zhang,A.T. Alpas,Wear regimes and transitions in Al2O3 particulate-reinforced aluminum
    alloys, Mater.Sci.Eng .,1993,A(161):273~284
    [64]G.J. Howell,A.Ball,Dry sliding wear of particulate-reinforced aluminum against automobile
    friction material,Wear ,1995,181-183:379~390
    [65]B.Venkataraman,G.Sundararajan,The sliding wear behavior of Al-Si particulate composites-
    Ⅱ. The characterization of subsurface deformation and correlation with wear behavior,
    Acta mater.,1995,44(2):461~473
    [66]吴洁君等,SiC 颗粒增强铝基复合材料磨损表面、亚表层形貌分析,材料科学与工程,
    1999,17(3),74~77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700